Understanding the Immunological Quality of Breast Milk in Maternal Overweight and Obesity
Highlights
- Maternal metabolic disorders, such as obesity and overweight, alter the composition of breast milk.
- Changes in levels of immunoglobulins, cytokines, adipokines, and other bioactive elements in breast milk may impact the newborn's immune system development, potentially leading to long-term health consequences.
- While breastfeeding is widely recognized for its benefits, further studies are needed to explore how maternal metabolic conditions influence breast milk and infant health.
Abstract
:1. Introduction
2. Materials and Methods
3. Components of Breast Milk
3.1. Proteins
3.2. Carbohydrates
3.3. Fats
4. Breast Milk Components Affecting Immunity
4.1. Immunoglobulins
4.2. Lactoferrin
4.3. Cytokines
4.4. Growth Factors
4.5. Adipokines
4.6. K-Casein
4.7. Free Amino Acids
4.8. Polyamines
4.9. Nucleotides
4.10. Osteopontin
4.11. CRP
4.12. Microbiome
4.13. Extracellular Vesicles
4.14. Leukocytes
5. Other Biocomponents of Breast Milk
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ygberg, S.; Nilsson, A. The Developing Immune System—From Foetus to Toddler. Acta Paediatr. 2012, 101, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Pieren, D.K.J.; Boer, M.C.; de Wit, J. The Adaptive Immune System in Early Life: The Shift Makes It Count. Front. Immunol. 2022, 13, 1031924. [Google Scholar] [CrossRef] [PubMed]
- Basha, S.; Surendran, N.; Pichichero, M. Immune Responses in Neonates. Expert Rev. Clin. Immunol. 2014, 10, 1171. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization & United Nations Children’s Fund (UNICEF) (Ed.) Global Strategy for Infant and Young Child Feeding; World Health Organization: Geneva, Switzerland, 2003; pp. 7–8. ISBN 92-4-156221-8.
- Lessen, R.; Kavanagh, K. Position of the Academy of Nutrition and Dietetics: Promoting and Supporting Breastfeeding. J. Acad. Nutr. Diet. 2015, 115, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Nickel, N.C.; Bode, L.; Brockway, M.; Brown, A.; Chambers, C.; Goldhammer, C.; Hinde, K.; McGuire, M.; Munblit, D.; et al. Breastfeeding and the Origins of Health: Interdisciplinary Perspectives and Priorities. Matern. Child Nutr. 2021, 17, e13109. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, C.S. Homage to the “H” in Developmental Origins of Health and Disease. J. Dev. Orig. Health Dis. 2017, 8, 8–29. [Google Scholar] [CrossRef]
- Yi, D.Y.; Kim, S.Y. Human Breast Milk Composition and Function in Human Health: From Nutritional Components to Microbiome and MicroRNAs. Nutrients 2021, 13, 3094. [Google Scholar] [CrossRef]
- Lapidaire, W.; Lucas, A.; Clayden, J.D.; Clark, C.; Fewtrell, M.S. Human Milk Feeding and Cognitive Outcome in Preterm Infants: The Role of Infection and NEC Reduction. Pediatr. Res. 2022, 91, 1207–1214. [Google Scholar] [CrossRef]
- Xu, L.; Lochhead, P.; Ko, Y.; Claggett, B.; Leong, R.W.; Ananthakrishnan, A.N. Systematic Review with Meta-Analysis: Breastfeeding and the Risk of Crohn’s Disease and Ulcerative Colitis. Aliment. Pharmacol. Ther. 2017, 46, 780–789. [Google Scholar] [CrossRef]
- Klopp, A.; Vehling, L.; Becker, A.B.; Subbarao, P.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; Daley, D.; Silverman, F.; et al. Modes of Infant Feeding and the Risk of Childhood Asthma: A Prospective Birth Cohort Study. J. Pediatr. 2017, 190, 192–199.e2. [Google Scholar] [CrossRef]
- Parikh, N.I.; Hwang, S.J.; Ingelsson, E.; Benjamin, E.J.; Fox, C.S.; Vasan, R.S.; Murabito, J.M. Breastfeeding in Infancy and Adult Cardiovascular Disease Risk Factors. Am. J. Med. 2009, 122, 656–663. [Google Scholar] [CrossRef]
- Eidelman, A.I.; Schanler, R.J. Breastfeeding and the Use of Human Milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef]
- Ibrahim, S.H.; Abd El –Ghany, S.M.; El Shafie, T.M.; El Hady, M. Cognitive Functions in Breastfed versus Artificially Fed in Preschool Children. Egypt. J. Hosp. Med. 2019, 77, 5742–5751. [Google Scholar] [CrossRef]
- Schmied, V.A.; Duff, M.; Dahlen, H.G.; Mills, A.E.; Kolt, G.S. “Not Waving but Drowning”: A Study of the Experiences and Concerns of Midwives and Other Health Professionals Caring for Obese Childbearing Women. Midwifery 2011, 27, 424–430. [Google Scholar] [CrossRef]
- Davis, A.M. Collateral Damage: Maternal Obesity During Pregnancy Continues to Rise. Obstet. Gynecol. Surv. 2020, 75, 39–49. [Google Scholar] [CrossRef]
- Liu, B.; Xu, G.; Sun, Y.; Du, Y.; Gao, R.; Snetselaar, L.G.; Santillan, M.K.; Bao, W. Association between Maternal Pre-Pregnancy Obesity and Preterm Birth According to Maternal Age and Race or Ethnicity: A Population-Based Study. Lancet Diabetes Endocrinol. 2019, 7, 707–714. [Google Scholar] [CrossRef]
- Langley-Evans, S.C.; Pearce, J.; Ellis, S. Overweight, Obesity and Excessive Weight Gain in Pregnancy as Risk Factors for Adverse Pregnancy Outcomes: A Narrative Review. J. Hum. Nutr. Diet. 2022, 35, 250–264. [Google Scholar] [CrossRef]
- Catalano, P.M.; Shankar, K. Obesity and Pregnancy: Mechanisms of Short Term and Long Term Adverse Consequences for Mother and Child. BMJ 2017, 356, j1. [Google Scholar] [CrossRef]
- Nommsen-Rivers, L.A.; Wagner, E.A.; Roznowski, D.M.; Riddle, S.W.; Ward, L.P.; Thompson, A. Measures of Maternal Metabolic Health as Predictors of Severely Low Milk Production. Breastfeed. Med. 2022, 17, 566–576. [Google Scholar] [CrossRef]
- Walker, R.E.; Harvatine, K.J.; Ross, A.C.; Wagner, E.A.; Riddle, S.W.; Gernand, A.D.; Nommsen-Rivers, L.A. Fatty Acid Transfer from Blood to Milk Is Disrupted in Mothers with Low Milk Production, Obesity, and Inflammation. J. Nutr. 2022, 152, 2716. [Google Scholar] [CrossRef]
- Chandra, R.K.; Kutty, K.M. Immunocompetence in Obesity. Acta Paediatr. Scand. 1980, 69, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Henson, D.A.; Nehlsen-Cannarella, S.L.; Ekkens, M.; Utter, A.C.; Butterworth, D.E.; Fagoaga, O.R. Influence of Obesity on Immune Function. J. Am. Diet. Assoc. 1999, 99, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, Á.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, Oxidative Stress, and Obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. Inflammation and Metabolic Disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity Is Associated with Macrophage Accumulation in Adipose Tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef] [PubMed]
- Hennighausen, L.; Robinson, G.W. Signaling Pathways in Mammary Gland Development. Dev. Cell 2001, 1, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Indumathi, S.; Dhanasekaran, M.; Rajkumar, J.S.; Sudarsanam, D. Exploring the Stem Cell and Non-Stem Cell Constituents of Human Breast Milk. Cytotechnology 2013, 65, 385–393. [Google Scholar] [CrossRef]
- Larson, B.L. Biosynthesis and Secretion of Milk Proteins: A Review. J. Dairy Res. 1979, 46, 161–174. [Google Scholar] [CrossRef]
- Demmelmair, H.; Koletzko, B. Lipids in Human Milk. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 57–68. [Google Scholar] [CrossRef]
- Newburg, D.S. Glycobiology of Human Milk. Biochemistry 2013, 78, 771–785. [Google Scholar] [CrossRef]
- Larson, B.L.; Gillespie, D.C. origin of the major specific proteins in milk. J. Biol. Chem. 1957, 227, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Kratzsch, J.; Bae, Y.J.; Kiess, W. Adipokines in Human Breast Milk. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Grossetti, E.; Beucher, G.; Régeasse, A.; Lamendour, N.; Herlicoviez, M.; Dreyfus, M. Complications Obstétricales de l’obésité Morbide. J. Gynecol. Obstet. Biol. Reprod. 2004, 33, 739–744. [Google Scholar] [CrossRef] [PubMed]
- Kongubol, A.; Phupong, V. Prepregnancy Obesity and the Risk of Gestational Diabetes Mellitus. BMC Pregnancy Childbirth 2011, 11, 1–4. [Google Scholar] [CrossRef]
- Sweeting, A.; Wong, J.; Murphy, H.R.; Ross, G.P. A Clinical Update on Gestational Diabetes Mellitus. Endocr. Rev. 2022, 43, 763–793. [Google Scholar] [CrossRef] [PubMed]
- Johns, E.C.; Denison, F.C.; Norman, J.E.; Reynolds, R.M. Gestational Diabetes Mellitus: Mechanisms, Treatment, and Complications. Trends Endocrinol. Metab. 2018, 29, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Szmuilowicz, E.D.; Josefson, J.L.; Metzger, B.E. Gestational Diabetes Mellitus. Endocrinol. Metab. Clin. N. Am. 2019, 48, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Wenger, N.K. Hypertension During Pregnancy. Curr. Hypertens. Rep. 2020, 22, 64. [Google Scholar] [CrossRef]
- Bokslag, A.; van Weissenbruch, M.; Mol, B.W.; de Groot, C.J.M. Preeclampsia; Short and Long-Term Consequences for Mother and Neonate. Early Hum. Dev. 2016, 102, 47–50. [Google Scholar] [CrossRef]
- Orabona, R.; Sciatti, E.; Sartori, E.; Vizzardi, E.; Prefumo, F. The Impact of Preeclampsia on Women’s Health: Cardiovascular Long-Term Implications. Obstet. Gynecol. Surv. 2020, 75, 703–709. [Google Scholar] [CrossRef]
- Horsley, K.; Chaput, K.; Da Costa, D.; Nguyen, T.V.; Dayan, N.; Tomfohr-Madsen, L.; Tough, S. Hypertensive Disorders of Pregnancy and Breastfeeding Practices: A Secondary Analysis of Data from the All Our Families Cohort. Acta Obstet. Gynecol. Scand. 2022, 101, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Mosca, F.; Giannì, M.L. Human Milk: Composition and Health Benefits. Pediatr. Med. Chir. 2017, 39, 155. [Google Scholar] [CrossRef] [PubMed]
- Lokossou, G.A.G.; Kouakanou, L.; Schumacher, A.; Zenclussen, A.C. Human Breast Milk: From Food to Active Immune Response with Disease Protection in Infants and Mothers. Front. Immunol. 2022, 13, 849012. [Google Scholar] [CrossRef] [PubMed]
- Andreas, N.J.; Kampmann, B.; Mehring Le-Doare, K. Human Breast Milk: A Review on Its Composition and Bioactivity. Early Hum. Dev. 2015, 91, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Lyons, K.E.; Ryan, C.A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients 2020, 12, 1039. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef] [PubMed]
- Donovan, S.M. Human Milk Proteins: Composition and Physiological Significance. Nestle Nutr. Inst. Workshop Ser. 2019, 90, 93–101. [Google Scholar] [CrossRef]
- Fujimori, M.; França, E.L.; Fiorin, V.; Morais, T.C.; Honorio-França, A.C.; de Abreu, L.C. Changes in the Biochemical and Immunological Components of Serum and Colostrum of Overweight and Obese Mothers. BMC Pregnancy Childbirth 2015, 15, 166. [Google Scholar] [CrossRef]
- De Luca, A.; Frasquet-Darrieux, M.; Gaud, M.A.; Christin, P.; Boquien, C.Y.; Millet, C.; Herviou, M.; Darmaun, D.; Robins, R.J.; Ingrand, P.; et al. Higher Leptin but Not Human Milk Macronutrient Concentration Distinguishes Normal-Weight from Obese Mothers at 1-Month Postpartum. PLoS ONE 2016, 11, e0168568. [Google Scholar] [CrossRef]
- Barbosa, L.; Butte, N.F.; Villalpando, S.; Wong, W.W.; Smith, E.O.B. Maternal Energy Balance and Lactation Performance of Mesoamerindians as a Function of Body Mass Index. Am. J. Clin. Nutr. 1997, 66, 575–583. [Google Scholar] [CrossRef]
- Brown, K.H.; Robertson, A.D.; Akhtar, N.A. Lactational Capacity of Marginally Nourished Mothers: Infants’ Milk Nutrient Comsumption and Patterns of Growth. Pediatrics 1986, 78, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Yalawar, M.; Verma, G.; Gupta, S. Century Wide Changes in Macronutrient Levels in Indian Mothers’ Milk: A Systematic Review. Nutrients 2022, 14, 1395. [Google Scholar] [CrossRef] [PubMed]
- Leghi, G.E.; Netting, M.J.; Middleton, P.F.; Wlodek, M.E.; Geddes, D.T.; Muhlhausler, B.S. The Impact of Maternal Obesity on Human Milk Macronutrient Composition: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 934. [Google Scholar] [CrossRef] [PubMed]
- Fujimori, M.; França, E.L.; Morais, T.C.; Fiorin, V.; de Abreu, L.C.; Honório-França, A.C. Cytokine and Adipokine Are Biofactors Can Act in Blood and Colostrum of Obese Mothers. Biofactors 2017, 43, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ning, X.; Rui, B.; Wang, Y.; Lei, Z.; Yu, D.; Liu, F.; Deng, Y.; Yuan, J.; Li, W.; et al. Alterations of Milk Oligosaccharides in Mothers with Gestational Diabetes Mellitus Impede Colonization of Beneficial Bacteria and Development of RORγt+ Treg Cell-Mediated Immune Tolerance in Neonates. Gut Microbes 2023, 15, 2256749. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, S.; Boylan, M.; Hart, S.L.; Román-Shriver, C.; Spallholz, J.E.; Pence, B.C.; Sawyer, B.G. Glucose and Insulin Levels Are Increased in Obese and Overweight Mothers’ Breast-Milk. Food Nutr. Sci. 2011, 2, 201–206. [Google Scholar] [CrossRef]
- Nolan, L.S.; Parks, O.B.; Good, M. A Review of the Immunomodulating Components of Maternal Breast Milk and Protection Against Necrotizing Enterocolitis. Nutrients 2020, 12, 14. [Google Scholar] [CrossRef]
- Isganaitis, E.; Venditti, S.; Matthews, T.J.; Lerin, C.; Demerath, E.W.; Fields, D.A. Maternal Obesity and the Human Milk Metabolome: Associations with Infant Body Composition and Postnatal Weight Gain. Am. J. Clin. Nutr. 2019, 110, 111–120. [Google Scholar] [CrossRef]
- Lagström, H.; Rautava, S.; Ollila, H.; Kaljonen, A.; Turta, O.; Mäkelä, J.; Yonemitsu, C.; Gupta, J.; Bode, L. Associations between Human Milk Oligosaccharides and Growth in Infancy and Early Childhood. Am. J. Clin. Nutr. 2020, 111, 769–778. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, Z.; Zhao, A.; Zhang, J.; Wu, W.; Ren, Z.; Wang, P.; Zhang, Y. Neutral Human Milk Oligosaccharides Are Associated with Multiple Fixed and Modifiable Maternal and Infant Characteristics. Nutrients 2020, 12, 826. [Google Scholar] [CrossRef]
- Saben, J.L.; Sims, C.R.; Abraham, A.; Bode, L.; Andres, A. Human Milk Oligosaccharide Concentrations and Infant Intakes Are Associated with Maternal Overweight and Obesity and Predict Infant Growth. Nutrients 2021, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.A.; Childs, C.E.; Calder, P.C. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the Developing Immune System: A Narrative Review. Nutrients 2021, 13, 247. [Google Scholar] [CrossRef] [PubMed]
- Wijendran, V.; Brenna, J.T.; Wang, D.H.; Zhu, W.; Meng, D.; Ganguli, K.; Kothapalli, K.S.D.; Requena, P.; Innis, S.; Walker, W.A. Long-Chain Polyunsaturated Fatty Acids Attenuate the IL-1β-Induced Proinflammatory Response in Human Fetal Intestinal Epithelial Cells. Pediatr. Res. 2015, 78, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Marion-Letellier, R.; Savoye, G.; Beck, P.L.; Panaccione, R.; Ghosh, S. Polyunsaturated Fatty Acids in Inflammatory Bowel Diseases: A Reappraisal of Effects and Therapeutic Approaches. Inflamm. Bowel Dis. 2013, 19, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Ascherio, A.; Hu, F.B.; Stampfer, M.J.; Willett, W.C.; Siscovick, D.S.; Rimm, E.B. Interplay between Different Polyunsaturated Fatty Acids and Risk of Coronary Heart Disease in Men. Circulation 2005, 111, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Evers, J.M.; Haverkamp, R.G.; Holroyd, S.E.; Jameson, G.B.; Mackenzie, D.D.S.; McCarthy, O.J. Heterogeneity of Milk Fat Globule Membrane Structure and Composition as Observed Using Fluorescence Microscopy Techniques. Int. Dairy J. 2008, 18, 1081–1089. [Google Scholar] [CrossRef]
- Braun, M.; Flück, B.; Cotting, C.; Monard, F.; Giuffrida, F. Quantification of Phospholipids in Infant Formula and Growing up Milk by High-Performance Liquid Chromatography with Evaporative Light Scattering Detector. J. AOAC Int. 2010, 93, 948–955. [Google Scholar] [CrossRef]
- Yang, M.T.; Lan, Q.Y.; Liang, X.; Mao, Y.Y.; Cai, X.K.; Tian, F.; Liu, Z.Y.; Li, X.; Zhao, Y.R.; Zhu, H.L. Lactational Changes of Phospholipids Content and Composition in Chinese Breast Milk. Nutrients 2022, 14, 1539. [Google Scholar] [CrossRef]
- Benoit, B.; Fauquant, C.; Daira, P.; Peretti, N.; Guichardant, M.; Michalski, M.C. Phospholipid Species and Minor Sterols in French Human Milks. Food Chem. 2010, 120, 684–691. [Google Scholar] [CrossRef]
- Zou, X.Q.; Guo, Z.; Huang, J.H.; Jin, Q.Z.; Cheong, L.Z.; Wang, X.G.; Xu, X.B. Human Milk Fat Globules from Different Stages of Lactation: A Lipid Composition Analysis and Microstructure Characterization. J. Agric. Food Chem. 2012, 60, 7158–7167. [Google Scholar] [CrossRef]
- Lopez, C.; Ménard, O. Human Milk Fat Globules: Polar Lipid Composition and in Situ Structural Investigations Revealing the Heterogeneous Distribution of Proteins and the Lateral Segregation of Sphingomyelin in the Biological Membrane. Colloids Surf. B Biointerfaces 2011, 83, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H. The Fetal Origins of Memory: The Role of Dietary Choline in Optimal Brain Development. J. Pediatr. 2006, 149, S131–S136. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H.; Blusztajn, J.K. Choline and Human Nutrition. Annu. Rev. Nutr. 1994, 14, 269–296. [Google Scholar] [CrossRef] [PubMed]
- Cohn, J.S.; Wat, E.; Kamili, A.; Tandy, S. Dietary Phospholipids, Hepatic Lipid Metabolism and Cardiovascular Disease. Curr. Opin. Lipidol. 2008, 19, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Albi, E.; Arcuri, C.; Kobayashi, T.; Tomishige, N.; Cas, M.D.; Paroni, R.; Signorelli, P.; Cerquiglini, L.; Troiani, S.; Gizzi, C.; et al. Sphingomyelin in Human Breast Milk Might Be Essential for the Hippocampus Maturation. Front. Biosci. 2022, 27, 247. [Google Scholar] [CrossRef] [PubMed]
- Verardo, V.; Gómez-Caravaca, A.M.; Arráez-Román, D.; Hettinga, K. Recent Advances in Phospholipids from Colostrum, Milk and Dairy By-Products. Int. J. Mol. Sci. 2017, 18, 173. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Palmer, D.J.; Geddes, D.; Lai, C.T.; Stinson, L. Human Milk Microbiome and Microbiome-Related Products: Potential Modulators of Infant Growth. Nutrients 2022, 14, 5148. [Google Scholar] [CrossRef]
- do Amaral, Y.N.d.V.; Rocha, D.M.; da Silva, L.M.L.; Soares, F.V.M.; Moreira, M.E.L. Do Maternal Morbidities Change the Nutritional Composition of Human Milk? A Systematic Review. Cienc. Saude Coletiva 2019, 24, 2491–2498. [Google Scholar] [CrossRef]
- Dritsakou, K.; Liosis, G.; Valsami, G.; Polychronopoulos, E.; Skouroliakou, M. The Impact of Maternal- and Neonatal-Associated Factors on Human Milk’s Macronutrients and Energy. J. Matern. Fetal Neonatal Med. 2017, 30, 1302–1308. [Google Scholar] [CrossRef]
- Han, S.M.; Derraik, J.G.B.; Vickers, M.H.; Devaraj, S.; Huang, F.; Pang, W.W.; Godfrey, K.M.; Chan, S.-Y.; Thakkar, S.K.; Cutfield, W.S.; et al. A Nutritional Supplement Taken during Preconception and Pregnancy Influences Human Milk Macronutrients in Women with Overweight/Obesity and Gestational Diabetes Mellitus. Front. Nutr. 2023, 10, 1282376. [Google Scholar] [CrossRef]
- Isaacs, C.E. Human Milk Inactivates Pathogens Individually, Additively, and Synergistically. J. Nutr. 2005, 135, 1286–1288. [Google Scholar] [CrossRef] [PubMed]
- Newburg, D.S. Innate Immunity and Human Milk. J. Nutr. 2005, 135, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, C.E. The Antimicrobial Function of Milk Lipids. Adv. Nutr. Res. 2001, 10, 271–285. [Google Scholar] [CrossRef]
- Hamosh, M. Protective Function of Proteins and Lipids in Human Milk. Biol. Neonate 1998, 74, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Yatim, K.M.; Lakkis, F.G. A Brief Journey through the Immune System. Clin. J. Am. Soc. Nephrol. 2015, 10, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Dyndar, O.A.; Nykoniuk, T.R.; Manzhula, L.V.; Oleshko, V.F. Features of Lactation in Puerperal Women with Obesity. Health Woman 2019, 7, 46–53. [Google Scholar] [CrossRef]
- Houghton, M.R.; Gracey, M.; Burke, V.; Bottrell, C.; Spargo, R.M. Breast Milk Lactoferrin Levels in Relation to Maternal Nutritional Status. J. Pediatr. Gastroenterol. Nutr. 1985, 4, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E. Maternal Weight and Excessive Weight Gain during Pregnancy Modify the Immunomodulatory Potential of Breast Milk. Pediatr. Res. 2012, 72, 77–85. [Google Scholar] [CrossRef]
- Khodabakhshi, A.; Ghayour-Mobarhan, M.; Rooki, H.; Vakili, R.; Hashemy, S.I.; Mirhafez, S.R.; Shakeri, M.T.; Kashanifar, R.; Pourbafarani, R.; Mirzaei, H.; et al. Comparative Measurement of Ghrelin, Leptin, Adiponectin, EGF and IGF-1 in Breast Milk of Mothers with Overweight/Obese and Normal-Weight Infants. Eur. J. Clin. Nutr. 2015, 69, 614–618. [Google Scholar] [CrossRef]
- Martin, L.J.; Woo, J.G.; Geraghty, S.R.; Altaye, M.; Davidson, B.S.; Banach, W.; Dolan, L.M.; Ruiz-Palacios, G.M.; Morrow, A.L. Adiponectin Is Present in Human Milk and Is Associated with Maternal Factors. Am. J. Clin. Nutr. 2006, 83, 1106–1111. [Google Scholar] [CrossRef]
- Clark, W.A.; Kwon, M.R.; Cress, E.M.; Hamdy, R.C.; Cobarrubias, H. Maternal Body Mass Index and Presence of Appetite Regulating Hormones and Other Factors in Human Breast Milk. ETSU Fac. Work. 2017, 31, 650.32. [Google Scholar] [CrossRef]
- Yu, X.; Rong, S.S.; Sun, X.; Ding, G.; Wan, W.; Zou, L.; Wu, S.; Li, M.; Wang, D. Associations of Breast Milk Adiponectin, Leptin, Insulin and Ghrelin with Maternal Characteristics and Early Infant Growth: A Longitudinal Study. Br. J. Nutr. 2018, 120, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Tekin Guler, T.; Koc, N.; Kara Uzun, A.; Fisunoglu, M. The Association of Pre-Pregnancy BMI on Leptin, Ghrelin, Adiponectin and Insulin-like Growth Factor-1 in Breast Milk: A Case-Control Study. Br. J. Nutr. 2022, 127, 1675–1681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Yuan, C.; Li, Z.; Li, J.; Li, X.; Li, C.; Li, R.; Wang, S.R. Meta-Analysis of the Relationship between Obestatin and Ghrelin Levels and the Ghrelin/Obestatin Ratio with Respect to Obesity. Am. J. Med. Sci. 2011, 341, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Uysal, F.K.; Önal, E.E.; Aral, Y.Z.; Adam, B.; Dilmen, U.; Ardiçolu, Y. Breast Milk Leptin: Its Relationship to Maternal and Infant Adiposity. Clin. Nutr. 2002, 21, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Quinn, E.A.; Largado, F.; Borja, J.B.; Kuzawa, C.W. Maternal Characteristics Associated with Milk Leptin Content in a Sample of Filipino Women and Associations with Infant Weight for Age. J. Hum. Lact. 2015, 31, 273–281. [Google Scholar] [CrossRef]
- Sims, C.R.; Lipsmeyer, M.E.; Turner, D.E.; Andres, A. Human Milk Composition Differs by Maternal BMI in the First 9 Months Postpartum. Am. J. Clin. Nutr. 2020, 112, 548–557. [Google Scholar] [CrossRef]
- Young, B.E.; Levek, C.; Reynolds, R.M.; Rudolph, M.C.; MacLean, P.; Hernandez, T.L.; Friedman, J.E.; Krebs, N.F. Bioactive Components in Human Milk Are Differentially Associated with Rates of Lean and Fat Mass Deposition in Infants of Mothers with Normal vs. Elevated BMI. Pediatr. Obes. 2018, 13, 598–606. [Google Scholar] [CrossRef]
- Savino, F.; Sardo, A.; Rossi, L.; Benetti, S.; Savino, A.; Silvestro, L. Mother and Infant Body Mass Index, Breast Milk Leptin and Their Serum Leptin Values. Nutrients 2016, 8, 383. [Google Scholar] [CrossRef]
- Chan, D.; Goruk, S.; Becker, A.B.; Subbarao, P.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.; Sears, M.R.; Field, C.J.; Azad, M.B. Adiponectin, Leptin and Insulin in Breast Milk: Associations with Maternal Characteristics and Infant Body Composition in the First Year of Life. Int. J. Obes. 2018, 42, 36–43. [Google Scholar] [CrossRef]
- Kugananthan, S.; Gridneva, Z.; Lai, C.T.; Hepworth, A.R.; Mark, P.J.; Kakulas, F.; Geddes, D.T. Associations between Maternal Body Composition and Appetite Hormones and Macronutrients in Human Milk. Nutrients 2017, 9, 252. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; Demerath, E.W. Relationship of Insulin, Glucose, Leptin, IL-6 and TNF-α in Human Breast Milk with Infant Growth and Body Composition. Pediatr. Obes. 2012, 7, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; George, B.; Williams, M.; Whitaker, K.; Allison, D.B.; Teague, A.; Demerath, E.W. Associations between Human Breast Milk Hormones and Adipocytokines and Infant Growth and Body Composition in the First 6 Months of Life. Pediatr. Obes. 2017, 12 (Suppl. S1), 78–85. [Google Scholar] [CrossRef] [PubMed]
- Schuster, S.; Hechler, C.; Gebauer, C.; Kiess, W.; Kratzsch, J. Leptin in Maternal Serum and Breast Milk: Association with Infants’ Body Weight Gain in a Longitudinal Study over 6 Months of Lactation. Pediatr. Res. 2011, 70, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro-Salvador, R.; Vazquez-Garza, E.; Cruz-Cardenas, J.A.; Licona-Cassani, C.; García-Rivas, G.; Moreno-Vásquez, J.; Alcorta-García, M.R.; Lara-Diaz, V.J.; Brunck, M.E.G. A Cross-Sectional Study Evidences Regulations of Leukocytes in the Colostrum of Mothers with Obesity. BMC Med. 2022, 20, 388. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Hankard, R.; Alexandre-Gouabau, M.C.; Ferchaud-Roucher, V.; Darmaun, D.; Boquien, C.Y. Higher Concentrations of Branched-Chain Amino Acids in Breast Milk of Obese Mothers. Nutrition 2016, 32, 1295–1298. [Google Scholar] [CrossRef]
- Bardanzellu, F.; Puddu, M.; Peroni, D.G.; Fanos, V. The Human Breast Milk Metabolome in Overweight and Obese Mothers. Front. Immunol. 2020, 11, 1533. [Google Scholar] [CrossRef]
- Ali, M.A.; Strandvik, B.; Palme-Kilander, C.; Yngve, A. Lower Polyamine Levels in Breast Milk of Obese Mothers Compared to Mothers with Normal Body Weight. J. Hum. Nutr. Diet. 2013, 26 (Suppl. S1), 164–170. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, X.; Wang, Y.; Bai, S.; Lai, J.; Tong, X.; Xing, Y. Longitudinal Changes of Lactopontin (Milk Osteopontin) in Term and Preterm Human Milk. Front. Nutr. 2022, 9, 962802. [Google Scholar] [CrossRef]
- Ruan, H.; Tang, Q.; Zhao, X.; Zhang, Y.; Zhao, X.; Xiang, Y.; Geng, W.; Feng, Y.; Cai, W. The Levels of Osteopontin in Human Milk of Chinese Mothers and Its Associations with Maternal Body Composition. Food Sci. Hum. Wellness 2022, 11, 1419–1427. [Google Scholar] [CrossRef]
- Aksan, A.; Erdal, I.; Yalcin, S.S.; Stein, J.; Samur, G. Osteopontin Levels in Human Milk Are Related to Maternal Nutrition and Infant Health and Growth. Nutrients 2021, 13, 2670. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, K.M.; Marino, R.C.; Haapala, J.L.; Foster, L.; Smith, K.D.; Teague, A.M.; Jacobs, D.R.; Fontaine, P.L.; McGovern, P.M.; Schoenfuss, T.C.; et al. Associations of Maternal Weight Status Before, During, and After Pregnancy with Inflammatory Markers in Breast Milk. Obesity 2017, 25, 2092–2099. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Rubio, R.; Collado, M.C.; Laitinen, K.; Salminen, S.; Isolauri, E.; Mira, A. The Human Milk Microbiome Changes over Lactation and Is Shaped by Maternal Weight and Mode of Delivery. Am. J. Clin. Nutr. 2012, 96, 544–551. [Google Scholar] [CrossRef]
- Lemay-Nedjelski, L.; Butcher, J.; Ley, S.H.; Asbury, M.R.; Hanley, A.J.; Kiss, A.; Unger, S.; Copeland, J.K.; Wang, P.W.; Zinman, B.; et al. Examining the Relationship between Maternal Body Size, Gestational Glucose Tolerance Status, Mode of Delivery and Ethnicity on Human Milk Microbiota at Three Months Post-Partum. BMC Microbiol. 2020, 20, 219. [Google Scholar] [CrossRef] [PubMed]
- Kupsco, A.; Prada, D.; Valvi, D.; Hu, L.; Petersen, M.S.; Coull, B.; Grandjean, P.; Weihe, P.; Baccarelli, A.A. Human Milk Extracellular Vesicle MiRNA Expression and Associations with Maternal Characteristics in a Population-Based Cohort from the Faroe Islands. Sci. Rep. 2021, 11, 5840. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.B.; Chernausek, S.D.; Garman, L.D.; Pezant, N.P.; Plows, J.F.; Kharoud, H.K.; Demerath, E.W.; Fields, D.A. Human Milk Exosomal MicroRNA: Associations with Maternal Overweight/Obesity and Infant Body Composition at 1 Month of Life. Nutrients 2021, 13, 1091. [Google Scholar] [CrossRef]
- Xi, Y.; Jiang, X.; Li, R.; Chen, M.; Song, W.; Li, X. The Levels of Human Milk MicroRNAs and Their Association with Maternal Weight Characteristics. Eur. J. Clin. Nutr. 2016, 70, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.E.; Vorn, R.; Chimenti, M.; Crouch, K.; Shaoshuai, C.; Narayanaswamy, J.; Harken, A.; Schmidt, R.; Gill, J.; Lee, H. Extracellular Vesicle MiRNAs in Breast Milk of Obese Mothers. Front. Nutr. 2022, 9, 976886. [Google Scholar] [CrossRef]
- Gopalakrishna, K.P.; Macadangdang, B.R.; Rogers, M.B.; Tometich, J.T.; Firek, B.A.; Baker, R.; Ji, J.; Burr, A.H.P.; Ma, C.; Good, M.; et al. Maternal IgA Protects against the Development of Necrotizing Enterocolitis in Preterm Infants. Nat. Med. 2019, 25, 1110. [Google Scholar] [CrossRef]
- Palmeira, P.; Carneiro-Sampaio, M. Immunology of Breast Milk. Rev. Assoc. Med. Bras. 2016, 62, 584–593. [Google Scholar] [CrossRef]
- Donald, K.; Petersen, C.; Turvey, S.E.; Finlay, B.B.; Azad, M.B. Secretory IgA: Linking Microbes, Maternal Health, and Infant Health through Human Milk. Cell Host. Microbe 2022, 30, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Lis-Kuberka, J.; Berghausen-Mazur, M.; Orczyk-Pawiłowicz, M. Lactoferrin and Immunoglobulin Concentrations in Milk of Gestational Diabetic Mothers. Nutrients 2021, 13, 818. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.; Espinosa-Martos, I.; García-Carral, C.; Manzano, S.; McGuire, M.K.; Meehan, C.L.; McGuire, M.A.; Williams, J.E.; Foster, J.; Sellen, D.W.; et al. What’s Normal? Immune Profiling of Human Milk from Healthy Women Living in Different Geographical and Socioeconomic Settings. Front. Immunol. 2017, 8, 696. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Martos, I.; Montilla, A.; Gómez De Segura, A.; Escuder, D.; Bustos, G.; Pallás, C.; Rodríguez, J.M.; Corzo, N.; Fernández, L. Bacteriological, Biochemical, and Immunological Modifications in Human Colostrum after Holder Pasteurisation. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Mickleson, K.N.P.; Moriarty, K.M. Immunoglobulin Levels in Human Colostrum and Milk. J. Pediatr. Gastroenterol. Nutr. 1982, 1, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Moles, L.; Manzano, S.; Fernández, L.; Montilla, A.; Corzo, N.; Ares, S.; Rodríguez, J.M.; Espinosa-Martos, I. Bacteriological, Biochemical, and Immunological Properties of Colostrum and Mature Milk from Mothers of Extremely Preterm Infants. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Rio-Aige, K.; Azagra-Boronat, I.; Castell, M.; Selma-Royo, M.; Collado, M.C.; Rodríguez-Lagunas, M.J.; Pérez-Cano, F.J. The Breast Milk Immunoglobulinome. Nutrients 2021, 13, 1810. [Google Scholar] [CrossRef]
- Carr, L.E.; Virmani, M.D.; Rosa, F.; Munblit, D.; Matazel, K.S.; Elolimy, A.A.; Yeruva, L. Role of Human Milk Bioactives on Infants’ Gut and Immune Health. Front. Immunol. 2021, 12, 604080. [Google Scholar] [CrossRef]
- He, Y.; Cao, L.; Yu, J. Prophylactic Lactoferrin for Preventing Late-Onset Sepsis and Necrotizing Enterocolitis in Preterm Infants: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine 2018, 97, e11976. [Google Scholar] [CrossRef]
- Gopalakrishna, K.P.; Hand, T.W. Influence of Maternal Milk on the Neonatal Intestinal Microbiome. Nutrients 2020, 12, 823. [Google Scholar] [CrossRef]
- Kielbasa, A.; Gadzala-Kopciuch, R.; Buszewski, B. Cytokines-Biogenesis and Their Role in Human Breast Milk and Determination. Int. J. Mol. Sci. 2021, 22, 6238. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. 2021, 8, 2004433. [Google Scholar] [CrossRef] [PubMed]
- Ballard, O.; Morrow, A.L. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Brenmoehl, J.; Ohde, D.; Wirthgen, E.; Hoeflich, A. Cytokines in Milk and the Role of TGF-Beta. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Kobata, R.; Tsukahara, H.; Ohshima, Y.; Ohta, N.; Tokuriki, S.; Tamura, S.; Mayumi, M. High Levels of Growth Factors in Human Breast Milk. Early Hum. Dev. 2008, 84, 67–69. [Google Scholar] [CrossRef] [PubMed]
- York, D.J.; Smazal, A.L.; Robinson, D.T.; De Plaen, I.G. Human Milk Growth Factors and Their Role in NEC Prevention: A Narrative Review. Nutrients 2021, 13, 3751. [Google Scholar] [CrossRef] [PubMed]
- Penttila, I.A. Milk-Derived Transforming Growth Factor-Beta and the Infant Immune Response. J. Pediatr. 2010, 156, S21–S25. [Google Scholar] [CrossRef]
- Oddy, W.H.; Rosales, F. A Systematic Review of the Importance of Milk TGF-Beta on Immunological Outcomes in the Infant and Young Child. Pediatr. Allergy Immunol. 2010, 21, 47–59. [Google Scholar] [CrossRef]
- Sitarik, A.R.; Bobbitt, K.R.; Havstad, S.L.; Fujimura, K.E.; Levin, A.M.; Zoratti, E.M.; Kim, H.; Woodcroft, K.J.; Wegienka, G.; Ownby, D.R.; et al. Breast Milk Transforming Growth Factor β Is Associated with Neonatal Gut Microbial Composition. J. Pediatr. Gastroenterol. Nutr. 2017, 65, e60–e67. [Google Scholar] [CrossRef]
- Thai, J.D.; Gregory, K.E. Bioactive Factors in Human Breast Milk Attenuate Intestinal Inflammation during Early Life. Nutrients 2020, 12, 581. [Google Scholar] [CrossRef]
- Picó, C.; Palou, M. Leptin and Metabolic Programming. Nutrients 2021, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Lee, B.J.; Jeong, J.K. Temporal Leptin to Determine Cardiovascular and Metabolic Fate throughout the Life. Nutrients 2020, 12, 3256. [Google Scholar] [CrossRef] [PubMed]
- Landecho, M.F.; Tuero, C.; Valentí, V.; Bilbao, I.; de la Higuera, M.; Frühbeck, G. Relevance of Leptin and Other Adipokines in Obesity-Associated Cardiovascular Risk. Nutrients 2019, 11, 2664. [Google Scholar] [CrossRef] [PubMed]
- Fasshauer, M.; Blüher, M. Adipokines in Health and Disease. Trends Pharmacol. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef] [PubMed]
- de Leal, V.O.; Mafra, D. Adipokines in Obesity. Clin. Chim. Acta 2013, 419, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Lemas, D.J.; Young, B.E.; Ii, P.R.B.; Tomczik, A.C.; Soderborg, T.K.; Hernandez, T.L.; De La Houssaye, B.A.; Robertson, C.E.; Rudolph, M.C.; Ir, D.; et al. Alterations in Human Milk Leptin and Insulin Are Associated with Early Changes in the Infant Intestinal Microbiome. Am. J. Clin. Nutr. 2016, 103, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- van Sadelhoff, J.H.J.; Wiertsema, S.P.; Garssen, J.; Hogenkamp, A. Free Amino Acids in Human Milk: A Potential Role for Glutamine and Glutamate in the Protection Against Neonatal Allergies and Infections. Front. Immunol. 2020, 11, 1007. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, H. The Roles of Glutamine in the Intestine and Its Implication in Intestinal Diseases. Int. J. Mol. Sci. 2017, 18, 1051. [Google Scholar] [CrossRef]
- Gómez-Gallego, C.; Kumar, H.; García-Mantrana, I.; Du Toit, E.; Suomela, J.P.; Linderborg, K.M.; Zhang, Y.; Isolauri, E.; Yang, B.; Salminen, S.; et al. Breast Milk Polyamines and Microbiota Interactions: Impact of Mode of Delivery and Geographical Location. Ann. Nutr. Metab. 2017, 70, 184–190. [Google Scholar] [CrossRef]
- Plaza-Zamora, J.; Sabater-Molina, M.; Rodríguez-Palmero, M.; Rivero, M.; Bosch, V.; Nadal, J.M.; Zamora, S.; Larqué, E. Polyamines in Human Breast Milk for Preterm and Term Infants. Br. J. Nutr. 2013, 110, 524–528. [Google Scholar] [CrossRef]
- Atiya Ali, M.; Strandvik, B.; Sabel, K.G.; Palme Kilander, C.; Strömberg, R.; Yngve, A. Polyamine Levels in Breast Milk Are Associated with Mothers’ Dietary Intake and Are Higher in Preterm than Full-Term Human Milk and Formulas. J. Hum. Nutr. Diet. 2014, 27, 459–467. [Google Scholar] [CrossRef]
- Schlimme, E.; Martin, D.; Meisel, H. Nucleosides and Nucleotides: Natural Bioactive Substances in Milk and Colostrum. Br. J. Nutr. 2000, 84 (Suppl. S1), 59–68. [Google Scholar] [CrossRef]
- Uauy, R.; Quan, R.; Gil, A. Role of Nucleotides in Intestinal Development and Repair: Implications for Infant Nutrition. J. Nutr. 1994, 124, 1436S–1441S. [Google Scholar] [CrossRef]
- Black, S.; Kushner, I.; Samols, D. C-Reactive Protein. J. Biol. Chem. 2004, 279, 48487–48490. [Google Scholar] [CrossRef]
- Volanakis, J.E. Human C-Reactive Protein: Expression, Structure, and Function. Mol. Immunol. 2001, 38, 189–197. [Google Scholar] [CrossRef]
- Williams, M.J.A.; Williams, S.M.; Poulton, R. Breast Feeding Is Related to C Reactive Protein Concentration in Adult Women. J. Epidemiol. Community Health 2006, 60, 146–148. [Google Scholar] [CrossRef]
- Rautava, S. Milk Microbiome and Neonatal Colonization: Overview. Nestle Nutr. Inst. Workshop Ser. 2020, 94, 65–74. [Google Scholar] [CrossRef]
- Delzenne, N.M.; Cani, P.D. Interaction between Obesity and the Gut Microbiota: Relevance in Nutrition. Annu. Rev. Nutr. 2011, 31, 15–31. [Google Scholar] [CrossRef]
- Gámez-Valdez, J.S.; García-Mazcorro, J.F.; Montoya-Rincón, A.H.; Rodríguez-Reyes, D.L.; Jiménez-Blanco, G.; Rodríguez, M.T.A.; de Vaca, R.P.C.; Alcorta-García, M.R.; Brunck, M.; Lara-Díaz, V.J.; et al. Differential Analysis of the Bacterial Community in Colostrum Samples from Women with Gestational Diabetes Mellitus and Obesity. Sci. Rep. 2021, 11, 24373. [Google Scholar] [CrossRef]
- Breitbart, M.; Haynes, M.; Kelley, S.; Angly, F.; Edwards, R.A.; Felts, B.; Mahaffy, J.M.; Mueller, J.; Nulton, J.; Rayhawk, S.; et al. Viral Diversity and Dynamics in an Infant Gut. Res. Microbiol. 2008, 159, 367–373. [Google Scholar] [CrossRef]
- Lim, E.S.; Zhou, Y.; Zhao, G.; Bauer, I.K.; Droit, L.; Ndao, I.M.; Warner, B.B.; Tarr, P.I.; Wang, D.; Holtz, L.R. Early Life Dynamics of the Human Gut Virome and Bacterial Microbiome in Infants. Nat. Med. 2015, 21, 1228–1234. [Google Scholar] [CrossRef] [PubMed]
- Le Doare, K.; Holder, B.; Bassett, A.; Pannaraj, P.S. Mother’s Milk: A Purposeful Contribution to the Development of the Infant Microbiota and Immunity. Front. Immunol. 2018, 9, 361. [Google Scholar] [CrossRef] [PubMed]
- Witkowska-Zimny, M.; Kaminska-El-Hassan, E. Cells of Human Breast Milk. Cell Mol. Biol. Lett. 2017, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Hassiotou, F.; Geddes, D.T.; Hartmann, P.E. Cells in Human Milk: State of the Science. J. Hum. Lact. 2013, 29, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Hassiotou, F.; Hepworth, A.R.; Metzger, P.; Tat Lai, C.; Trengove, N.; Hartmann, P.E.; Filgueira, L. Maternal and Infant Infections Stimulate a Rapid Leukocyte Response in Breastmilk. Clin. Transl. Immunol. 2013, 2, e3. [Google Scholar] [CrossRef]
- Bush, J.F.; Beer, A.E. Analysis of Complement Receptors on B-Lymphocytes in Human Milk. Am. J. Obstet. Gynecol. 1979, 133, 708–712. [Google Scholar] [CrossRef]
- Lönnerdal, B. Nutritional and Physiologic Significance of Human Milk Proteins. Am. J. Clin. Nutr. 2003, 77, 1537S–1543S. [Google Scholar] [CrossRef]
- Shende, P.; Khanolkar, B. Human Breast Milk-Based Nutritherapy: A Blueprint for Pediatric Healthcare. J. Food Drug Anal. 2021, 29, 203–213. [Google Scholar] [CrossRef]
Bioactive Component | Alterations | References | Values |
---|---|---|---|
Carbohydrates | |||
| |||
| Decrease | Isganaitis et al. [59] |
|
| Increase | Isganaitis et al. [59] |
|
| Decrease | Isganaitis et al. [59] |
|
Increase | Lagstrom et al. [60], Wang et al. [61] |
| |
Igs | |||
| Decrease | Dyndar et al. [87] |
|
| Decrease | Dyndar et al. [87] |
|
| Decrease | Dyndar et al. [87] |
|
| Increase | Fujimori et al. [55] |
|
Lactoferrin | Increase | Houghton et al. [88] |
|
Decrease | Dyndar et al. [87] |
| |
Cytokines | |||
| Increase | Collado et al. [89] |
|
Decrease | Collado et al. [89] |
| |
| Increase | Collado et al. [89] |
|
| Increase | Collado et al. [89] |
|
| Increase | Collado et al. [89] |
|
Decrease | Collado et al. [89] |
| |
Growth factors | |||
| Decrease | Khodabakhshi [90] | decrease of 0.002 ng/mL |
Adipokines | |||
| Increase | Martin et al. [91], Clark et al. [92] |
|
Yu X et al. [93] | |||
Decrease | Guler et al. [94] |
| |
| Decrease Increase | Zhang et al. [95], Yu X et al. [93] Guler et al. [94] |
|
| Increase | Uysal et al. [96], Clark et al. [92], Quinn et al. [97], De Luca et al. [50], Sims et al. [98], Young et al. [99], Savino et al. [100], Chan et al. [101], Kugananthan et al. [102], Fields et al. [103,104], Schuster et al. [105] |
|
Leukocytes | |||
1. B lymphocytes | Decrease | Piñeiro-Salvado et al. [106] | reduction of 0.24% |
Casein | Decrease | Dyndar et al [87] | 1.5× lower |
FAA | Increase | De Luca et al. [107] |
|
Decrease | Bardanzellu et al. [108] |
| |
Polyamines | Decrease | Ali et al. [109] |
|
Nucleotides | |||
| Decrease | Isganaitis et al. [59] |
|
| Increase | Isganaitis et al. [59] |
|
Osteopontin | Increase | Zhu et al. [110], Ruan et al. [111] |
|
Decrease | Aksan et al. [112] |
| |
CRP | Increase | Sims et al. [98], Whitaker et al. [113] | no specific data |
Microbiome | |||
| Increase | Collado et al. [89], Cabrera-Rubio et al. [114], Lemay-Nedjelski et al. [115] |
|
| Decrease | Collado et al. [89], Cabrera-Rubio et al. [114] |
|
| Increase | Collado et al. [89] |
|
| Increase Increase Decrease Increase Increase Increase | Cabrera-Rubio et al. [114] Lemay-Nedjelski et al. [115] Lemay-Nedjelski et al. [115] Lemay-Nedjelski et al. [115] Lemay-Nedjelski et al. [115] Lemay-Nedjelski et al. [115] |
|
EVs | |||
| Decrease | Kupsco et al. [116] |
|
| Decrease | Kupsco et al. [116] |
|
| Decrease | Kupsco et al. [116] |
|
| Decrease | Kupsco et al. [116] |
|
| Decrease | Shah et al. [117], Xi et al. [118] |
|
| Decrease | Shah et al. [117] |
|
| Decrease | Xi et al. [118] |
|
| Decrease | Xi et al. [118] |
|
| Decrease | Cho et al. [119] |
|
| Decrease | Cho et al. [119] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Froń, A.; Orczyk-Pawiłowicz, M. Understanding the Immunological Quality of Breast Milk in Maternal Overweight and Obesity. Nutrients 2023, 15, 5016. https://doi.org/10.3390/nu15245016
Froń A, Orczyk-Pawiłowicz M. Understanding the Immunological Quality of Breast Milk in Maternal Overweight and Obesity. Nutrients. 2023; 15(24):5016. https://doi.org/10.3390/nu15245016
Chicago/Turabian StyleFroń, Anita, and Magdalena Orczyk-Pawiłowicz. 2023. "Understanding the Immunological Quality of Breast Milk in Maternal Overweight and Obesity" Nutrients 15, no. 24: 5016. https://doi.org/10.3390/nu15245016
APA StyleFroń, A., & Orczyk-Pawiłowicz, M. (2023). Understanding the Immunological Quality of Breast Milk in Maternal Overweight and Obesity. Nutrients, 15(24), 5016. https://doi.org/10.3390/nu15245016