A Nutritional Approach to Optimizing Pump Therapy in Type 1 Diabetes Mellitus
Abstract
:1. Introduction
2. Carbohydrate Counting, Mixed Meals, and Food GI Management
3. Fasting
Study (Year) | Population | Topic | Recommendation |
---|---|---|---|
Reiter et al. (2007) [43] | Individuals with T1DM on MDI and CSII | Before fasting | Consider a 25% reduction in the last pre-meal insulin bolus. Tailor modifications to the individual, with a reduction range of 25% to 75%. The latter may be more appropriate for extended fasting periods lasting 25 h. |
Karamat et al. (2010) [39] | Individuals with DM (type 1 and 2) | Incorporate sources of complex CHO into the meals. | |
IDF–DaR (2022) [48] | Individuals with T1DM | During fasting | Consider a 20–40% reduction in the basal insulin rate during the final 4–5 h before fasting break. |
IDF–DaR (2022) [48] | Individuals with T1DM | After fasting | Consider a 10–30% increase in the basal insulin rate for the initial hours after the fasting break. |
Reiter et al. (2007) [43] | Individuals with T1DM on MDI and CSII | Consider a reduction in the ICR for the initial post-fasting meal due to increased insulin sensitivity. | |
Karamat et al. (2010) [39] | Individuals with DM (type 1 and 2) | Consider options from low to higher GI. Encourage the restriction of sources high in both fat and sugar. |
4. Physical Activity
5. Sick Days
6. Pregnancy and Lactation
7. Nutritional Guidance for Closed-Loop Systems
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.-C.; Brown, T.T.; Maruthur, N.; Ranasinghe, P.; Berger, Z.; Suh, Y.D.; Wilson, L.M.; Haberl, E.B.; Brick, J.; Bass, E.B.; et al. Comparative Effectiveness and Safety of Methods of Insulin Delivery and Glucose Monitoring for Diabetes Mellitus: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2012, 157, 336. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Taleb, N.; Stainforth-Dubois, M.; Rabasa-Lhoret, R. The Promising Future of Insulin Therapy in Diabetes Mellitus. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E886–E890. [Google Scholar] [CrossRef] [PubMed]
- Ross, L.J.; Neville, K.A. Continuous Subcutaneous Insulin Infusion versus Multiple Daily Injections for Type 1 Diabetes. J. Paediatr. Child Health 2019, 55, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Benkhadra, K.; Alahdab, F.; Tamhane, S.U.; McCoy, R.G.; Prokop, L.J.; Murad, M.H. Continuous Subcutaneous Insulin Infusion versus Multiple Daily Injections in Individuals with Type 1 Diabetes: A Systematic Review and Meta-Analysis. Endocrine 2017, 55, 77–84. [Google Scholar] [CrossRef]
- Pala, L.; Dicembrini, I.; Mannucci, E. Continuous Subcutaneous Insulin Infusion vs Modern Multiple Injection Regimens in Type 1 Diabetes: An Updated Meta-Analysis of Randomized Clinical Trials. Acta Diabetol. 2019, 56, 973–980. [Google Scholar] [CrossRef]
- Tsarkova, P.; Chakarova, N.; Dimova, R.; Grozeva, G.; Todorova, A.; Serdarova, M.; Salkova, M.; Tankova, T. CSII Is Related to More Stable Glycemia in Adults with Type 1 Diabetes. Endocrine 2022, 75, 776–780. [Google Scholar] [CrossRef]
- Mouslech, Z.; Somali, M.; Sarantis, L.; Christos, D.; Alexandra, C.; Maria, P.; Mastorakos, G.; Savopoulos, C.; Hatzitolios, A.I. Significant Effect of Group Education in Patients with Diabetes Type 1. Hormones 2018, 17, 397–403. [Google Scholar] [CrossRef]
- Al Babtain, S.A.; Al Afif, N.O.; Al Disi, D.; Al Zahrani, S.H. Manual and Application-Based Carbohydrate Counting and Glycemic Control in Type 1 Diabetes Subjects: A Narrative Review. Healthcare 2023, 11, 934. [Google Scholar] [CrossRef]
- Annan, S.F.; Higgins, L.A.; Jelleryd, E.; Hannon, T.; Rose, S.; Salis, S.; Baptista, J.; Chinchilla, P.; Marcovecchio, M.L. ISPAD Clinical Practice Consensus Guidelines 2022: Nutritional Management in Children and Adolescents with Diabetes. Pediatr. Diabetes 2022, 23, 1297–1321. [Google Scholar] [CrossRef]
- Laurenzi, A.; Bolla, A.M.; Panigoni, G.; Doria, V.; Uccellatore, A.; Peretti, E.; Saibene, A.; Galimberti, G.; Bosi, E.; Scavini, M. Effects of Carbohydrate Counting on Glucose Control and Quality of Life Over 24 Weeks in Adult Patients with Type 1 Diabetes on Continuous Subcutaneous Insulin Infusion. Diabetes Care 2011, 34, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Enander, R.; Gundevall, C.; Strömgren, A.; Chaplin, J.; Hanas, R. Carbohydrate Counting with a Bolus Calculator Improves Post-prandial Blood Glucose Levels in Children and Adolescents with Type 1 Diabetes Using Insulin Pumps. Pediatr. Diabetes 2012, 13, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Meldgaard, M.; Serifovski, N.; Storm, C.; Christensen, T.M.; Gade-Rasmussen, B.; Nørgaard, K. Use of an Automated Bolus Calculator in MDI-Treated Type 1 Diabetes. Diabetes Care 2012, 35, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.; Gupta, A. Current Diabetes Technology: Striving for the Artificial Pancreas. Diagnostics 2019, 9, 31. [Google Scholar] [CrossRef] [PubMed]
- Gingras, V.; Taleb, N.; Roy-Fleming, A.; Legault, L.; Rabasa-Lhoret, R. The Challenges of Achieving Postprandial Glucose Control Using Closed-loop Systems in Patients with Type 1 Diabetes. Diabetes Obes. Metab. 2018, 20, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.A.; Smart, C.E.; Fuery, M.E.J.; Howley, P.P.; Knight, B.A.; Harris, M.; King, B.R. In Children and Young People with Type 1 Diabetes Using Pump Therapy, an Additional 40% of the Insulin Dose for a High-fat, High-protein Breakfast Improves Postprandial Glycaemic Excursions: A Cross-over Trial. Diabet. Med. 2021, 38, e14511. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.J.; Smart, C.E.; Steil, G.M.; Brand-Miller, J.C.; King, B.; Wolpert, H.A. Impact of Fat, Protein, and Glycemic Index on Postprandial Glucose Control in Type 1 Diabetes: Implications for Intensive Diabetes Management in the Continuous Glucose Monitoring Era. Diabetes Care 2015, 38, 1008–1015. [Google Scholar] [CrossRef]
- Paterson, M.; Bell, K.J.; O’Connell, S.M.; Smart, C.E.; Shafat, A.; King, B. The Role of Dietary Protein and Fat in Glycaemic Control in Type 1 Diabetes: Implications for Intensive Diabetes Management. Curr. Diabetes Rep. 2015, 15, 61. [Google Scholar] [CrossRef]
- Marathe, C.S.; Rayner, C.K.; Jones, K.L.; Horowitz, M. Relationships Between Gastric Emptying, Postprandial Glycemia, and Incretin Hormones. Diabetes Care 2013, 36, 1396–1405. [Google Scholar] [CrossRef]
- Lopez, P.E.; Smart, C.E.; McElduff, P.; Foskett, D.C.; Price, D.A.; Paterson, M.A.; King, B.R. Optimizing the Combination Insulin Bolus Split for a High-fat, High-protein Meal in Children and Adolescents Using Insulin Pump Therapy. Diabet. Med. 2017, 34, 1380–1384. [Google Scholar] [CrossRef]
- Balwi, R.A.; Madani, W.A.; Ghamdi, A.A. Efficacy of Insulin Dosing Algorithms for High-fat High-protein Mixed Meals to Control Postprandial Glycemic Excursions in People Living with Type 1 Diabetes: A Systematic Review and Meta-analysis. Pediatr. Diabetes 2022, 23, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.J.; Toschi, E.; Steil, G.M.; Wolpert, H.A. Optimized Mealtime Insulin Dosing for Fat and Protein in Type 1 Diabetes: Application of a Model-Based Approach to Derive Insulin Doses for Open-Loop Diabetes Management. Diabetes Care 2016, 39, 1631–1634. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, H.A.; Atakov-Castillo, A.; Smith, S.A.; Steil, G.M. Dietary Fat Acutely Increases Glucose Concentrations and Insulin Requirements in Patients with Type 1 Diabetes. Diabetes Care 2013, 36, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Gingras, V.; Bonato, L.; Messier, V.; Roy-Fleming, A.; Smaoui, M.R.; Ladouceur, M.; Rabasa-Lhoret, R. Impact of Macronutrient Content of Meals on Postprandial Glucose Control in the Context of Closed-loop Insulin Delivery: A Randomized Cross-over Study. Diabetes Obes. Metab. 2018, 20, 2695–2699. [Google Scholar] [CrossRef]
- Bozzetto, L.; Giorgini, M.; Alderisio, A.; Costagliola, L.; Giacco, A.; Riccardi, G.; Rivellese, A.A.; Annuzzi, G. Glycaemic Load versus Carbohydrate Counting for Insulin Bolus Calculation in Patients with Type 1 Diabetes on Insulin Pump. Acta Diabetol. 2015, 52, 865–871. [Google Scholar] [CrossRef]
- Parillo, M.; Annuzzi, G.; Rivellese, A.A.; Bozzetto, L.; Alessandrini, R.; Riccardi, G.; Capaldo, B. Effects of Meals with Different Glycaemic Index on Postprandial Blood Glucose Response in Patients with Type 1 Diabetes Treated with Continuous Subcutaneous Insulin Infusion. Diabet. Med. 2011, 28, 227–229. [Google Scholar] [CrossRef]
- Vetrani, C.; Calabrese, I.; Cavagnuolo, L.; Pacella, D.; Napolano, E.; Rienzo, S.D.; Riccardi, G.; Rivellese, A.A.; Annuzzi, G.; Bozzetto, L. Dietary Determinants of Postprandial Blood Glucose Control in Adults with Type 1 Diabetes on a Hybrid Closed-Loop System. Diabetologia 2022, 65, 79–87. [Google Scholar] [CrossRef]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P.; et al. Nutrition Therapy Recommendations for the Management of Adults with Diabetes. Diabetes Care 2013, 37, S120–S143. [Google Scholar] [CrossRef]
- American Diabetes Association. 4 Foundations of Care: Education, Nutrition, Physical Activity, Smoking Cessation, Psychosocial Care, and Immunization. Diabetes Care 2015, 38, S20–S30. [Google Scholar] [CrossRef]
- Lupoli, R.; Pisano, F.; Capaldo, B. Postprandial Glucose Control in Type 1 Diabetes: Importance of the Gastric Emptying Rate. Nutrients 2019, 11, 1559. [Google Scholar] [CrossRef]
- O’Connell, M.A.; Gilbertson, H.R.; Donath, S.M.; Cameron, F.J. Optimizing Postprandial Glycemia in Pediatric Patients with Type 1 Diabetes Using Insulin Pump Therapy. Diabetes Care 2008, 31, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.; Smart, C.; Morbey, C.; McElduff, P.; Paterson, M.; King, B.R. Extended Insulin Boluses Cannot Control Postprandial Glycemia as Well as a Standard Bolus in Children and Adults Using Insulin Pump Therapy. BMJ Open Diabetes Res. Care 2014, 2, e000050. [Google Scholar] [CrossRef] [PubMed]
- Scaramuzza, A.E.; Iafusco, D.; Santoro, L.; Bosetti, A.; Palma, A.D.; Spiri, D.; Mameli, C.; Zuccotti, G.V. Timing of Bolus in Children with Type 1 Diabetes Using Continuous Subcutaneous Insulin Infusion (TiBoDi Study). Diabetes Technol. Ther. 2010, 12, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, E.; Dżygało, K.; Szypowska, A. Super Bolus: A Remedy for a High Glycemic Index Meal in Children with Type 1 Diabetes on Insulin Pump Therapy?–Study Protocol for a Randomized Controlled Trial. Trials 2022, 23, 240. [Google Scholar] [CrossRef] [PubMed]
- Bozzetto, L.; Alderisio, A.; Clemente, G.; Giorgini, M.; Barone, F.; Griffo, E.; Costabile, G.; Vetrani, C.; Cipriano, P.; Giacco, A.; et al. Gastrointestinal Effects of Extra-Virgin Olive Oil Associated with Lower Postprandial Glycemia in Type 1 Diabetes. Clin. Nutr. 2019, 38, 2645–2651. [Google Scholar] [CrossRef] [PubMed]
- Nesti, L.; Mengozzi, A.; Tricò, D. Impact of Nutrient Type and Sequence on Glucose Tolerance: Physiological Insights and Therapeutic Implications. Front. Endocrinol. 2019, 10, 144. [Google Scholar] [CrossRef] [PubMed]
- Faber, E.M.; van Kampen, P.M.; Boers, A.C.; Houdijk, E.C.; van der Kaay, D.C. The Influence of Food Order on Postprandial Glucose Levels in Children with Type 1 Diabetes. Pediatr. Diabetes 2018, 19, 809–815. [Google Scholar] [CrossRef]
- Moser, O.; Eckstein, M.L.; Mueller, A.; Tripolt, N.J.; Yildirim, H.; Abbas, F.; Pferschy, P.N.; Goswami, N.; Aberer, F.; Obermayer, A.; et al. Impact of a Single 36 hours Prolonged Fasting Period in Adults With Type 1 Diabetes–A Cross-Over Controlled Trial. Front. Endocrinol. 2021, 12, 656346. [Google Scholar] [CrossRef]
- Karamat, M.A.; Syed, A.; Hanif, W. Review of Diabetes Management and Guidelines during Ramadan. J. R. Soc. Med. 2010, 103, 139–147. [Google Scholar] [CrossRef]
- Polonsky, W.H.; Guzman, S.J.; Fisher, L. The Hypoglycemic Fear Syndrome: Understanding and Addressing This Common Clinical Problem in Adults with Diabetes. Clin. Diabetes 2023, 41, 502–509. [Google Scholar] [CrossRef]
- Templer, S. Closed-Loop Insulin Delivery Systems: Past, Present, and Future Directions. Front. Endocrinol. 2022, 13, 919942. [Google Scholar] [CrossRef] [PubMed]
- Kobeissy, A.; Zantout, M.S.; Azar, S.T. Suggested Insulin Regimens for Patients with Type 1 Diabetes Mellitus Who Wish to Fast during the Month of Ramadan. Clin. Ther. 2008, 30, 1408–1415. [Google Scholar] [CrossRef] [PubMed]
- Reiter, J.; Wexler, I.D.; Shehadeh, N.; Tzur, A.; Zangen, D. Type 1 Diabetes and Prolonged Fasting. Diabet. Med. 2007, 24, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Alfadhli, E.M. Higher Rate of Hyperglycemia than Hypoglycemia during Ramadan Fasting in Patients with Uncontrolled Type 1 Diabetes: Insight from Continuous Glucose Monitoring System. Saudi Pharm. J. 2018, 26, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, M.; Afandi, B.; Ahmedani, M.Y.; Alamoudi, R.M.; Alawadi, F.; Bajaj, H.S.; Basit, A.; Bennakhi, A.; Sayed, A.A.E.; Hamdy, O.; et al. Diabetes and Ramadan: Practical Guidelines 2021. Diabetes Res. Clin. Pract. 2022, 185, 109185. [Google Scholar] [CrossRef]
- Khalil, A.B.; Beshyah, S.A.; Awad, S.M.A.; Benbarka, M.M.; Haddad, M.; Al-Hassan, D.; Kahwatih, M.; Nagelkerke, N. Ramadan Fasting in Diabetes Patients on Insulin Pump Therapy Augmented by Continuous Glucose Monitoring: An Observational Real-Life Study. Diabetes Technol. Ther. 2012, 14, 813–818. [Google Scholar] [CrossRef]
- Benbarka, M.M.; Khalil, A.B.; Beshyah, S.A.; Marjei, S.; Awad, S.A. Insulin Pump Therapy in Moslem Patients with Type 1 Diabetes During Ramadan Fasting: An Observational Report. Diabetes Technol. Ther. 2010, 12, 287–290. [Google Scholar] [CrossRef]
- Al-Ozairi, E.; Samad, A.E.; Kandari, J.A.; Aldibbiat, A.M. Intermittent Fasting Could Be Safely Achieved in People with Type 1 Diabetes Undergoing Structured Education and Advanced Glucose Monitoring. Front. Endocrinol. 2019, 10, 849. [Google Scholar] [CrossRef]
- Deeb, A.; Qahtani, N.A.; Attia, S.; Suwaidi, H.A.; Nagelkerke, N. Does Reducing Basal Insulin During Ramadan Fasting by Children and Adolescents with Type 1 Diabetes Decrease the Risk of Symptomatic Hypoglycemia? Diabetes Technol. Ther. 2016, 18, 539–542. [Google Scholar] [CrossRef]
- Holt, R.I.G.; DeVries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; et al. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2021, 64, 2609–2652. [Google Scholar] [CrossRef]
- American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42 (Suppl. S1), 46–60. [Google Scholar] [CrossRef] [PubMed]
- Moser, O.; Riddell, M.C.; Eckstein, M.L.; Adolfsson, P.; Rabasa-Lhoret, R.; van den Boom, L.; Gillard, P.; Nørgaard, K.; Oliver, N.S.; Zaharieva, D.P.; et al. Glucose Management for Exercise Using Continuous Glucose Monitoring (CGM) and Intermittently Scanned CGM (IsCGM) Systems in Type 1 Diabetes: Position Statement of the European Association for the Study of Diabetes (EASD) and of the International Society for Pediatric and Adolescent Diabetes (ISPAD) Endorsed by JDRF and Supported by the American Diabetes Association (ADA). Diabetologia 2020, 63, 2501–2520. [Google Scholar] [CrossRef]
- Riddell, M.C.; Gallen, I.W.; Smart, C.E.; Taplin, C.E.; Adolfsson, P.; Lumb, A.N.; Kowalski, A.; Rabasa-Lhoret, R.; McCrimmon, R.J.; Hume, C.; et al. Exercise Management in Type 1 Diabetes: A Consensus Statement. Lancet Diabetes Endocrinol. 2017, 5, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Franc, S.; Daoudi, A.; Pochat, A.; Petit, M.-H.; Randazzo, C.; Petit, C.; Duclos, M.; Penfornis, A.; Pussard, E.; Not, D.; et al. Insulin-based Strategies to Prevent Hypoglycaemia during and after Exercise in Adult Patients with Type 1 Diabetes on Pump Therapy: The DIABRASPORT Randomized Study. Diabetes Obes. Metab. 2015, 17, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Colberg, S.R. Nutrition and Exercise Performance in Adults with Type 1 Diabetes. Can. J. Diabetes 2020, 44, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Riddell, M.C.; Zaharieva, D.P.; Yavelberg, L.; Cinar, A.; Jamnik, V.K. Exercise and the Development of the Artificial Pancreas. J. Diabetes Sci. Technol. 2015, 9, 1217–1226. [Google Scholar] [CrossRef]
- Tagougui, S.; Taleb, N.; Legault, L.; Suppère, C.; Messier, V.; Boukabous, I.; Shohoudi, A.; Ladouceur, M.; Rabasa-Lhoret, R. A Single-Blind, Randomised, Crossover Study to Reduce Hypoglycaemia Risk during Postprandial Exercise with Closed-Loop Insulin Delivery in Adults with Type 1 Diabetes: Announced (with or without Bolus Reduction) vs Unannounced Exercise Strategies. Diabetologia 2020, 63, 2282–2291. [Google Scholar] [CrossRef]
- Elleri, D.; Biagioni, M.; Allen, J.M.; Kumareswaran, K.; Leelarathna, L.; Caldwell, K.; Nodale, M.; Wilinska, M.E.; Haidar, A.; Calhoun, P.; et al. Safety, Efficacy and Glucose Turnover of Reduced Prandial Boluses during Closed-loop Therapy in Adolescents with Type 1 Diabetes: A Randomized Clinical Trial. Diabetes Obes. Metab. 2015, 17, 1173–1179. [Google Scholar] [CrossRef]
- Gray, A.; Threlkeld, R.J. Nutritional Recommendations for Individuals with Diabetes. Endotext. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279012/ (accessed on 5 September 2023).
- McTavish, L.; Corley, B.; Weatherall, M.; Wiltshire, E.; Krebs, J.D. Weight-based Carbohydrate Treatment of Hypoglycaemia in People with Type 1 Diabetes Using Insulin Pump Therapy: A Randomized Crossover Clinical Trial. Diabet. Med. 2018, 35, 339–346. [Google Scholar] [CrossRef]
- Shetty, V.B.; Fournier, P.A.; Davey, R.J.; Retterath, A.J.; Paramalingam, N.; Roby, H.C.; Cooper, M.N.; Davis, E.A.; Jones, T.W. Effect of Exercise Intensity on Glucose Requirements to Maintain Euglycemia During Exercise in Type 1 Diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 972–980. [Google Scholar] [CrossRef]
- Adolfsson, P.; Mattsson, S.; Jendle, J. Evaluation of Glucose Control When a New Strategy of Increased Carbohydrate Supply Is Implemented during Prolonged Physical Exercise in Type 1 Diabetes. Eur. J. Appl. Physiol. 2015, 115, 2599–2607. [Google Scholar] [CrossRef] [PubMed]
- Bracken, R.M.; Page, R.; Gray, B.; Kilduff, L.P.; West, D.J.; Stephens, J.W.; Bain, S.C. Isomaltulose Improves Glycemia and Maintains Run Performance in Type 1 Diabetes. Med. Sci. Sports Exerc. 2012, 44, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.D.; Walker, M.; Trenell, M.I.; Stevenson, E.J.; Turner, D.; Bracken, R.M.; Shaw, J.A.; West, D.J. A Low–Glycemic Index Meal and Bedtime Snack Prevents Postprandial Hyperglycemia and Associated Rises in Inflammatory Markers, Providing Protection from Early but Not Late Nocturnal Hypoglycemia Following Evening Exercise in Type 1 Diabetes. Diabetes Care 2014, 37, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Teich, T.; Riddell, M.C. The Enhancement of Muscle Insulin Sensitivity After Exercise: A Rac1-Independent Handoff to Some Other Player? Endocrinology 2016, 157, 2999–3001. [Google Scholar] [CrossRef]
- Brink, S.; Joel, D.; Laffel, L.; Lee, W.W.R.; Olsen, B.; Phelan, H.; Hanas, R. Sick Day Management in Children and Adolescents with Diabetes. Pediatr. Diabetes 2014, 15, 193–202. [Google Scholar] [CrossRef]
- Laffel, L.M.; Limbert, C.; Phelan, H.; Virmani, A.; Wood, J.; Hofer, S.E. ISPAD Clinical Practice Consensus Guidelines 2018: Sick Day Management in Children and Adolescents with Diabetes. Pediatr. Diabetes 2018, 19, 193–204. [Google Scholar] [CrossRef]
- Muneer, M.; Akbar, I. Diabetes: From Research to Clinical Practice, Volume 4. Adv. Exp. Med. Biol. 2020, 1307, 85–114. [Google Scholar] [CrossRef]
- Dye, A.M.; Alemzadeh, R.; Wang, J.; Tolley, E.A.; Lahoti, A. Intensive Sick Day Rules to Prevent Recurrent Diabetic Ketoacidosis- An Intervention That Exemplifies Health Disparities. J. Natl. Med. Assoc. 2022, 114, 30–37. [Google Scholar] [CrossRef]
- Laffel, L. Sick-day management in type 1 diabetes. Endocrinol. Metab. Clin. N. Am. 2000, 29, 707–723. [Google Scholar] [CrossRef]
- Smith, A.; Harris, C. Type 1 Diabetes: Management Strategies. Am. Fam. Phys. 2018, 98, 154–162. [Google Scholar]
- Draznin, B.; Aroda, V.R.; Bakris, G.; Benson, G.; Brown, F.M.; Freeman, R.; Green, J.; Huang, E.; Isaacs, D.; Kahan, S.; et al. 15. Management of Diabetes in Pregnancy: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S232–S243. [Google Scholar] [CrossRef]
- Ringholm, L.; Damm, P.; Mathiesen, E.R. Improving Pregnancy Outcomes in Women with Diabetes Mellitus: Modern Management. Nat. Rev. Endocrinol. 2019, 15, 406–416. [Google Scholar] [CrossRef] [PubMed]
- McCance, D.R. Diabetes in Pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 685–699. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 15. Management of Diabetes in Pregnancy: Standards of Care in Diabetes—2023. Diabetes Care 2022, 46, S254–S266. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.D.; O’Connor, D.L. Corrigendum to “Guideline No. 427: Folic Acid and Multivitamin Supplementation for Prevention of Folic Acid–Sensitive Congenital Anomalies” [J. Obstet. Gynaecol. Can. 44 (2022) 707–719]. J. Obstet. Gynaecol. Can. 2022, 44, 1114. [Google Scholar] [CrossRef] [PubMed]
- Dyson, P.A.; Twenefour, D.; Breen, C.; Duncan, A.; Elvin, E.; Goff, L.; Hill, A.; Kalsi, P.; Marsland, N.; McArdle, P.; et al. Diabetes UK Evidence-based Nutrition Guidelines for the Prevention and Management of Diabetes. Diabet. Med. 2018, 35, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine and National Research Council. Weight Gain During Pregnancy: Reexamining the Guidelines; The National Academies Press: Washington, DC, USA, 2009; pp. 241–262.
- Thayer, S.M.; Williams, K.J.; Lawlor, M.L. The Role of Technology in the Care of Diabetes Mellitus in Pregnancy: An Expert Review. AJOG Glob. Rep. 2023, 3, 100245. [Google Scholar] [CrossRef]
- Moreno-Fernández, J.; García-Seco, J.A. Commercialized Hybrid Closed-Loop System (Minimed Medtronic 670G) Results During Pregnancy. AACE Clin. Case Rep. 2021, 7, 177–179. [Google Scholar] [CrossRef]
- Kravarusic, J.; Aleppo, G. Diabetes Technology Use in Adults with Type 1 and Type 2 Diabetes. Endocrinol. Metab. Clin. N. Am. 2020, 49, 37–55. [Google Scholar] [CrossRef]
- Benhalima, K.; Beunen, K.; Siegelaar, S.E.; Painter, R.; Murphy, H.R.; Feig, D.S.; Donovan, L.E.; Polsky, S.; Buschur, E.; Levy, C.J.; et al. Management of Type 1 Diabetes in Pregnancy: Update on Lifestyle, Pharmacological Treatment, and Novel Technologies for Achieving Glycaemic Targets. Lancet Diabetes Endocrinol. 2023, 11, 490–508. [Google Scholar] [CrossRef]
- Beunen, K.; Wilder, N.V.; Ballaux, D.; Vanhaverbeke, G.; Taes, Y.; Aers, X.-P.; Nobels, F.; Marlier, J.; Lee, D.; Cuypers, J.; et al. Closed-Loop Insulin Delivery in Pregnant Women with Type 1 Diabetes (CRISTAL): A Multicentre Randomized Controlled Trial–Study Protocol. BMC Pregnancy Childbirth 2023, 23, 180. [Google Scholar] [CrossRef]
- Jones, L.V.; Ray, A.; Moy, F.M.; Buckley, B.S. Techniques of Monitoring Blood Glucose during Pregnancy for Women with Pre-existing Diabetes. Cochrane Database Syst. Rev. 2019, 2019, CD009613. [Google Scholar] [CrossRef] [PubMed]
- Mathiesen, J.M.; Secher, A.L.; Ringholm, L.; Nørgaard, K.; Hommel, E.; Andersen, H.U.; Damm, P.; Mathiesen, E.R. Changes in Basal Rates and Bolus Calculator Settings in Insulin Pumps during Pregnancy in Women with Type 1 Diabetes. J. Matern. Fetal Neonatal Med. 2014, 27, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Ringholm, L.; Nørgaard, S.K.; Rytter, A.; Damm, P.; Mathiesen, E.R. Dietary Advice to Support Glycaemic Control and Weight Management in Women with Type 1 Diabetes during Pregnancy and Breastfeeding. Nutrients 2022, 14, 4867. [Google Scholar] [CrossRef] [PubMed]
- Roskjær, A.B.; Andersen, J.R.; Ronneby, H.; Damm, P.; Mathiesen, E.R. Dietary Advices on Carbohydrate Intake for Pregnant Women with Type 1 Diabetes. J. Matern. Fetal Neonatal Med. 2015, 28, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Cyganek, K.; Klupa, T.; Szopa, M.; Katra, B.; Małecki, M.T. Medical Care of Pregnant Women with Type 1 Diabetes: Current Guidelines and Clinical Practice. Pol. Arch. Intern. Med. 2013, 123, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Louie, J.C.Y.; Brand-Miller, J.C.; Markovic, T.P.; Ross, G.P.; Moses, R.G. Glycemic Index and Pregnancy: A Systematic Literature Review. J. Nutr. Metab. 2010, 2010, 282464. [Google Scholar] [CrossRef] [PubMed]
- Reader, D.; Franz, M.J. Lactation, Diabetes, and Nutrition Recommendations. Curr. Diabetes Rep. 2004, 4, 370–376. [Google Scholar] [CrossRef]
- Hart, T.L.; Petersen, K.S.; Kris-Etherton, P.M. Nutrition Recommendations for a Healthy Pregnancy and Lactation in Women with Overweight and Obesity–Strategies for Weight Loss before and after Pregnancy. Fertil. Steril. 2022, 118, 434–446. [Google Scholar] [CrossRef]
- Kitzmiller, J.L.; Block, J.M.; Brown, F.M.; Catalano, P.M.; Conway, D.L.; Coustan, D.R.; Gunderson, E.P.; Herman, W.H.; Hoffman, L.D.; Inturrisi, M.; et al. Managing Preexisting Diabetes for Pregnancy. Diabetes Care 2008, 31, 1060–1079. [Google Scholar] [CrossRef]
- National Collaborating Centre for Women’s and Children’s Health (UK). Diabetes in Pregnancy: Management of Diabetes and Its Complications from Preconception to the Postnatal Period; National Institute for Health and Care Excellence (UK): London, UK, 2015. [Google Scholar]
- Bekiari, E.; Kitsios, K.; Thabit, H.; Tauschmann, M.; Athanasiadou, E.; Karagiannis, T.; Haidich, A.-B.; Hovorka, R.; Tsapas, A. Artificial Pancreas Treatment for Outpatients with Type 1 Diabetes: Systematic Review and Meta-Analysis. BMJ 2018, 361, k1310. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.; Kovatchev, B.P.; Raghinaru, D.; Lum, J.W.; Buckingham, B.A.; Kudva, Y.C.; Laffel, L.M.; Levy, C.J.; Pinsker, J.E.; Wadwa, R.P.; et al. Six-Month Randomized, Multicenter Trial of Closed-Loop Control in Type 1 Diabetes. N. Engl. J. Med. 2019, 381, 1707–1717. [Google Scholar] [CrossRef] [PubMed]
- Breton, M.D.; Kanapka, L.G.; Beck, R.W.; Ekhlaspour, L.; Forlenza, G.P.; Cengiz, E.; Schoelwer, M.; Ruedy, K.J.; Jost, E.; Carria, L.; et al. A Randomized Trial of Closed-Loop Control in Children with Type 1 Diabetes. N. Engl. J. Med. 2020, 383, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Leelarathna, L.; Choudhary, P.; Wilmot, E.G.; Lumb, A.; Street, T.; Kar, P.; Ng, S.M. Hybrid Closed-loop Therapy: Where Are We in 2021? Diabetes Obes. Metab. 2021, 23, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Boughton, C.K.; Hovorka, R. New Closed-Loop Insulin Systems. Diabetologia 2021, 64, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Phillip, M.; Nimri, R.; Bergenstal, R.M.; Barnard-Kelly, K.; Danne, T.; Hovorka, R.; Kovatchev, B.P.; Messer, L.H.; Parkin, C.G.; Ambler-Osborn, L.; et al. Consensus Recommendations for the Use of Automated Insulin Delivery Technologies in Clinical Practice. Endocr. Rev. 2022, 44, 254–280. [Google Scholar] [CrossRef]
- Clerc, A. Nutrition Education to Type 1 Diabetes Patients: Few Changes over the Time. Front. Clin. Diabetes Healthc. 2023, 4, 1243237. [Google Scholar] [CrossRef]
- Heinemann, L.; Schoemaker, M.; Schmelzeisen-Redecker, G.; Hinzmann, R.; Kassab, A.; Freckmann, G.; Reiterer, F.; Re, L.D. Benefits and Limitations of MARD as a Performance Parameter for Continuous Glucose Monitoring in the Interstitial Space. J. Diabetes Sci. Technol. 2020, 14, 135–150. [Google Scholar] [CrossRef]
- Lehmann, V.; Zueger, T.; Zeder, A.; Scott, S.; Bally, L.; Laimer, M.; Stettler, C. Lower Daily Carbohydrate Intake Is Associated with Improved Glycemic Control in Adults with Type 1 Diabetes Using a Hybrid Closed-Loop System. Diabetes Care 2020, 43, 3102–3105. [Google Scholar] [CrossRef]
- Antoniotti, V.; Spadaccini, D.; Ricotti, R.; Carrera, D.; Savastio, S.; Correia, F.P.G.; Caputo, M.; Pozzi, E.; Bellone, S.; Rabbone, I.; et al. Adherence to the Mediterranean Diet Is Associated with Better Metabolic Features in Youths with Type 1 Diabetes. Nutrients 2022, 14, 596. [Google Scholar] [CrossRef]
- Obeid, C.A.; Gubbels, J.S.; Jaalouk, D.; Kremers, S.P.J.; Oenema, A. Adherence to the Mediterranean Diet among Adults in Mediterranean Countries: A Systematic Literature Review. Eur. J. Nutr. 2022, 61, 3327–3344. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.; Blackburn, M.; Rankin, D.; Allen, J.; Campbell, F.; Leelarathna, L.; Tauschmann, M.; Thabit, H.; Wilinska, M.E.; Hovorka, R.; et al. The Impact of Using a Closed-loop System on Food Choices and Eating Practices among People with Type 1 Diabetes: A Qualitative Study Involving Adults, Teenagers and Parents. Diabet. Med. 2019, 36, 753–760. [Google Scholar] [CrossRef] [PubMed]
Study (Year) | Population | Meals | Recommendation |
---|---|---|---|
Gingras et al. (2018) [24] Wolpert et al. (2013) [23] Bell et al. (2016) [22] Smith et al. (2021) [16] Lopez et al. (2017) [20] Al Balwi et al. (2022) [21] | Individuals with T1DM in CLS Individuals with T1DM in CLS Individuals with T1DM in OLS Children and adolescents with T1DM on CSII Children and adolescents with T1DM on CSII Individuals with T1DM | HFHP | Increase TID by 25–60% for high-fat (>40 g) and/or high-protein (>25 g) meals. Initiate with a 10–20% ICR increase, gradually raise by 10% if hyperglycemia persists. |
For HFHP meals, favor a combination bolus, delivering 30–70% of TID before meals and the remainder over 2–3 h based on individual requirements. High-GI foods alongside a HFHP meal might suggest the need for an elevated upfront dose. | |||
ISPAD (2022) [13] | Children and adolescents with T1DM | Mixed meals | Utilize CGMs for achieving personalized management of mixed meals effectively. |
O’Connell et al. (2008) [31] | Young individuals (8–18 y.o.) with T1DM on CSII | Low-GI meals | Consider the use of a combination bolus (50:50 over 2 h). |
Lopez et al. (2014) [32] | Children and adults with T1DM on CSII | Moderate-GI meals | Consider implementing an extended/wave bolus initiated 20–30 min prior to eating. |
Lupoli et al. (2019) [30] | Individuals with T1DM | High-GI meals | Consider administering insulin 15 min prior to eating. |
Bell et. al. (2015) [17] | Individuals with T1DM | An alternative strategy for high-GI meals includes a Super Bolus (=50% increase in the initial insulin bolus, followed by reduction in basal rate for the subsequent 2 h). | |
Bozzetto et al. (2019) [35] | Individuals with T1DM | Consider including a source of MUFAs alongside a high-GI meal for lowering the glycemic response. | |
ADA (2014) [29] | Individuals with T1DM | CHO rich meals | Aim to swap high-glycemic options with lower glycemic alternatives. In particular, promote the consumption of whole, less refined foods (i.e., legumes, whole grains, fruits, vegetables). Discourage the intake of processed products (i.e., sugary drinks, fast food, refined grains). |
Faber et al. (2018) [37] | Young patients (7–17 y.o.) with T1DM | Consider intake of protein and/or fat 15 min prior to a CHO-rich meal for lowering the glycemic response. |
Study (Year) | Population | Topic | Recommendation |
---|---|---|---|
Tagougui et al. (2020) [57] Frank et al. (2015) [54] Elleri et al. (2015) [58] | Adults with T1DM in CLS Adults with T1DM on CSII Adolescents with T1DM in CLS | Before exercise | When scheduling exercise lasting over 30 min within 60–90 min after a meal, reduce meal bolus insulin by 30–50%. |
Bracken et al. (2012) [63] | Individuals with T1DM | Choose low- to moderate-GI foods for meals occurring 2 h before exercise. | |
Riddell et al. (2017) [53] Frank et al. (2015) [54] | Active adults with T1DM Adults with T1DM on CSII | During exercise | Consider a 50–80% basal insulin rate reduction for aerobic exercise. |
Riddell et al. (2017) [53] | Active individuals with T1DM | Be aware of potential glucose levels increase during anaerobic exercise. | |
Riddell et al. (2017) [53] Shetty et al. (2016) [61] | Active adults with T1DM Recreational active individuals with T1DM (15–25 y.o.) on CSII or MDI | Incorporate additional glucose supplementation and/or insulin reduction for longer-duration, moderate-intensity exercise compared to short, high-intensity training. | |
Riddell et al. (2017) [53] Adolfsson et al. (2015) [62] | Active adults with T1DM Adults with T1DM on MDI and CSII | Adhering to non-diabetic sport nutrition guidelines can be safe and beneficial for performance. | |
Riddell et al. (2017) [53] Campbell et al. (2014) [64] | Active adults with T1DM Male patients with T1DM on MDI | After exercise | High-GI choices promote recovery, whereas low-GI options help maintain carbohydrate availability and stable glucose levels. |
Riddell et al. (2017) [53] | Active adults with T1DM | Consider tailoring basal insulin rate reduction in the post-exercise hours on an individual basis. | |
Campbell et al. (2014) [64] | Male patients with T1DM on MDI | Consider a bedtime snack containing protein after intense or extended physical activity to prevent nocturnal hypoglycemia. | |
Riddell et al. (2017) [53] | Active adults with T1DM | CHO supplementation in exercise | Prioritize insulin pump adjustment over excessive carbohydrate intake for effective weight management. |
EASD-ISPAD (2020) [52] Frank et al. (2015) [54] | Adults, children and adolescents with T1DM Adults with T1DM in CSII | For low glucose levels prior to unanticipated exercise or competitive sports, consider rapid CHO supplementation. | |
Colberg et al. (2020) [55] Gray et al. (2019) [59] | Adults with T1DM Individuals with DM | For hypoglycemia prevention or treatment, consider a pre-exercise CHO dose adjustment of 15 g/h for optimal results. Opt for high-GI CHO (i.e., sugar, honey, corn syrup, non-diet juices, sports drinks, energy gels) |
Study (Year) | Population | Topic | Recommendation |
---|---|---|---|
Laffel et al. (2000) [70] | Individuals with T1DM | Sick days | Opt for frequent (every 3–4 h) and smaller meals and snacks. |
ISPAD (2014, 2018) [66,67] | Children and adolescents with DM | Recommend easily digestible foods (i.e., rice, crackers, noodles, gelatin, applesauce, bananas, bread, yogurt, Jell-O, and puddings, cooked cereals, potatoes), unless blood glucose exceeds 250 mg/dL. | |
Smith et al. (2018) [71] | Individuals with T1DM | Consider consuming sugar-free products (both solid and liquid), when glucose levels exceed 250 mg/dL. | |
Laffel et al. (2000) [70] | Individuals with T1DM | Maintain proper hydration, unless contraindicated. | |
Laffel et al. (2000) [70] ISPAD (2014) [67] | Individuals with T1DM Children and adolescents with DM | Consider salt and potassium-enriched fluids (i.e., bouillon, salted soups, broths, and sodas, electrolyte-containing drinks), in order to address gastrointestinal losses from vomiting or diarrhea. |
Study (year) | Population | Topic | Recommendation |
---|---|---|---|
ElSayed et al. (2023) [75] | Women with DM in pregnancy and lactation | Folic acid supplementation in pregnancy | Recommend at least 400 μg daily folic acid supplementation from pre-conception until at least the 12th week of gestation. |
IOM (2009) [77] | Women in reproductive age | Weight management in pregnancy | Prioritize achieving a healthy pre-conception weight, especially in cases of overweight or obesity, and maintain appropriate weight gain during pregnancy. |
Ringholm et al. (2019) [73] Roskjaer et al. (2015) [8] | Women with pre-existing DM in pregnancy and lactation on CSII Pregnant women with T1DM | CHO intake during pregnancy | Consider a moderately low-CHO diet (40% of CHO), but ensure a minimum daily intake of 175 g to support fetal development and prevent ketosis. |
Ringholm et al. (2022) [73] | Women with T1DM in pregnancy and lactation | Tailor CHO distribution with 150 g from primary sources and 25 g from vegetables or alternative sources. | |
Cyganek et al. (2013) [88], Roskjaer et al. (2015) [87] | Women with T1DM in pregnancy | Meal planning during pregnancy | Consider individualized counseling for distribution of energy and CHO across multiple meals, maintaining consistent timing of 3 primary meals and 2–4 daily snacks. |
Louie et al. (2010) [89] | Women with DM in pregnancy and lactation | Prioritize low-GI CHO (i.e., whole grains, fruits, dairy, pasta). | |
ElSayed et al. (2023) [75] | Women with DM in pregnancy and lactation | Macronutrients during pregnancy | Meet DRIs for all pregnant women, including a minimum of 71 g of protein and 28 g of dietary fiber. |
McCance et al. (2015) [74] ElSayed et al. (2023) [75] | Women with DM in pregnancy Women with DM in pregnancy and lactation | Keep fat intake below 35% of total energy, focusing on healthy fats (PUFAs and MUFAs), and incorporate n-3 fatty acids from sources like nuts, seeds, and fish. Limit saturated and trans fats as in a health-conscious non-pregnant diet. | |
Kitzmiller et al. (2008) [92] | Women with pre-existing DM in pregnancy and lactation | Energy requirements in lactation | During the initial six months of exclusive breastfeeding, aim for an additional 330 kcal/day, with a minimum daily intake of 1800 kcal. |
Ringholm et al. (2019) [73] Louie et al. (2010) [89] | Women with pre-existing DM in pregnancy and lactation on CSII Women with T1DM in pregnancy and lactation | CHO intake in lactation | Increase CHO intake to support milk production, with a minimum of 210 g CHO/d, primarily from low-GI sources. |
Ringholm et al. (2019) [73] | Women with pre-existing T1DM in pregnancy and lactation on CSII | Distribute CHO across three principal meals and 2–4 daily snacks, incorporating consistent CC. | |
NICE (2015) [93] | Women with pre-existing DM in pregnancy and lactation | Hypoglycemia prevention | Include a meal or snack with at least 10–20 g of CHO before or during breastfeeding to mitigate the risk of maternal hypoglycemia. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gitsi, E.; Livadas, S.; Angelopoulos, N.; Paparodis, R.D.; Raftopoulou, M.; Argyrakopoulou, G. A Nutritional Approach to Optimizing Pump Therapy in Type 1 Diabetes Mellitus. Nutrients 2023, 15, 4897. https://doi.org/10.3390/nu15234897
Gitsi E, Livadas S, Angelopoulos N, Paparodis RD, Raftopoulou M, Argyrakopoulou G. A Nutritional Approach to Optimizing Pump Therapy in Type 1 Diabetes Mellitus. Nutrients. 2023; 15(23):4897. https://doi.org/10.3390/nu15234897
Chicago/Turabian StyleGitsi, Evdoxia, Sarantis Livadas, Nicholas Angelopoulos, Rodis D. Paparodis, Marina Raftopoulou, and Georgia Argyrakopoulou. 2023. "A Nutritional Approach to Optimizing Pump Therapy in Type 1 Diabetes Mellitus" Nutrients 15, no. 23: 4897. https://doi.org/10.3390/nu15234897
APA StyleGitsi, E., Livadas, S., Angelopoulos, N., Paparodis, R. D., Raftopoulou, M., & Argyrakopoulou, G. (2023). A Nutritional Approach to Optimizing Pump Therapy in Type 1 Diabetes Mellitus. Nutrients, 15(23), 4897. https://doi.org/10.3390/nu15234897