Exogenous Nucleotides Ameliorate Age-Related Decline in Testosterone in Male Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice by Modulating the Local Renin–Angiotensin System Antioxidant Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Substances
2.2. Animals and Treatment
2.3. Testicular Organ Index
2.4. Testing of Testosterone in Testis
2.5. Testing of the Main Renin–Angiotensin System Molecules in Testes
2.6. Testing of Antioxidant Pathway-Related Indicators
2.7. Testing of Bmal1 Protein Expression
2.8. Statistics Analysis
3. Results
3.1. Exogenous Nucleotides Improve Testicular Organ Index in Aging SAMP8 Mice
3.2. Exogenous Nucleotides Increase Testosterone Levels in Testicular Tissue
3.3. Exogenous Nucleotides Regulate the Levels of Key Renin–Angiotensin System Molecules in Testicular Tissue
3.4. Exogenous Nucleotides Improve Antioxidant Indices and May Activate Nrf2 in Testicular Tissue
3.5. Exogenous Nucleotides May Increase Bmal1 Expression in Testicular Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAMP8 | Senescence-accelerated mouse prone-8 |
SAMR1 | Senescence-accelerated mouse resistant 1 |
RAS | Renin–angiotensin system |
NTs | Nucleotides |
NTs-F | NTs free group |
Control | Normal control group |
NTs-L | Low-dose NTs group |
NTs-M | Middle-dose NTs group |
NTs-H | High-dose NTs group |
Ang II | Angiotensin II |
ACE | Angiotensin-converting enzyme |
ALD | Aldosterone |
PRR | Renin receptor |
MR | Mineralocorticoid receptor |
TRT | Testosterone replacement therapy |
References
- Lisco, G.; Giagulli, V.A.; De Tullio, A.; De Pergola, G.; Guastamacchia, E.; Triggiani, V. Age-Related Male Hypogonadism and Cognitive Impairment in the Elderly: Focus on the Effects of Testosterone Replacement Therapy on Cognition. Geriatrics 2020, 5, 76. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Yeap, B.B.; Flicker, L.; Martin, S.; Wittert, G.A.; Ly, L.P. Age-specific population centiles for androgen status in men. Eur. J. Endocrinol. 2015, 173, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Tajar, A.; Forti, G.; O’Neill, T.W.; Lee, D.M.; Silman, A.J.; Finn, J.D.; Bartfai, G.; Boonen, S.; Casanueva, F.F.; Giwercman, A.; et al. Characteristics of Secondary, Primary, and Compensated Hypogonadism in Aging Men: Evidence from the European Male Ageing Study. J. Clin. Endocrinol. Metab. 2010, 95, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Ding, E.L.; Song, Y.; Malik, V.S.; Liu, S. Sex Differences of Endogenous Sex Hormones and Risk of Type 2 Diabetes: A systematic review and meta-analysis. JAMA 2006, 295, 1288–1299. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.B.; Dixon, J.M.; Suarez, E.A.; Murad, M.H.; Guey, L.T.; Wittert, G.A. Clinical Review: Endogenous Testosterone and Mortality in Men: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2011, 96, 3007–3019. [Google Scholar] [CrossRef] [PubMed]
- Nieschlag, E. Late-onset hypogonadism: A concept comes of age. Andrology 2019, 8, 1506–1511. [Google Scholar] [CrossRef]
- dos Santos, M.R.; Bhasin, S. Benefits and Risks of Testosterone Treatment in Men with Age-Related Decline in Testosterone. Annu. Rev. Med. 2021, 72, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Valderrábano, R.J.; Gagliano-Jucá, T. Age-Related Changes in the Male Reproductive System; Endotext [Internet]; MDText.com, Inc.: South Dartmouth, MA, USA, 2022. [Google Scholar]
- Galbiati, F.F.; Goldman, A.L.; Gattu, A.; Guzelce, E.C.; Bhasin, S. Benefits and Risks of Testosterone Treatment of Older Men with Hypogonadism. Urol. Clin. N. Am. 2022, 49, 593–602. [Google Scholar] [CrossRef]
- Gianzo, M.; Subirán, N. Regulation of Male Fertility by the Renin-Angiotensin System. Int. J. Mol. Sci. 2020, 21, 7943. [Google Scholar] [CrossRef]
- Vargas, R.A.V.; Millán, J.M.V.; Bonilla, E.F. Renin–angiotensin system: Basic and clinical aspects—A general perspective. Endocrinol. Diabetes. Nutr. (Engl. Ed.) 2022, 69, 52–62. [Google Scholar] [CrossRef]
- Paul, M.; Mehr, A.P.; Kreutz, R.; Oakes, J.M.; Fuchs, R.M.; Gardner, J.D.; Lazartigues, E.; Yue, X.; Stodola, T.J.; Liu, P.; et al. Physiology of Local Renin-Angiotensin Systems. Physiol. Rev. 2006, 86, 747–803. [Google Scholar] [CrossRef]
- Herr, D.; Bekes, I.; Wulff, C. Local Renin-Angiotensin System in the Reproductive System. Front. Endocrinol. 2013, 4, 150. [Google Scholar] [CrossRef] [PubMed]
- Dzau, V.J.; Ellison, K.E.; Brody, T.; Ingelfinger, J.; Pratt, R.E. A Comparative Study of the Distributions of Renin and Angiotensinogen Messenger Ribonucleic Acids in Rat and Mouse Tissues. Endocrinology 1987, 120, 2334–2338. [Google Scholar] [CrossRef]
- Speth, R.; Daubert, D.; Grove, K. Angiotensin II: A reproductive hormone too? Regul. Pept. 1999, 79, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Iwai, M.; Horiuchi, M. Devil and angel in the renin–angiotensin system: ACE–angiotensin II–AT1 receptor axis vs. ACE2–angiotensin-(1–7)–Mas receptor axis. Hypertens. Res. 2009, 32, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Khanum, A.; Dufau, M.L. Angiotensin II receptors and inhibitory actions in Leydig cells. J. Biol. Chem. 1988, 263, 5070–5074. [Google Scholar] [CrossRef] [PubMed]
- Dikalov, S.I.; Nazarewicz, R.R.; Bikineyeva, A.; Hilenski, L.; Lassègue, B.; Griendling, K.K.; Harrison, D.G.; Dikalova, A.E. Nox2-Induced Production of Mitochondrial Superoxide in Angiotensin II-Mediated Endothelial Oxidative Stress and Hypertension. Antioxid. Redox Signal. 2014, 20, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Kossmann, S.; Hu, H.; Steven, S.; Schönfelder, T.; Fraccarollo, D.; Mikhed, Y.; Brähler, M.; Knorr, M.; Brandt, M.; Karbach, S.H.; et al. Inflammatory Monocytes Determine Endothelial Nitric-oxide Synthase Uncoupling and Nitro-oxidative Stress Induced by Angiotensin II. J. Biol. Chem. 2014, 289, 27540–27550. [Google Scholar] [CrossRef]
- Chappell, M.C.; Marshall, A.C.; Alzayadneh, E.M.; Shaltout, H.A.; Diz, D.I. Update on the Angiotensin Converting Enzyme 2-Angiotensin (1–7)-Mas Receptor Axis: Fetal Programing, Sex Differences, and Intracellular Pathways. Front. Endocrinol. 2014, 4, 201. [Google Scholar] [CrossRef]
- Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; et al. A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1–9. Circ. Res. 2000, 87, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.-P.; Zhan, Q.-T.; Le, F.; Zheng, Y.-M.; Jin, F. Angiotensin-Converting Enzymes Play a Dominant Role in Fertility. Int. J. Mol. Sci. 2013, 14, 21071–21086. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.N.; Misono, K.S.; Inagami, T. Evidence for intracellular formation of angiotensins: Coexistence of renin and angiotensin-converting enzyme in Leydig cells of rat testis. Biochem. Biophys. Res. Commun. 1984, 122, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Liu, W.; Deng, J.; Wu, Y.; Yang, H.; Wang, W.; Hussain, A.; Li, N.; Zhou, D.; Deng, H. Age-related changes in endogenous glucocorticoids, gonadal steroids, endocannabinoids and their ratios in plasma and hair from the male C57BL/6 mice. Gen. Comp. Endocrinol. 2021, 301, 113651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Davies, K.J.; Forman, H.J. Oxidative stress response and Nrf2 signaling in aging. Free. Radic. Biol. Med. 2015, 88, 314–336. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, B.N.; Lawson, G.; Chan, J.Y.; Banuelos, J.; Cortés, M.M.; Hoang, Y.D.; Ortiz, L.; Rau, B.A.; Luderer, U. Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age-dependent manner. Free Radic. Biol. Med. 2010, 49, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, H.; Xin, Y.; Bai, Y.; Kong, L.; Tan, Y.; Liu, F.; Cai, L. Sulforaphane Prevents Angiotensin II-Induced Testicular Cell Death via Activation of NRF2. Oxidative Med. Cell. Longev. 2017, 2017, 5374897. [Google Scholar] [CrossRef] [PubMed]
- Bremner, W.J.; Vitiello, M.V.; Prinz, P.N. Loss of Circadian Rhythmicity in Blood Testosterone Levels with Aging in Normal Men. J. Clin. Endocrinol. Metab. 1983, 56, 1278–1281. [Google Scholar] [CrossRef] [PubMed]
- Early, J.O.; Menon, D.; Wyse, C.A.; Cervantes-Silva, M.P.; Zaslona, Z.; Carroll, R.G.; Palsson-McDermott, E.M.; Angiari, S.; Ryan, D.G.; Corcoran, S.E.; et al. Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc. Natl. Acad. Sci. USA 2018, 115, e8460–e8468. [Google Scholar] [CrossRef]
- Zhuang, X.; Tsukuda, S.; Wrensch, F.; Wing, P.A.; Schilling, M.; Harris, J.M.; Borrmann, H.; Morgan, S.B.; Cane, J.L.; Mailly, L.; et al. The Circadian Clock Component BMAL1 Regulates SARS-CoV-2 Entry and Replication in Lung Epithelial Cells. bioRxiv 2021, preprint. [Google Scholar] [CrossRef]
- Lane, A.N.; Fan, T.W.-M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015, 43, 2466–2485. [Google Scholar] [CrossRef]
- Xu, M.; Liang, R.; Guo, Q.; Wang, S.; Zhao, M.; Zhang, Z.; Wang, J.; Li, Y. Dietary nucleotides extend the life span in Sprague-Dawley rats. J. Nutr. Health Aging 2012, 17, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, R.; Wei, C.; Xu, M.; Li, Y. Exogenous Nucleotides Improved the Oxidative Stress and Sirt-1 Protein Level of Brown Adipose Tissue on Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice. Nutrients 2022, 14, 2796. [Google Scholar] [CrossRef]
- Carver, J.D. Dietary Nucleotides: Cellular Immune, Intestinal and Hepatic System Effects. J. Nutr. 1994, 124 (Suppl. S1), 144S–148S. [Google Scholar] [CrossRef]
- You, M.; Liu, R.; Wei, C.; Wang, X.; Yu, X.; Li, Z.; Mao, R.; Hu, J.; Zhu, N.; Liu, X.; et al. Exogenous Nucleotides Ameliorate Ageing-Related Intestinal Inflammation in Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice. Nutrients 2023, 15, 2533. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Poon, H.F. The senescence-accelerated prone mouse (SAMP8): A model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp. Gerontol. 2005, 40, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Xu, M.; Wu, L.; Fan, R.; Hao, Y.; Liu, X.; Mao, R.; Liu, R.; Li, Y. Walnut Oligopeptide Delayed Improved Aging-Related Learning and Memory Impairment in SAMP8 Mice. Nutrients 2022, 14, 5059. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, B.P.; Adel, Y.; Knipper, M.; Müller, M.; Löwenheim, H. Auditory Threshold Variability in the SAMP8 Mouse Model of Age-Related Hearing Loss: Functional Loss and Phenotypic Change Precede Outer Hair Cell Loss. Front. Aging Neurosci. 2021, 13, 708190. [Google Scholar] [CrossRef] [PubMed]
- Beuckmann, C.T.; Suzuki, H.; Musiek, E.S.; Ueno, T.; Sato, T.; Bando, M.; Osada, Y.; Moline, M. Evaluation of SAMP8 Mice as a Model for Sleep-Wake and Rhythm Disturbances Associated with Alzheimer’s Disease: Impact of Treatment with the Dual Orexin (Hypocretin) Receptor Antagonist Lemborexant. J. Alzheimer’s Dis. 2021, 81, 1151–1167. [Google Scholar] [CrossRef]
- de la Grandmaison, G.L.; Marchaut, J.; Watier, L.; Médiouni, Z.; Charlier, P. Frequency and nature of testicular and paratesticular lesions in forensic autopsies. Med. Sci. Law 2013, 53, 208–212. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Vignozzi, L.; Maggi, M. Androgens and male sexual function. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 36, 101615. [Google Scholar] [CrossRef]
- Leung, P.; Sernia, C. The renin-angiotensin system and male reproduction: New functions for old hormones. J. Mol. Endocrinol. 2003, 30, 263–270. [Google Scholar] [CrossRef]
- Pauls, K.; Metzger, R.; Steger, K.; Klonisch, T.; Danilov, S.; Franke, F.E. Isoforms of angiotensin I-converting enzyme in the development and differentiation of human testis and epididymis. Andrologia 2003, 35, 32–43. [Google Scholar] [CrossRef]
- Reis, A.B.; Araújo, F.C.; Pereira, V.M.; Dos Reis, A.M.; Santos, R.A.; Reis, F.M. Angiotensin (1–7) and its receptor Mas are expressed in the human testis: Implications for male infertility. Histochem. J. 2010, 41, 75–80. [Google Scholar] [CrossRef]
- Xu, P.; Santos, R.A.; Bader, M.; Alenina, N. Alterations in gene expression in the testis of angiotensin-(1–7)-receptor Mas-deficient mice. Regul. Pept. 2007, 138, 51–55. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; DELLA-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed]
- Deck, L.M.; Hunsaker, L.A.; Vander Jagt, T.A.; Whalen, L.J.; Royer, R.E.; Vander Jagt, D.L. Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. Eur. J. Med. Chem. 2018, 143, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, B.; Ren, Q. Baicalin relieves hypoxia-aroused H9c2 cell apoptosis by activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3657–3663. [Google Scholar] [CrossRef] [PubMed]
- Egbujor, M.C.; Petrosino, M.; Zuhra, K.; Saso, L. The Role of Organosulfur Compounds as Nrf2 Activators and Their Antioxidant Effects. Antioxidants 2022, 11, 1255. [Google Scholar] [CrossRef]
- Chen, H.; Jin, S.; Guo, J.; Kombairaju, P.; Biswal, S.; Zirkin, B.R. Knockout of the transcription factor Nrf2: Effects on testosterone production by aging mouse Leydig cells. Mol. Cell. Endocrinol. 2015, 409, 113–120. [Google Scholar] [CrossRef]
- Chung, J.-Y.; Chen, H.; Zirkin, B. Sirt1 and Nrf2: Regulation of Leydig cell oxidant/antioxidant intracellular environment and steroid formation. Biol. Reprod. 2021, 105, 1307–1316. [Google Scholar] [CrossRef]
- Romero, A.; San Hipólito-Luengo, A.; Villalobos, L.A.; Vallejo, S.; Valencia, I.; Michalska, P.; Pajuelo-Lozano, N.; Sánchez-Pérez, I.; León, R.; Bartha, J.L.; et al. The angiotensin-(1-7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell 2019, 18, e12913. [Google Scholar] [CrossRef]
- Syed, A.M.; Kundu, S.; Ram, C.; Kulhari, U.; Kumar, A.; Mugale, M.N.; Mohapatra, P.; Murty, U.S.; Sahu, B.D. Up-regulation of Nrf2/HO-1 and inhibition of TGF-β1/Smad2/3 signaling axis by daphnetin alleviates transverse aortic constriction-induced cardiac remodeling in mice. Free. Radic. Biol. Med. 2022, 186, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.; Hansen, A.; Ord, T.; Bebas, P.; Chappell, P.E.; Giebultowicz, J.M.; Williams, C.; Moss, S.; Sehgal, A. The Circadian Clock Protein BMAL1 Is Necessary for Fertility and Proper Testosterone Production in Mice. J. Biol. Rhythm. 2008, 23, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, J.B.; Rajabi, N.; Decatanzaro, D. Circadian Rhythm and Response to an Acute Stressor of Urinary Corticosterone, Testosterone, and Creatinine in Adult Male Mice. Horm. Metab. Res. 2012, 44, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Waite, E.; Kershaw, Y.; Spiga, F.; Lightman, S.L. A Glucocorticoid Sensitive Biphasic Rhythm of Testosterone Secretion. J. Neuroendocr. 2009, 21, 737–741. [Google Scholar] [CrossRef]
- Schlatt, S.; Pohl, C.R.; Ehmcke, J.; Ramaswamy, S. Age-Related Changes in Diurnal Rhythms and Levels of Gonadotropins, Testosterone, and Inhibin B in Male Rhesus Monkeys (Macaca mulatta). Biol. Reprod. 2008, 79, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, S.; Xu, W.; Ying, J.; Qu, Y.; Jiang, X.; Zhang, A.; Yue, Y.; Zhou, R.; Ruan, T.; et al. Critical Roles of the Circadian Transcription Factor BMAL1 in Reproductive Endocrinology and Fertility. Front. Endocrinol. 2022, 13, 818272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cheng, J.; Yang, L.; Li, X.; Hua, R.; Xu, D.; Jiang, Z.; Li, Q. The role of ferroptosis mediated by Bmal1/Nrf2 in nicotine -induce injury of BTB integrity. Free. Radic. Biol. Med. 2023, 200, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, A.; Wall, C.; Wang, W.; Szeto, I.M.; Ye, W.; Day, L. Nucleotides: An updated review of their concentration in breast milk. Nutr. Res. 2022, 99, 13–24. [Google Scholar] [CrossRef]
- Domińska, K. Involvement of ACE2/Ang-(1-7)/MAS1 Axis in the Regulation of Ovarian Function in Mammals. Int. J. Mol. Sci. 2020, 21, 4572. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, H.; Lan, T.; Jia, R.; Cao, M.; Zhou, L.; Zhao, Z.; Pan, W. Physiological and pathological roles of Ang II and Ang- (1-7) in the female reproductive system. Front. Endocrinol. 2022, 13, 1080285. [Google Scholar] [CrossRef] [PubMed]
Groups | Sample Size | Survival Animal Numbers | Feed |
---|---|---|---|
NTs-F | 15 | 13 | Purified feed (0 g/kg NTs) |
Control | 15 | 12 | Standard feed (1.486 g/kg NTs) |
NTs-L | 15 | 14 | Standard feed + 0.3 g/kg NTs |
NTs-M | 15 | 13 | Standard feed + 0.6 g/kg NTs |
NTs-H | 15 | 12 | Standard feed + 1.2 g/kg NTs |
SAMR1 | 15 | 12 | Standard feed (1.486 g/kg NTs) |
SOD (U/mg Prot) | GSH-Px (U/mg Prot) | MDA (nmol/mg Prot) | |
---|---|---|---|
NTs-F | 688.24 ± 86.88 c | 2.77 ± 0.77 c | 0.63 ± 0.25 c |
Control | 669.39 ± 93.46 c | 2.91 ± 0.78 c | 0.78 ± 0.32 c |
NTs-L | 870.89 ± 172.40 a,b | 3.64 ± 0.86 a,b | 0.57 ± 0.27 b |
NTs-M | 775.08 ± 80.43 a,b | 3.16 ± 0.61 c,f | 0.51 ± 0.17 b |
NTs-H | 795.18 ± 98.43 b | 3.90 ± 0.63 a,b,e | 0.40 ± 0.13 a,b |
SAMR1 | 816.40 ± 85.04 a,b | 4.00 ± 0.59 a,b | 0.40 ± 0.11 a,b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Liu, R.; Wei, C.; Wang, X.; Wu, X.; Fan, R.; Yu, X.; Li, Z.; Mao, R.; Hu, J.; et al. Exogenous Nucleotides Ameliorate Age-Related Decline in Testosterone in Male Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice by Modulating the Local Renin–Angiotensin System Antioxidant Pathway. Nutrients 2023, 15, 5130. https://doi.org/10.3390/nu15245130
Chen Q, Liu R, Wei C, Wang X, Wu X, Fan R, Yu X, Li Z, Mao R, Hu J, et al. Exogenous Nucleotides Ameliorate Age-Related Decline in Testosterone in Male Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice by Modulating the Local Renin–Angiotensin System Antioxidant Pathway. Nutrients. 2023; 15(24):5130. https://doi.org/10.3390/nu15245130
Chicago/Turabian StyleChen, Qianqian, Rui Liu, Chan Wei, Xiujuan Wang, Xin Wu, Rui Fan, Xiaochen Yu, Zhen Li, Ruixue Mao, Jiani Hu, and et al. 2023. "Exogenous Nucleotides Ameliorate Age-Related Decline in Testosterone in Male Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice by Modulating the Local Renin–Angiotensin System Antioxidant Pathway" Nutrients 15, no. 24: 5130. https://doi.org/10.3390/nu15245130
APA StyleChen, Q., Liu, R., Wei, C., Wang, X., Wu, X., Fan, R., Yu, X., Li, Z., Mao, R., Hu, J., Zhu, N., Liu, X., Li, Y., & Xu, M. (2023). Exogenous Nucleotides Ameliorate Age-Related Decline in Testosterone in Male Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice by Modulating the Local Renin–Angiotensin System Antioxidant Pathway. Nutrients, 15(24), 5130. https://doi.org/10.3390/nu15245130