Pentadecanoic Acid (C15:0), an Essential Fatty Acid, Shares Clinically Relevant Cell-Based Activities with Leading Longevity-Enhancing Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Eurofins BioMAP Assay System and Cell Exposure Studies
2.2. Determining Significant Biomarker Hits
2.3. Activity Profile Analysis for Annotated, Dose-Dependent Activities
2.4. Determining Optimal Concentrations
3. Results
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | alanine transaminase |
AMPK | 5′ adenosine monophosphate-activated protein kinase |
ApoA1 | apolipoprotein A1 |
ApoB | apolipoprotein B |
AST | aspartate aminotransferase |
bFGF | basic fibroblast growth factor |
C15 | 0:pentadecanoic acid |
CB1 | cannabinoid 1 receptor |
CB2 | cannabinoid 2 receptor |
Coll-I | collagen I |
Coll-III | collagen III |
Coll-IV | collagen IV |
COPD | chronic obstructive pulmonary disease |
EGF | epidermal growth factor |
EGFR | epidermal growth factor receptor |
Eot3 | eoxtaxin-3 |
EPA | eicosapentaenoic acid |
Esel | E-selectin |
FEV1/FVC | forced expiratory volume in 1 s/forced vital capacity |
GGT | gamma-glutamyl transferase |
HDAC-6 | histone deacetylase 6 |
HDFn | human neonatal dermal fibroblasts |
HLA-DR | major histocompatibility complex II cell surface receptor |
HUVEC | human umbilical vein endothelial cells |
IFNɣ | interferon gamma |
IL-1α | interleukin 1α |
IL-1β | interleukin 1β |
IL-4 | interleukin 4 |
IL-6 | interleukin 6 |
IL-8 | interleukin 8 |
IL-10 | interleukin 10 |
IL-17A | interleukin 17A |
IL-17F | interleukin 17F |
IP-10 | interferon-gamma inducible protein of 10 kDa |
ITAC | interferon-inducible T-cell alpha chemoattractant |
JAK-STAT | Janus kinase-signal transducers and activators of transcription |
LPS | lipopolysaccharide |
MCP-1 | monocyte chemoattractant protein-1 |
M-CSF | macrophage colony-stimulating factor |
MIG | monocyte induced by gamma interferon |
MIP-1α | macrophage inflammatory protein-1 alpha |
MMP3 | matrix metalloproteinase-9 |
MMP9 | matrix metalloproteinase-9 |
mTOR | mechanistic target of rapamycin |
NAFLD | nonalcoholic fatty liver disease |
NASH | nonalcoholic steatohepatitis |
PAI-I | plasminogen activator inhibitor-1 |
PBMC | primary blood mononuclear cells |
PDGF-BB | platelet derived growth factor subunit B |
PGE2 | prostaglandin E2 |
PPAR-α/δ | peroxisome proliferator-activated receptors alpha/delta |
RBC | red blood cell |
SRB | sulforhodamine B |
TCR | T-cell receptor |
TF | tissue factor |
TGFβ | transforming growth factor-β |
TIMP-1 | tissue inhibitor of metalloproteinase-1 |
TM | thrombomodulin |
TLR2 | toll-like receptor 2 |
TLR4 | toll-like receptor 4 |
TNFα | tumor necrosis factor alpha |
tPA | tissue plasminogen activator |
uPAR | urokinase receptor |
VCAM-1 | vascular cell adhesion molecule 1 |
VEGFR2 | vascular endothelial growth factor receptor 2 |
References
- Dornan, K.; Gunenc, A.; Oomah, D.; Hosseinian, F. Odd chain fatty acids and odd chain phenolic lipids (alkylresorcinols) are essential for diet. J. Am. Chem. Soc. 2021, 98, 813–824. [Google Scholar]
- Venn-Watson, S.; Lumpkin, R.; Dennis, E.A. Efficacy of dietary odd-chain saturated fatty acid pentadecanoic acid parallels broad associated health benefits in humans: Could it be essential? Sci. Rep. 2020, 10, 8161. [Google Scholar] [PubMed]
- Forouhi, N.G.; Koulman, A.; Sharp, S.J.; Imamura, F.; Kroger, J.; Schulze, M.B. Differences in the prospective association between individual plasma phospholipid saturated fatty acids and incident type 2 diabetes: The EPIC-InterAct case-cohort study. Lancet Diab. Endocrinol. 2014, 14, 70146–70149. [Google Scholar]
- Huang, L.; Lin, J.; Aris, I.M.; Yang, G.; Chen, W.; Li, L. Circulating saturated fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Nutrients 2019, 11, 998. [Google Scholar] [PubMed]
- Imamura, F.; Fretts, A.; Marklund, M.; Korat, A.V.A.; Yang, W.; Lankinen, M.; Qureshi, W.; Helmer, C.; Chen, T.; Wong, K.; et al. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: A pooled analysis of prospective cohort studies. PLoS Med. 2018, 15, e1002670. [Google Scholar]
- Santaren, I.D.; Watkins, S.M.; Liese, A.D.; Wagenknecht, L.E.; Rewers, M.J.; Haffner, S.M.; Lorenzo, C.; Hanley, A.J. Serum pentadecanoic acid (15:0), a short-term marker of dairy food intake, is inversely associated with incident type 2 diabetes and its underlying disorders. Am. J. Clin. Nutr. 2014, 100, 1532–1540. [Google Scholar]
- Biong, A.S.; Veierod, M.B.; Ringstad, J.; Thelle, D.S.; Pedersen, J.I. Intake of milk fat, reflected in adipose tissue fatty acids and risk of myocardial infarction: A case-control study. Eur. J. Clin. Nutr. 2006, 60, 236–244. [Google Scholar]
- Djousse, L.; Biggs, M.L.; Matthan, N.R.; Ix, J.H.; Fitzpatrick, A.L.; King, I.; Lemaitre, R.N.; McKnight, B.; Kizer, J.R.; Lichtenstein, A.H.; et al. Serum individual nonesterified fatty acids and risk of heart failure in older adults. Cardiology 2021, 146, 351–358. [Google Scholar]
- Khaw, K.T.; Friesen, M.D.; Riboli, E.; Luben, R.; Wareham, N. Plasma phospholipid fatty acid concentration and incident coronary heart disease in men and women: The EPIC-Norfolk prospective study. PLoS Med. 2012, 9, e1001255. [Google Scholar]
- Liang, J.; Zhou, Q.; Amakye, W.K.; Su, Y.; Zhang, Z. Biomarkers of dairy fat intake and risk of cardiovascular disease: A systematic review and meta analysis of prospective studies. Crit. Rev. Food Sci. Nutr. 2018, 58, 1122–1130. [Google Scholar]
- Trieu, K.; Bhat, S.; Dai, Z.; Leander, K.; Gigante, B.; Qian, F.; Korat, A.V.A.; Sun, Q.; Pan, X.; Laguzzi, F.; et al. Biomarkers of dairy fat intake, incident cardiovascular disease, and all-cause mortality: A cohort study, systematic review, and meta-analysis. PLoS Med. 2021, 18, e1003763. [Google Scholar]
- Kratz, M.; Marcovina, S.; Nelson, J.E.; Yeh, M.M.; Kowdley, K.V.; Callahan, H.S.; Song, X.; Di, C.; Utzshneider, K.M. Dairy fat intake is associated with glucose tolerance, hepatic and systemic insulin sensitivity, and liver fat but not β-cell function in humans. Am. J. Clin. Nutr. 2014, 99, 1385–1396. [Google Scholar] [PubMed]
- Sawh, M.C.; Wallace, M.; Shapiro, E.; Goyal, N.; Newton, K.P.; Yu, E.L.; Bross, C.; Durelle, J.; Knott, C.; Gagnoiti, J.A.; et al. Dairy fat intake, plasma pentadecanoic acid, and plasma iso-heptadecanoic acid are inversely associated with liver fat in children. J. Pediatr. Gastroenterol. Nutr. 2021, 72, e90–e96. [Google Scholar] [PubMed]
- Wei, W.; Wong, C.C.; Jia, Z.; Liu, W.; Liu, C.; Ji, F.; Pan, Y.; Wang, F.; Wang, G.; Zhao, L.; et al. Parabacteriodes distasonis uses dietary inulin to suppress NASH vis its metabolite pentadecanoic acid. Nat. Microbiol. 2023, 8, 1534–1548. [Google Scholar] [CrossRef] [PubMed]
- Yoo, W.; Gjuka, D.; Stevenson, H.L.; Song, X.; Shen, H.; Yoo, S.Y.; Wang, J.; Fallon, M.; Ioannou, G.N.; Harrison, S.A.; et al. Fatty acids in non-alcoholic steatohepatitis: Focus on pentadecanoic acid. PLoS ONE 2017, 12, e0189965. [Google Scholar]
- Jee, S.H.; Kim, M.; Kim, M.; Kang, M.; Seo, Y.W.; Jung, K.J.; Lee, S.J.; Hong, S.; Lee, J.H. Clinical relevance of glycerophospholipid, sphingomyelin and glutathione metabolism in the pathogenesis of pharyngolaryngeal cancer in smokers: The Korean Cancer Prevention Study—II. Metabolomics 2016, 12, 164. [Google Scholar]
- Hori, A.; Ishida, F.; Nakazawa, H.; Yamaura, M.; Morita, S.; Uehara, T.; Honda, T.; Hidaka, H. Serum sphingomyelin species profile is altered in hematologic malignancies. Clin. Chim. Acta 2021, 514, 29–33. [Google Scholar] [CrossRef]
- Kruchinina, M.; Gromov, A.; Prudnikova, Y.; Shashkov, M.; Sokolova, A.; Kruchinin, V. Erythrocyte membrane fatty acids as the potential biomarkers for detection of early-stage and progression of colorectal cancer. Ann. Oncol. 2018, 29 (Suppl. S5), v52. [Google Scholar]
- Lu, Y.; Li, D.; Wang, L.; Zhang, H.; Jiang, F.; Zhang, R.; Xu, L.; Yang, N.; Dai, S.; Xu, X.; et al. Comprehensive investigation on associations between dietary intake and blood levels of fatty acids and colorectal cancer risk. Nutrients 2023, 15, 730. [Google Scholar]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed. Sci. Technol. 2006, 131, 389–417. [Google Scholar]
- Pranger, I.G.; Joustra, M.L.; Corpelejin, E.; Juskiet, F.A.; Kema, I.P.; Elfernik, S.J.W.H.; Singh-Povel, C.; Bakker, S.J.L. Fatty acids as biomarkers of total dairy fat and dairy fat intakes: A systematic review and meta-analysis. Nutr. Rev. 2018, 77, 46–63. [Google Scholar] [CrossRef]
- Fu, W.C.; Li, H.Y.; Li, T.T.; Yang, K.; Chen, J.X.; Wang, S.J.; Liu, C.H.; Zhang, W. Pentadecanoic acid promotes basal and insulin-stimulated glucose uptake in C2C12 myotubes. Food Nutr. Res. 2021, 22, 65. [Google Scholar] [CrossRef] [PubMed]
- To, N.B.; Truong, V.N.P.; Ediriweera, M.K.; Cho, S.K. Effects of combined pentadecanoic acid and tamoxifen treatment on tamoxifen resistance in MCF-7/SC breast cancer cell. Int. J. Mol. Sci. 2022, 23, 11340. [Google Scholar] [CrossRef]
- To, N.B.; Nguyen, Y.T.; Moon, J.Y.; Ediriweera, M.K.; Cho, S.K. Pentadecanoic acid, an odd-chain fatty acid, suppresses the stemness of MCF-7/SC human breast cancer stem-like cells through JAK2/STAT3 signaling. Nutrients 2020, 12, 1663. [Google Scholar] [CrossRef] [PubMed]
- Venn-Watson, S.K.; Butterworth, C.N. Broader and safer clinically-relevant activities of pentadecanoic acid compared to omega-3: Evaluation of an emerging essential fatty acid across twelve primary human cell-based disease systems. PLoS ONE 2022, 17, e0268778. [Google Scholar] [CrossRef]
- Ediriweera, M.K.; To, B.; Lim, Y.; Cho, S.K. Odd-chain fatty acids as novel histone deacetylase 6 (HDAC6) inhibitors. Biochimie 2021, 186, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.A.; Machete, T.; Henkel, J.; Schulze, M.B.; Klaus, S.; Piepelow, K. Heptadecanoic acid is not a key mediator in the prevention of diet-induced hepatic steatosis and insulin resistance in mice. Nutrients 2023, 15, 2052. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Chen, Y.; Wang, K.; Luan, Y. Design, synthesis and antitumor activity study of a gemcitabine prodrug conjugated with a HDAC6 inhibitor. Bioorg. Med. Chem. Lett. 2022, 72, 128881. [Google Scholar] [CrossRef]
- Zheng, J.S.; Sharp, S.J.; Imamura, F.; Koulman, A.; Schulze, M.B.; Ye, Z.; Griffin, J.; Guevara, M.; Huerta, J.M.; Kroger, J.; et al. Association between plasma phospholipid saturated fatty acids and metabolic markers of lipid, hepatic, inflammation and glycaemic pathways in eight European countries: A cross-sectional analysis in the EPIC-Interact study. BMC Med. 2017, 15, 203. [Google Scholar] [CrossRef] [PubMed]
- Matthan, N.R.; Barger, K.; Wylie-Rosett, J.; Xue, X.; Groisman-Perelstein, A.E.; Diamantis, P.M.; Ginsberg, M.; Mossavar-Rahmani, Y.; Lichtenstein, A.H. Spillover effects of a family-based childhood weight-management intervention on parent nutrient biomarkers and cardiometabolic risk factors. Curr. Dev. Nutr. 2022, 6, 152. [Google Scholar] [CrossRef]
- Kurotani, K.; Sato, M.; Yasuda, K.; Kashima, K.; Tanaka, S.; Hayashi, T.; Shirouchi, B.; Akter, S.; Kashino, I.; Hayabuchi, H.; et al. Even- and odd-chain saturated fatty acids in serum phospholipids are differentially associated with adipokines. PLoS ONE 2017, 12, e0178192. [Google Scholar]
- Smedman, A.E.M.; Gustafsson, I.B.; Berglund, L.G.T.; Vessby, B.O.H. Pentadecanoic acid in serum as a marker of intake of milk fat: Relations between intake of milk fat and metabolic risk factors. Am. J. Clin. Nutr. 1999, 69, 22–29. [Google Scholar] [PubMed]
- Aglago, E.K.; Biessy, C.; Torres-Mejia, G.; Angeles-Llerenas, A.; Gunter, M.J.; Romieu, I.; Chajes, V. Association between serum phospholipid fatty acid levels and adiposity in Mexican women. J. Lipid. Res. 2017, 58, 1462–1470. [Google Scholar]
- Lankinen, M.A.; Stancakova, A.; Uusitupa, M.; Agren, J.; Pihlajamaki, J.; Kuusisto, J.; Schwab, U.; Laakso, M. Plasma fatty acids as predictors of glycaemia and type 2 diabetes. Diabetologia 2015, 58, 2533–2544. [Google Scholar]
- Skeaff, C.M.; Hodson, L.; McKenzie, J. Dietary-induced changes in fatty acid composition of human plasma, platelet and erythrocyte lipids follow a similar time course. J. Nutr. 2016, 136, 565–569. [Google Scholar]
- Hyang, S.J.; Kenshiro Teruo, M. Polyunsaturated (n-3) fatty acids susceptible to lipid peroxidation are increased in plasma and tissue lipids of rats fed docosahexaenoic acid-containing oils. J. Nutr. 2000, 130, 3028–3033. [Google Scholar]
- Soboleva, M.K.; Sharapov, V.I.; Grek, O.R. Fatty acids of the lipid fraction of erythrocyte membranes and intensity of lipid peroxidation in iron deficiency. Bull. Exp. Biol. Med. 1994, 117, 600–602. [Google Scholar]
- Venn-Watson, S.; Baird, M.; Novick, B.; Parry, C.; Jensen, E.D. Modified fish diet shifted serum metabolome and alleviated chronic anemia in bottlenose dolphins (Tursiops truncatus): Potential role of odd-chain saturated fatty acids. PLoS ONE 2020, 15, e0230769. [Google Scholar]
- Galdiero, E.; Ricciardelli, A.; D’Angelo, C.; de Alteriis, E.; Maione, A.; Albarano, L.; Casillo, A.; Corsaro, M.M.; Tutino, M.L.; Parrilli, E. Pentadecanoic acid against Candida albicans-Klebsiella pneumoniae biofilm: Towards the development of an anti-biofilm coating to prevent polymicrobial infections. Res. Microbiol. 2021, 172, 103880. [Google Scholar]
- Ricciardelli, A.; Casillo, A.; Corsaro, M.M.; Tutino, M.L.; Parrilli, E.; Van Der Mei, H.C. Pentadecanal and pentadecanoic acid coatings reduce biofilm formation of Staphylococcus epidermidis on PDMS. Pathog. Dis. 2020, 78, ftaa012. [Google Scholar]
- Gonzalez-Freire, M.; Diaz-Ruiz, A.; Hauser, D.; Martinez-Romero, J.; Ferrucci, L.; Bernier, M.; De Cabo, R. The road ahead for health and lifespan interventions. Ageing Res. Rev. 2020, 59, 101037. [Google Scholar]
- Moskalev, A.; Guvatova, Z.; Lopes, I.D.A.; Beckett, C.W.; Kennedy, B.K.; De Magalhaes, J.P.; Makarov, A.A. Targeting aging mechanisms: Pharmacological perspectives. Trends Endocrinol. Metab. 2022, 33, 266–280. [Google Scholar]
- Chaib, S.; Tchkonia, T.; Kirkland, J.L. Cellular senescence and senolytics: The path to the clinic. Nat. Med. 2022, 28, 1556–1568. [Google Scholar] [PubMed]
- DeVito, L.M.; Barzilai, N.; Cuervo, A.M.; Niedernhofer, L.J.; Milman, S.; Levine, M.; Promislow, D.; Ferrucci, L.; Kuchel, G.A.; Mannick, J.; et al. Extending human lifespan and longevity: A symposium report. Ann. N. Y. Acad. Sci. 2022, 1507, 70–83. [Google Scholar] [PubMed]
- Kritchevsky, S.B.; Justice, J.N. Testing the geroscience hypothesis: Early days. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Justice, J.N.; Niedernhofer, L.; Robbins, P.D.; Aroda, V.R.; Espeland, M.A.; Kritchevsky, S.B.; Kuchel, G.A.; Barzilai, N. Development of clinical trials to extend healthy lifespan. Cardiovasc. Endocrinol. Metab. 2018, 7, 80–83. [Google Scholar] [PubMed]
- Justice, J.; Miller, J.D.; Newman, J.C.; Hashmi, S.K.; Halter, J.; Austad, S.N.; Barzilai, N.; Kirkland, J.L. Frameworks for proof-of-concept clinical trials of interventions that target fundamental aging processes. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1415–1423. [Google Scholar]
- Schork, N.J.; Beaulieu-Jones, B.; Liang, W.; Smalley, S.; Goetz, L.H. Does modulation of an epigenetic clock define a geroprotector? Adv. Geriatr. Med. Res. 2022, 4, e220002. [Google Scholar]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar]
- Browner, W.E.; Kahn, A.J.; Ziv, E.; Reiner, A.P.; Oshima, J.; Cawthorn, R.M.; Hsueh, W.C.; Cummings, S.R. The genetics of human longevity. Am. J. Med. 2004, 117, 851–860. [Google Scholar]
- Crimmins, E.M. Lifespan and healthspan: Past, present, and promise. Gerontologist 2015, 55, 901–911. [Google Scholar]
- Longo, V.D.; Antebi, A.; Bartke, A.; Barzilai, N.; Brown-Borg, H.M.; Caruso, C.; Curiel, T.J.; de Cabo, R.; Franceschi, C.; Gems, D.; et al. Interventions to slow aging in humans: Are we ready? Aging Cell 2015, 14, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Nadon, N.L.; Strong, R.; Miller, R.A.; Harrison, D.E. NIA interventions testing program: Investigating putative aging intervention agents in a genetically heterogeneous mouse model. EBioMedicine 2017, 21, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Garay, R.P. Investigational drugs and nutrients for human longevity. Recent clinical trials registered in ClinicalTrials.gov and clinicaltrialsregister.eu. Expert. Opin. Investig. Drugs 2021, 30, 749–758. [Google Scholar] [PubMed]
- Blagosklonny, M.V. Rapamycin for longevity: Opinion article. Aging 2019, 11, 8048–8067. [Google Scholar]
- Yoo, Y.J.; Kim, H.; Park, S.R.; Yoon, Y.J. An overview of rapamycin: From discovery to future perspectives. J. Indus. Microbiol. Biotechnol. 2017, 44, 537–553. [Google Scholar]
- Sorrenti, V.; Benedetti, F.; Buriani, A.; Fortinguerra, S.; Caudullo, G.; Davinelli, S.; Zella, D.; Scapagnini, G. Immunomodulatory and antiaging mechanisms of resveratrol, rapamycin, and metformin: Focus on mTOR and AMPK signaling networks. Pharmaceuticals 2022, 15, 912. [Google Scholar] [CrossRef]
- Bridle, K.R.; Popa, C.; Morgan, M.L.; Sobbe, A.L.; Clouston, A.D.; Fletcher, L.M.; Crawford, D.H.G. Rapamycin inhibits hepatic fibrosis in rats by attenuating multiple profibrogenic pathways. Transplantation 2009, 15, 1315–1324. [Google Scholar] [CrossRef]
- Ali, E.S.; Mitra, K.; Akter, S.; Ramproshad, S.; Mondal, B.; Khan, I.N.; Islam, M.T.; Sharifi-Rad, J.; Calina, D.; Cho, W.C. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int. 2022, 22, 284. [Google Scholar]
- Eninger, D.; Neff, F.; Xie, K. Longevity, aging and rapamycin. Cell. Mol. Life Sci. 2014, 71, 4325–4346. [Google Scholar]
- Soukas, A.A.; Hao, H.; Wu, L. Metformin as anti-aging therapy: Is it for everyone? Trends Endocrinol. Metab. 2019, 30, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, T.; Pafundi, P.C.; Morgillo, F.; Di Liello, R.; Galiero, R.; Nevola, R.; Marfella, R.; Monaco, L.; Rinaldi, L.; Adinolfi, L.E.; et al. Metformin: An old drug against old age and associated morbidities. Diab. Res. Clin. Prac. 2020, 160, 108025. [Google Scholar] [CrossRef] [PubMed]
- Agius, L.; Ford, B.E.; Chachra, S.S. The metformin mechanism on gluconeogenesis and AMPK activation: The metabolite perspective. Int. J. Mol. Sci. 2020, 21, 3240. [Google Scholar] [CrossRef]
- Cheng, F.F.; Liu, Y.L.; Du, J.; Lin, J.T. Metformin’s mechanisms in attenuating hallmarks of aging and age-related disease. Aging Dis. 2022, 13, 970–986. [Google Scholar] [CrossRef] [PubMed]
- Martin-Montalvo, A.; Mercken, E.; Mitchell, S.; Palacios, H.H.; Mote, P.L.; Scheibye-Knudsen, M.; Gomex, A.P.; Ward, T.M.; Minor, R.K.; Blouin, M.J.; et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 2013, 4, 2192. [Google Scholar] [CrossRef]
- Anisimov, V.N.; Berstein, L.M.; Egormin, P.A.; Piskunova, T.S.; Popovich, I.G.; Zabezhinski, M.A.; Tyndyk, M.L.; Yurova, M.V.; Kovalenko, G.; Poroshina, T.E.; et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 2008, 7, 2769–2773. [Google Scholar] [CrossRef]
- Parish, A.J.; Swindell, W.R. Metformin has heterogenous effects on model organism lifespans and is beneficial when started at an early age in Caenorhabditis elegans: A systematic review and meta-analysis. Aging Cell 2022, 21, e13733. [Google Scholar] [CrossRef]
- Barzilai, N.; Crandall, J.P.; Kritchevsky, S.B.; Espeland, M.A. Metformin as a tool to target aging. Cell Metab. 2016, 23, 1060–1065. [Google Scholar] [CrossRef]
- Wolf, T.; Droste, J.; Gren, T.; Ortseifen, V.; Schneiker-Bekel, S.; Zemke, T.; Puhler, A.; Kalinowski, J. The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110. BMC Genom. 2017, 18, 562. [Google Scholar] [CrossRef]
- Khwaja, N.; Arunagirinathan, G. Efficacy and cardiovascular safety of alpha glucosidase inhibitors. Drug Saf. 2021, 16, 122–128. [Google Scholar]
- Wagner, H.; Degerblad, M.; Thorell, A.; Nygren, J.; Ståhle, A.; Kuhl, J.; Brisman, T.B.; Ohrvik, J.O.; Efendic, S.; Bavenholm, P.N. Combined treatment with exercise training and acarbose improves metabolic control and cardiovascular risk factor profile in subjects with mild type 2 diabetes. Diabetes Care 2006, 29, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Harrison, D.E.; Strong, R.; Allison, D.B.; Ames, B.N.; Astle, C.M.; Atamna, H.; Fernandez, E.; Flurkey, K.; Javors, M.A.; Nadon, N.L.; et al. Acarbose, 17- α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 2014, 13, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.; Miller, R.; Ericsson, A.; Harrison, D.; Strong, R.; Schmidt, T. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol. 2019, 19, 130. [Google Scholar]
- Wu, B.; Yan, J.; Yang, J.; Xia, Y.; Li, D.; Zhang, F.; Cao, H. Extension of life span by acarbose: Is it mediated by the gut microbiota? Aging Dis. 2022, 13, 1005–1014. [Google Scholar] [CrossRef]
- Berg, E.L. Phenotypic chemical biology for predicting safety and efficacy. Drug Disc. Today Technol. 2017, 23, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tsai, M.Y.; Sun, Q.; Hinkle, S.N.; Rawal, S.; Mendola, P.; Ferrara, A.; Albert, P.S.; Zhang, C. A prospective study and longitudinal study of plasma phospholipid saturated fatty acid profile in relation to cardiometabolic markers and the risk of gestational diabetes. Am. J. Clin. Nutr. 2018, 107, 1017–1026. [Google Scholar] [CrossRef]
- De Mello, V.D.; Selander, T.; Lindstom, J.; Tuomilehto, J.; Uusitupa, M.; Kaarninranta, K. Serum levels of plasmalogens and fatty acid metabolites associate with retinal microangiopathy in participants from the Finnish Diabetes Prevention Study. Nutrients 2021, 13, 4452. [Google Scholar] [CrossRef]
- Iqbal, T.; Miller, M. A fishy topic: VITAL, REDUCE-IT, STRENGTH, and beyond: Putting omega-3 fatty acids into practice in 2021. Curr. Cardiol. Rep. 2021, 23, 111. [Google Scholar]
- Okereke, O.I.; Vyas, C.M.; Mishoulon, D. Effect of long-term supplementation with marine omega-3 fatty acids vs. placebo on risk of depression or clinically relevant depressive symptoms and on change in mood scores: A randomized clinical trial. JAMA 2021, 326, 2385–2394. [Google Scholar] [CrossRef]
- Orkaby, A.R.; Dushkes, R.; Ward, R. Effect of vitamin D3 and omega-3 fatty acid supplementation on risk of frailty: An ancillary study of a randomized clinical trial. JAMA Netw. Open 2022, 5, e2231206. [Google Scholar] [CrossRef]
- Hahn, J.; Cook, N.R.; Alexander, E.K.; Friedman, S.; Walter, J.; Bubes, V.; Kotler, G.; Lee, I.; Manson, J.E.; Costenbader, K.H. Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ 2022, 376, e066452. [Google Scholar] [CrossRef] [PubMed]
- Christen, W.G.; Cook, N.R.; Manson, J.E. Efficacy of marine omega-3 fatty acid supplementation vs placebo in reducing incidence of dry eye disease in healthy US adults: A randomized clinical trial. JAMA Ophthalmol. 2022, 140, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Pfeuffer, M.; Jaudszus, A. Pentadecanoic and heptadecanoic acids: Multifaceted odd-chain fatty acids. Adv. Nutr. 2016, 7, 730–734. [Google Scholar]
- Adachi, K.; Yokoyama, D.; Tamai, H.; Sadai, M.; Oba, K. Effect of the glyceride of pentadecanoic acid on energy metabolism in hair follicles. Int. J. Cosmet. Sci. 1993, 15, 125–131. [Google Scholar]
- Millner, A.; Atilla-Gokcumen, G.E. Lipid players of cellular senescence. Metabolites 2020, 10, 399. [Google Scholar]
- Hulbert, A.J. On the importance of fatty acid composition of membranes for aging. J. Theor. Biol. 2005, 234, 277–288. [Google Scholar] [PubMed]
- Kamata, S.; Honda, A.; Ishii, I. Current clinical trial status and future prospects of PPAR-targeted drugs for treating nonalcoholic fatty liver disease. Biomolecules 2023, 13, 1264. [Google Scholar]
- Xue, C.; Yao, Q.; Gu, X.; Shi, Q.; Yan, X.; Chu, Q.; Bao, Z.; Lu, J.; Li, L. Evolving cognition of the JAK-STAT signaling pathway: Autoimmune disorders and cancer. Sig. Trans. Targ. Ther. 2023, 8, 204. [Google Scholar]
- Peng, J.; Xie, F.; Qin, P.; Liu, Y.; Niu, H.; Sun, J.; Xue, H.; Zhao, Q.; Liu, J.; Wu, J. Recent development of selective inhibitors targeting the HDAC6 as anti-cancer drugs: Structure, function and design. Bioorg. Chem. 2023, 138, 106622. [Google Scholar]
- Dugan, B.; Conway, J.; Duggal, N.A. Inflammaging as a target for healthy aging. Age Ageing 2023, 52, afac328. [Google Scholar]
- Venn-Watson, S.; Jensen, E.D.; Schork, N.J. 25-year longitudinal dolphin cohort supports that long-lived individuals in the same environment exhibit variation in aging rates. Proc. Natl. Acad. Sci. USA 2020, 117, 20950–20958. [Google Scholar] [CrossRef] [PubMed]
- Salive, M.E.; Coroni-Huntley, J.; Guralnik, J.M.; Phillips, C.L.; Wallace, R.B.; Ostfeld, A.M.; Choen, H.J. Anemia and hemoglobin levels in older persons: Relationship with age, gender, and health status. J. Am. Geriat. Soc. 1992, 40, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Kaestner, L.; Minetti, G. The potential of erythrocytes as cellular aging models. Cell Death Differ. 2017, 24, 1475–1477. [Google Scholar] [CrossRef] [PubMed]
- Groarke, E.M.; Young, N.S. Aging and hematopoiesis. Clin. Geriatr. Med. 2019, 35, 285–293. [Google Scholar] [PubMed]
- Warensjo, E.; Jansson, J.H.; Berglund, L.; Boman, K.; Ahren, B.; Weinehall, L.; Lindahl, B.; Hallmans, G.; Vessby, B. Estimated intake of milk fat is negatively associated with cardiovascular risk factors and does not increase the risk of a first myocardial infarction. A prospective case-control study. Br. J. Nutr. 2004, 91, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Budczies, J.; Denkert, C.; Muller, B.M.; Brockmoller, S.F.; Klauschen, F.; Gyorffy, B.; Dietel, M.; Richter-Ehrenstein, C.; Maren, U.; Salek, R.M.; et al. Remodeling of central metabolism in invasive breast cancer compared to normal breast tissue—A GC-TOFMS based metabolomics study. BMC Genom. 2012, 13, 334. [Google Scholar] [CrossRef] [PubMed]
- Qi SWu, Q.; Chen, Z.; Zhang, W.; Zhou, Y.; Mao, K.; Li, J.; Li, Y.; Chen, J.; Huang, Y.; Huang, Y. High-resolution metabolomic biomarkers for lung cancer diagnosis and prognosis. Sci. Rep. 2021, 11, 11805. [Google Scholar]
- Teng, M.L.P.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.H.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S32–S42. [Google Scholar] [CrossRef]
- Jiao, J.; Kwan, S.Y.; Sabotta, C.M.; Tanaka, H.; Veillon, L.; Warmoes, M.O.; Lorenzi, P.L.; Want, Y.; Wei, P.; Hawk, E.T.; et al. Circulating fatty acids associated with advanced fibrosis and hepatocellular carcinoma in south Texas hispanics. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1643–1651. [Google Scholar]
- Jimenez-Cepeda, A.; Davila-Said, G.; Orea-Tejeda, A.; Gonzalez-Islas, D.; Elizondo-Montes, M.; Perez-Cortes, G.; Keirns-Davies, C.; Castillo-Aguilar, L.F.; Verdeja-Vendrell, L.; Pelaez-Hernandez, V.; et al. Dietary intake of fatty acids and its relationship with FEV1/FVC in patients with chronic obstructive pulmonary disease. Clin. Nutr. 2019, 29, 92–96. [Google Scholar] [CrossRef]
- Roh, D.K.; Lee DWYi, J.Y.; Park, C.J.; Cho, B.K.; Kim, C.W.; Kim, T.Y. A clinical study of pentadecanoic glyceride (LHOP) on male pattern alopecia. J. Korean Soc. Clin. Pharmacol. Ther. 1998, 6, 199–206. [Google Scholar] [CrossRef]
- Fonteh, A.N.; Cipolio, M.; Chiang, J.; Arakaki, X.; Harrington, M.G. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS ONE 2014, 9, e100519. [Google Scholar]
- Vezina, C.; Kudelski, A.; Sehgal, S.N. Rapamycin (AY-22, 989), a new antifungal antibiotic. J. Antibiot. 1975, 28, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Venn-Watson, S.; Reiner, J.; Jensen, E.D. Pentadecanoylcarnitine is a newly discovered endocannabinoid with pleiotropic activities relevant to supporting physical and mental health. Sci. Rep. 2022, 12, 13717. [Google Scholar] [CrossRef] [PubMed]
- Brydges, C.R.; Bhattacharyya, S.; Dehkordi, S.M.; Milaneschi, Y.; Penninx, B.; Jansen, R.; Kristal, B.S.; Han, X.; Arnold, M.; Kastenmuller, G.; et al. Metabolomic and inflammatory signatures of symptom dimensions in major depression. Brain Behav. Immun. 2022, 102, 42–52. [Google Scholar] [CrossRef]
- Ye, X.; Linton, J.M.; Schork, N.J.; Buck, L.B.; Petrascheck, M. A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell 2013, 13, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, P.; Cheng, L.; Wang, J.; Zhang, Y. Saturated fatty acid intake is associated with total mortality in a nationwide cohort study. J. Nutr. 2019, 149, 68–77. [Google Scholar] [CrossRef]
- Manca, C.; Carta, G.; Murru, E.; Abolghasemi, A.; Ansar, H.; Errigo, A.; Cani, P.D.; Banni, S.; Pes, G.M. Circulating fatty acids and endocannabinoide-related mediator profiles associated with human longevity. GeroScience 2021, 43, 1783–1798. [Google Scholar] [CrossRef]
- Gibson, K.R.; Pulliam, C.B. Cooperative care. The time has come. J. Nurs. Adm. 1987, 17, 19–21. [Google Scholar] [CrossRef]
- Zheng, J.S.; Imamura, F.; Sharp, S.J.; Koulman, A.; Griffin, J.L.; Mulligan, A.A.; Luben, R.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. Changes in plasma phospholipid fatty acid profiles over 13 years and correlates of change: European Prospective Investigation into Cancer and Nutrition-Norfolk Study. Am. J. Clin. Nutr. 2019, 109, 1527–1534. [Google Scholar] [CrossRef]
- Tsoukalas, D.; Alegakis, A.K.; Fragkiadaki, P.; Papakonstantinou, E.; Tsilimidos, G.; Geraci, F.; Sarandi, E.; Nikitovic, D.; Spandidos, D.A.; Tsatsakis, A. Application of metabolomics part II: Focus on fatty acids and their metabolites in healthy adults. Int. J. Mod. Med. 2019, 43, 233–242. [Google Scholar] [CrossRef] [PubMed]
BioMAP Phenotypic Cell Profiles | Dose-Dependent Activities on Clinically Relevant Biomarkers | ||||
---|---|---|---|---|---|
C15:0 (FA15) | Rapamycin | Metformin | Acarbose | Omega-3 (EPA) [25] | |
Dose ranges | 1.9–50 µM | 0.3–9 µM | 190–5000 µM | 1.1–30 µM | 1.9–17 µM |
Dietary supplement (DS) or prescription drug (Rx) ingredient | DS | Rx | Rx | Rx | DS |
Total number (%) of systems with dose-dependent activities | 10 (83%) | 12 (100%) | 7 (58%) | 3 (25%) | 4 (33%) |
Total number of biomarkers with dose-dependent changes | 36 | 32 | 17 | 5 | 7 |
BioMAP Phenotypic Cell Profiles | Dose-Dependent Annotated Activities by Compounds on Clinically Relevant Biomarkers | ||||||
---|---|---|---|---|---|---|---|
BioMAP Cell System | Human Cell Types and Stimulation | Disease Relevance | C15:0 (FA15TM) (1.9–50 µM) | Rapamycin (0.3–9 µM) | Metformin (190–5000 µM) | Acarbose (1.1–30 µM) | Omega-3 (EPA) [25] (1.9–17 µM) |
3C | Venular endothelial cells stimulated with TNFα, IL-1β, IFNγ | Cardiovascular disease, chronic inflammation | ↓ HLA-DR ↓ MCP-1 ↓ proliferation | ↓ HLA-DR ↓ VCAM-1 ↓ uPAR ↓ proliferation | ↓ HLA-DR ↓ IL-8 | None | ↓ MCP-1 ↓ uPAR |
4H | Venular endothelial cells stimulated with IL-4, histamine | Autoimmunity, allergy, asthma | ↓ Eot3 | ↓ MCP-1 | None | None | None |
LPS | Venular endothelial cells and peripheral blood mononuclear cells stimulated with TLR4 ligand | Chronic inflammation, cardiovascular disease | ↓ VEGFR2 ↓ MCP-1 ↓ CD69 ↓ IL-1α | ↓ CD40 | ↓ CD40 | None | None |
SAg | Venular endothelial cells and peripheral blood mononuclear cells stimulated with TCR ligands | Chronic inflammation, autoimmune disease | ↓ CD38 ↓ CD40 ↓ CD69 ↓ T cell proliferation | ↓ CD38 ↓ CD40 ↓ MCP-1 ↓ T cell proliferation | ↓ CD38 ↓ CD69 ↓ T cell proliferation | None | None |
BT | Peripheral blood mononuclear cells and B cells stimulated with αIgM, TCR ligands | Asthma, cancer, autoimmunity, allergy | ↓ IgG ↓ IL-17F | ↓ IgG ↓ IL-17F ↓ TNFα ↓ IL-6 ↓ IL-2 ↓ IL-17A ↓ proliferation | None | None | None |
BF4T | Bronchial epithelial cells and dermal fibroblasts stimulated with IL-4, TNFα | Fibrosis, lung inflammation, asthma, allergy | None | ↓ VCAM-1 ↓ tPA | ↓ MCP-1 ↓ tPA | None | ↓ PAI-I |
BE3C | Bronchial epithelial cells stimulated with IL-1β, IFNγ, TNFα | COPD, lung inflammation | ↓ tPA | ↓ tPA | ↓ IP-10 ↓ IL-8 ↓ HLA-DR ↓ MMP9 | None | None |
CASM3C | Coronary artery smooth muscle cells stimulated with IL-1β, TNFα, IFNγ | Cardiovascular inflammation, restenosis | ↓ HLA-DR ↓ IL-6 ↓ VCAM-1 ↓ TM ↓ TF ↓ proliferation | ↓ HLA-DR ↓ uPAR ↓ proliferation | None | ↓ uPAR | None |
HDF3CGF | Dermal fibroblasts stimulated with IFNγ, TNFα, IL-1β, EGT, bFGF, PDGF-BB | Fibrosis, chronic inflammation | ↓ PAI-1 ↓ VCAM-1 ↓ IP-10 ↓ ITAC ↓ MIG ↓ fibroblast proliferation | ↓ PAI-I ↓ EGFR ↓ fibroblast proliferation | ↓ Col-III | ↓ EGFR ↓ fibroblast proliferation | ↓ PAI-I ↓ M-CSF |
KF3CT | Keratinocytes, dermal fibroblasts stimulated with IL-1β, IFNγ, TGFβ, TNFα | Dermatitis, psoriasis | None | ↓ PAI-I | None | None | None |
MyoF | Lung fibroblasts stimulated with TGFβ, TNFα | Wound healing, matrix remodeling, fibrosis, chronic inflammation | ↓ VCAM-1 ↓ Col-I ↓ IL-8 ↓ Decorin ↓ TIMP-1 | ↓ VCAM-1 ↓ PAI-I | None | ↓ Col-IV ↓TIMP1 | ↓ Col-I ↓ Col-III |
/Mphg | Macrophages and venular endothelial cells stimulated with TLR2 ligand | Chronic inflammation, restenosis, cardiovascular disease | ↓ CD40 ↓ CD69 | ↓ sIL-10 | ↓ MCP-1 ↓ Esel ↓ IL-8 | None | None |
Compound | Number of Biomarker Hits by Increasing Dose | ||||
---|---|---|---|---|---|
D1 Lowest Dose | D2 Lower Dose | D3 Higher Dose | D4 Highest Dose | Optimal Dose (μM) | |
C15:0 (FA15) | 28 | 56 | 81 | 40 | 17 |
Rapamycin | 55 | 62 | 61 | 75 | 9 |
Metformin | 9 | 5 | 28 | 53 | 5000 |
Acarbose | 15 | 17 | 24 | 28 | 30 |
BioMAP Cell System | Disease Relevance | Significant Activities on Clinically Relevant Biomarkers at Each Compound’s Optimal Dose | ||
---|---|---|---|---|
C15:0 (FA15) | Rapamycin | Metformin | ||
Optimal Dose | 17 µM | 9 µM | 5000 µM | |
3C | Cardiovascular disease, chronic inflammation | ↓ MCP-1, ↓ HLA-DR, ↓ SRB ↓ endothelial cell proliferation, ↑ thrombomodulin, ↓ IL-8 | ↓ MCP-1, ↓ HLA-DR, ↓ SRB ↓ endothelial cell proliferation, ↓ VCAM-1, ↓ uPAR | ↓ HLA-DR, ↓ uPAR, ↓ IL-8 |
4H | Autoimmunity, allergy, asthma | ↓ eotaxin-3, ↓ VEGFR | ↓ MCP-1, ↓ SRB | ↓ P-selectin |
LPS | Chronic inflammation, cardiovascular disease | ↓ MCP-1, ↓ VCAM-1, ↑ tissue factor, ↓ CD40, ↓ SRB ↓ CD69, ↑ thrombomodulin, ↓ IL-1α | ↓ MCP-1, ↓ VCAM-1, ↑ tissue factor, ↓ CD40, ↓ SRB ↓ M-CSF, ↑ PGE2, | ↓ MCP-1, ↓ CD40, ↓ CD69, ↑ IL-1α, ↑ PGE2, ↑ TNFα |
SAg | Chronic inflammation, autoimmune disease | ↓ CD38, ↓ CD40, ↓ CD69, ↓ T cell proliferation, ↓ SRB | ↓ CD38, ↓ CD40, ↓ T cell proliferation, ↓ SRB, ↓ MCP-1 | ↓ CD38, ↓ CD40, ↓ T cell proliferation, ↓ CD69, ↓ IL-8 |
BT | Asthma, cancer, autoimmunity, allergy | ↓ sIgG, ↓ sIL-17A, ↓ sIL-17F, ↓ TNFα | ↓ sIgG, ↓ sIL-17A, ↓ sIL-17F, ↓ TNFα, ↓ B cell proliferation, ↓ sIL-2, ↓ sIL-6 | ↓ sIgG, ↓ TNFα, ↓ sIL-6 |
BF4T | Fibrosis, lung inflammation, asthma, allergy | None | ↓ tPA, ↓ VCAM-1 | ↓ tPA, ↓ MCP-1, ↓ eotaxin-3, ↓ IL-8, ↓ MMP-3, ↓ MMP-9 |
BE3C | COPD, lung inflammation | ↓ PAI-I, ↓ tPA | ↓ PAI-I, ↑ MMP-1 | ↓ tPA, ↓ IL-8, ↓ HLA-DR, ↓ MMP-9 |
CASM3C | Cardiovascular inflammation, restenosis | ↓ HLA-DR, ↓ VCAM-1, ↓ thrombomodulin, ↓ tissue factor | ↓ HLA-DR, ↓ uPAR, ↓ coronary artery proliferation | None |
HDF3CGF | Fibrosis, chronic inflammation | ↓ PAI-I, ↓ fibroblast proliferation, ↓ MCP-1, ↓ VCAM-1, ↓ IP-10, ↓ I-TAC, ↓ MIG | ↓ PAI-I, ↓ fibroblast proliferation, ↓ EGFR | ↓ VCAM-1, ↓ collagen-III |
KF3CT | Dermatitis, psoriasis | ↓ PAI-I | ↓ PAI-I | None |
MyoF | Wound healing, matrix remodeling, fibrosis, chronic inflammation | ↓ VCAM-1, ↓ collagen-I, ↓ collagen-III, ↑ collagen-IV, ↓ decorin, ↓ TIMP-1 | ↓ VCAM-1, ↑ IL-8 | None |
/Mphg | Chronic inflammation, restenosis, cardiovascular disease | ↓ sIL-10, ↓ CD40, ↑ MIP-1α, ↑ E-selectin, ↓ CD69 | ↓ sIL-10, ↓ E-selectin | ↓ E-selectin, ↓ MCP-1, ↓ IL-8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venn-Watson, S.; Schork, N.J. Pentadecanoic Acid (C15:0), an Essential Fatty Acid, Shares Clinically Relevant Cell-Based Activities with Leading Longevity-Enhancing Compounds. Nutrients 2023, 15, 4607. https://doi.org/10.3390/nu15214607
Venn-Watson S, Schork NJ. Pentadecanoic Acid (C15:0), an Essential Fatty Acid, Shares Clinically Relevant Cell-Based Activities with Leading Longevity-Enhancing Compounds. Nutrients. 2023; 15(21):4607. https://doi.org/10.3390/nu15214607
Chicago/Turabian StyleVenn-Watson, Stephanie, and Nicholas J. Schork. 2023. "Pentadecanoic Acid (C15:0), an Essential Fatty Acid, Shares Clinically Relevant Cell-Based Activities with Leading Longevity-Enhancing Compounds" Nutrients 15, no. 21: 4607. https://doi.org/10.3390/nu15214607
APA StyleVenn-Watson, S., & Schork, N. J. (2023). Pentadecanoic Acid (C15:0), an Essential Fatty Acid, Shares Clinically Relevant Cell-Based Activities with Leading Longevity-Enhancing Compounds. Nutrients, 15(21), 4607. https://doi.org/10.3390/nu15214607