The Effect of Hokkaido Red Wines on Vascular Outcomes in Healthy Adult Men: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment
2.2. Study Design and Procedures
2.3. Chemical Composition and Polyphenolic Profiles
2.4. Assessment of Vascular Function
2.5. Platelet Aggregometry
2.6. Twenty-Four-Hour Dietary Recall
2.7. Statistical Analyses
3. Results
3.1. Chemical Composition and Polyphenolic Profiles
3.2. Demographics and Baseline Characteristics
3.3. Arterial Stiffness
3.4. Reactive Hyperemia Index
3.5. Blood Pressure
3.6. Platelet Aggregation
3.7. Dietary Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schutte, R.; Papageorgiou, M.; Najlah, M.; Huisman, H.W.; Ricci, C.; Zhang, J.; Milner, N.; Schutte, A.E. Drink types unmask the health risks associated with alcohol intake—Prospective evidence from the general population. Clin. Nutr. 2020, 39, 3168–3174. [Google Scholar] [CrossRef]
- Lombardo, M.; Feraco, A.; Camajani, E.; Caprio, M.; Armani, A. Health Effects of Red Wine Consumption: A Narrative Review of an Issue That Still Deserves Debate. Nutrients 2023, 15, 1921. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, S.; Alexander, B.; Baranchuk, A. Wine and Cardiovascular Health. Circulation 2017, 136, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Buljeta, I.; Pichler, A.; Šimunović, J.; Kopjar, M. Beneficial Effects of Red Wine Polyphenols on Human Health: Comprehensive Review. Curr. Issues Mol. Biol. 2023, 45, 782–798. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Qi, Q.; Chu, M.; Yu, X.; Xie, Y.; Li, Y.; Du, Y.; Liu, X.; Zhang, Z.; Shi, J.; Yan, N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. Food Rev. Int. 2022, 39, 4581–4609. [Google Scholar] [CrossRef]
- Festa, J.; Hussain, A.; Al-Hareth, Z.; Singh, H.; Da Boit, M. Anthocyanins and Vascular Health: A Matter of Metabolites. Foods 2023, 12, 1796. [Google Scholar] [CrossRef]
- Jennings, A.; Welch, A.A.; Fairweather-Tait, S.J.; Kay, C.; Minihane, A.-M.; Chowienczyk, P.; Jiang, B.; Cecelja, M.; Spector, T.; Macgregor, A.; et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am. J. Clin. Nutr. 2012, 96, 781–788. [Google Scholar] [CrossRef]
- Geana, E.I.; Popescu, R.; Costinel, D.; Dinca, O.R.; Ionete, R.E.; Stefanescu, I.; Artem, V.; Bala, C. Classification of red wines using suitable markers coupled with multivariate statistic analysis. Food Chem. 2016, 192, 1015–1024. [Google Scholar] [CrossRef]
- Villangó, S.; Pálfi, Z.; Pálfi, X.; Szekeres, A.; Bencsik, O.; Zsófi, Z. The effect of harvest time and vintage year on the phenolic composition of Nero and Bianca wines. Acta Aliment. 2022, 51, 290–301. [Google Scholar] [CrossRef]
- Minnaar, P.; Van Der Rijst, M.; Hunter, K. Grapevine row orientation, vintage and grape ripeness effect on anthocyanins, flavan-3-ols, flavonols and phenolic acids: I Vitis vinifera L. cv. Syrah grapes. OENO One 2021, 56, 275–293. [Google Scholar] [CrossRef]
- Champ, C.E.; Kundu-Champ, A. Maximizing Polyphenol Content to Uncork the Relationship Between Wine and Cancer. Front. Nutr. 2019, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Zajdel, K.; Jęcek, M.; Nowak, P.; Zajdel, R. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. Nutrients 2023, 15, 3016. [Google Scholar] [CrossRef]
- Maante-Kuljus, M.; Rätsep, R.; Moor, U.; Mainla, L.; Põldma, P.; Koort, A.; Karp, K. Effect of Vintage and Viticultural Practices on the Phenolic Content of Hybrid Winegrapes in Very Cool Climate. Agriculture 2020, 10, 169. [Google Scholar] [CrossRef]
- Vigentini, I.; De Lorenzis, G.; Fabrizio, V.; Valdetara, F.; Faccincani, M.; Panont, C.A.; Picozzi, C.; Imazio, S.; Failla, O.; Foschino, R. The vintage effect overcomes the terroir effect: A three year survey on the wine yeast biodiversity in Franciacorta and Oltrepò Pavese, two northern Italian vine-growing areas. Microbiology 2015, 161, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Black, J.A.; Di Profio, F.; Le Dauphin, V.; Moreno, L.H.; Reynolds, A.G. Impact of crop level and harvest date on anthocyanins and phenolics of red wines from Ontario. Can. J. Plant Sci. 2016, 96, 1045–1059. [Google Scholar] [CrossRef]
- Marigliano, L.E.; Yu, R.; Torres, N.; Medina-Plaza, C.; Oberholster, A.; Kurtural, S.K. Overhead photoselective shade films mitigate effects of climate change by arresting flavonoid and aroma composition degradation in wine. Front. Plant Sci. 2023, 14, 1085939. [Google Scholar] [CrossRef]
- Ofoedu, C.E.; Ofoedu, E.O.; Chacha, J.S.; Owuamanam, C.I.; Efekalam, I.S.; Awuchi, C.G. Comparative Evaluation of Physicochemical, Antioxidant, and Sensory Properties of Red Wine as Markers of Its Quality and Authenticity. Int. J. Food Sci. 2022, 2022, 8368992. [Google Scholar] [CrossRef]
- Qin, L.; Xie, H.; Xiang, N.; Wang, M.; Han, S.; Pan, M.; Guo, X.; Zhang, W. Dynamic Changes in Anthocyanin Accumulation and Cellular Antioxidant Activities in Two Varieties of Grape Berries during Fruit Maturation under Different Climates. Molecules 2022, 27, 384. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z.-W. Comparison on Phenolic Compounds and Antioxidant Properties of Cabernet Sauvignon and Merlot Wines from Four Wine Grape-Growing Regions in China. Molecules 2012, 17, 8804–8821. [Google Scholar] [CrossRef]
- Räthel, T.R.; Samtleben, R.; Vollmar, A.M.; Dirsch, V.M. Activation of endothelial nitric oxide synthase by red wine polyphenols: Impact of grape cultivars, growing area and the vinification process. J. Hypertens. 2007, 25, 541–549. [Google Scholar] [CrossRef]
- Nemoto, M.; Hirota, T.; Sato, T. Prediction of climatic suitability for wine grape production under the climatic change in Hokkaido. J. Agric. Meteorol. 2016, 72, 167–172. [Google Scholar] [CrossRef]
- Dermastia, M.; Škrlj, B.; Strah, R.; Anžič, B.; Tomaž, Š.; Križnik, M.; Schönhuber, C.; Riedle-Bauer, M.; Ramšak, Ž.; Petek, M.; et al. Differential Response of Grapevine to Infection with ‘Candidatus Phytoplasma solani’ in Early and Late Growing Season through Complex Regulation of mRNA and Small RNA Transcriptomes. Int. J. Mol. Sci. 2021, 22, 3531. [Google Scholar] [CrossRef]
- USDA. Alcoholic Beverage, Wine, Table, Red. USDA. 1 April 2019. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/173190/nutrients (accessed on 22 June 2023).
- Mateos, R.; Espartero, J.L.; Trujillo, M.; Ríos, J.J.; León-Camacho, M.; Alcudia, F.; Cert, A. Determination of Phenols, Flavones, and Lignans in Virgin Olive Oils by Solid-Phase Extraction and High-Performance Liquid Chromatography with Diode Array Ultraviolet Detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [CrossRef]
- Piñeiro, Z.; Cantos-Villar, E.; Palma, M.; Puertas, B. Direct Liquid Chromatography Method for the Simultaneous Quantification of Hydroxytyrosol and Tyrosol in Red Wines. J. Agric. Food Chem. 2011, 59, 11683–11689. [Google Scholar] [CrossRef]
- Itamar Ltd. Endo PAT(TM)2000 Device User Manual. 2002:100. Updated December 2019. Available online: https://www.itamar-medical.com/wp-content/uploads/2019/07/OM1695214.pdf (accessed on 19 June 2023).
- Rosenberry, R.; Nelson, M.D. Reactive hyperemia: A review of methods, mechanisms, and considerations. Am. J. Physiol. Integr. Comp. Physiol. 2020, 318, R605–R618. [Google Scholar] [CrossRef] [PubMed]
- Rochetaing, A.; Kreher, P. Reactive hyperemia during early reperfusion as a determinant of improved functional recovery in ischemic preconditioned rat hearts. J. Thorac. Cardiovasc. Surg. 2003, 125, 1516–1525. [Google Scholar] [CrossRef] [PubMed]
- McCrea, C.E.; Skulas-Ray, A.C.; Chow, M.; West, S.G. Test–retest reliability of pulse amplitude tonometry measures of vascular endothelial function: Implications for clinical trial design. Vasc. Med. 2012, 17, 29–36. [Google Scholar] [CrossRef]
- Cheng, X.; He, Y.; Fan, H.; Liu, T.; Pan, W.; Wang, K.; Jin, J. Endothelial function as predictor in patients with coronary syndrome treated by percutaneous coronary intervention. Biosci. Rep. 2018, 38, BSR20180732. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-L.; Lim, W.-H.; Seo, J.-B.; Chung, W.-Y. Prognostic value of reactive hyperemia index using peripheral artery tonometry in patients with heart failure. Sci. Rep. 2023, 13, 125. [Google Scholar] [CrossRef]
- Koo, B.K.; Chung, W.-Y.; Moon, M.K. Peripheral arterial endothelial dysfunction predicts future cardiovascular events in diabetic patients with albuminuria: A prospective cohort study. Cardiovasc. Diabetol. 2020, 19, 82. [Google Scholar] [CrossRef] [PubMed]
- Djurica, D.; Holt, R.R.; Ren, J.; Shindel, A.W.; Hackman, R.M.; Keen, C.L. Effects of a dietary strawberry powder on parameters of vascular health in adolescent males. Br. J. Nutr. 2016, 116, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.R.; Yim, S.J.; Shearer, G.C.; Hackman, R.M.; Djurica, D.; Newman, J.W.; Shindel, A.W.; Keen, C.L. Effects of short-term walnut consumption on human microvascular function and its relationship to plasma epoxide content. J. Nutr. Biochem. 2015, 26, 1458–1466. [Google Scholar] [CrossRef] [PubMed]
- Hamburg, N.M.; Keyes, M.J.; Larson, M.G.; Vasan, R.S.; Schnabel, R.; Pryde, M.M.; Mitchell, G.F.; Sheffy, J.; Vita, J.A.; Benjamin, E.J.; et al. Cross-Sectional Relations of Digital Vascular Function to Cardiovascular Risk Factors in the Framingham Heart Study. Circulation 2008, 117, 2467–2474. [Google Scholar] [CrossRef]
- Meessen, E.C.; Warmbrunn, M.V.; Nieuwdorp, M.; Soeters, M.R. Human Postprandial Nutrient Metabolism and Low-Grade Inflammation: A Narrative Review. Nutrients 2019, 11, 3000. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, E.; Oikonomou, C.; Nychas, G.; Dimitriadis, G.D. Effects of Diet, Lifestyle, Chrononutrition and Alternative Dietary Interventions on Postprandial Glycemia and Insulin Resistance. Nutrients 2022, 14, 823. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.B.; Moughan, P.J.; Wood, L.G.; Singh, H.; Garg, M.L. Postprandial lipemia: Factoring in lipemic response for ranking foods for their healthiness. Lipids Health Dis. 2017, 16, 178. [Google Scholar] [CrossRef]
- Del Giorno, R.; Maddalena, A.; Bassetti, S.; Gabutti, L. Association between Alcohol Intake and Arterial Stiffness in Healthy Adults: A Systematic Review. Nutrients 2022, 14, 1207. [Google Scholar] [CrossRef]
- Sakurai, M.; Yamakado, T.; Kurachi, H.; Kato, T.; Kuroda, K.; Ishisu, R.; Okamoto, S.; Isaka, N.; Nakano, T.; Ito, M. The relationship between aortic augmentation index and pulse wave velocity: An invasive study. J. Hypertens. 2007, 25, 391–397. [Google Scholar] [CrossRef]
- Dimina, L.; Mariotti, F. The Postprandial Appearance of Features of Cardiometabolic Risk: Acute Induction and Prevention by Nutrients and Other Dietary Substances. Nutrients 2019, 11, 1963. [Google Scholar] [CrossRef]
- Nehme, J.; Altulea, A.; Gheorghe, T.; Demaria, M. The effects of macronutrients metabolism on cellular and organismal aging. Biomed. J. 2023, 46, 100585. [Google Scholar] [CrossRef] [PubMed]
- Lithander, F.E.; Herlihy, L.K.; Walsh, D.M.; Burke, E.; Crowley, V.; Mahmud, A. Postprandial effect of dietary fat quantity and quality on arterial stiffness and wave reflection: A randomised controlled trial. Nutr. J. 2013, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, K.D.; Robertson, I.K.; Ball, M.J. Acute effects of food on postprandial blood pressure and measures of arterial stiffness in healthy humans. Am. J. Clin. Nutr. 2009, 90, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Radeka, S.; Rossi, S.; Bestulić, E.; Budić-Leto, I.; Ganić, K.K.; Horvat, I.; Lukić, I.; Orbanić, F.; Jurjević, T.Z.; Dvornik, Š. Bioactive Compounds and Antioxidant Activity of Red and White Wines Produced from Autochthonous Croatian Varieties: Effect of Moderate Consumption on Human Health. Foods 2022, 11, 1804. [Google Scholar] [CrossRef] [PubMed]
- Karatzi, K.; Papamichael, C.; Karatzis, E.; Papaioannou, T.G.; Voidonikola, P.T.; Vamvakou, G.D.; Lekakis, J.; Zampelas, A. Postprandial improvement of endothelial function by red wine and olive oil antioxidants: A synergistic effect of components of the Mediterranean diet. J. Am. Coll. Nutr. 2008, 27, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Papamichael, C.; Karatzi, K.; Karatzis, E.; Papaioannou, T.G.; Katsichti, P.; Zampelas, A.; Lekakis, J. Combined acute effects of red wine consumption and cigarette smoking on haemodynamics of young smokers. J. Hypertens. 2006, 24, 1287–1292. [Google Scholar] [CrossRef]
- Mateos, R.; Goya, L.; Bravo, L. Metabolism of the Olive Oil Phenols Hydroxytyrosol, Tyrosol, and Hydroxytyrosyl Acetate by Human Hepatoma HepG2 Cells. J. Agric. Food Chem. 2005, 53, 9897–9905. [Google Scholar] [CrossRef]
- Nikou, T.; Sakavitsi, M.E.; Kalampokis, E.; Halabalaki, M. Metabolism and Bioavailability of Olive Bioactive Constituents Based on In Vitro, In Vivo and Human Studies. Nutrients 2022, 14, 3773. [Google Scholar] [CrossRef]
- López-Villodres, J.A.; Abdel-Karim, M.; De La Cruz, J.P.; Rodríguez-Pérez, M.D.; Reyes, J.J.; Guzmán-Moscoso, R.; Rodriguez-Gutierrez, G.; Fernández-Bolaños, J.; González-Correa, J.A. Effects of hydroxytyrosol on cardiovascular biomarkers in experimental diabetes mellitus. J. Nutr. Biochem. 2016, 37, 94–100. [Google Scholar] [CrossRef]
- Storniolo, C.E.; Roselló-Catafau, J.; Pintó, X.; Mitjavila, M.T.; Moreno, J.J. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1. Redox Biol. 2014, 2, 971–977. [Google Scholar] [CrossRef]
- Rodríguez-Morató, J.; Boronat, A.; Kotronoulas, A.; Pujadas, M.; Pastor, A.; Olesti, E.; Pérez-Mañá, C.; Khymenets, O.; Fitó, M.; Farré, M.; et al. Metabolic disposition and biological significance of simple phenols of dietary origin: Hydroxytyrosol and tyrosol. Drug Metab. Rev. 2016, 48, 218–236. [Google Scholar] [CrossRef] [PubMed]
- Schröder, H.; de la Torre, R.; Estruch, R.; Corella, D.; Martínez-González, M.A.; Salas-Salvadó, J.; Ros, E.; Arós, F.; Flores, G.; Civit, E.; et al. Alcohol consumption is associated with high concentrations of urinary hydroxytyrosol. Am. J. Clin. Nutr. 2009, 90, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Urpí-Sardà, M.; Lamuela-Raventós, R.M.; Estruch, R.; Vázquez-Agell, M.; Serrano-Martínez, M.; Jaeger, W.; Andres-Lacueva, C. Diagnostic Performance of Urinary Resveratrol Metabolites as a Biomarker of Moderate Wine Consumption. Clin. Chem. 2006, 52, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Urpí-Sardà, M.; Lamuela-Raventós, R.M.; Estruch, R.; Martínez-González, M.; Bulló, M.; Arós, F.; Cherubini, A.; Andres-Lacueva, C. Resveratrol metabolites in urine as a biomarker of wine intake in free-living subjects: The PREDIMED Study. Free. Radic. Biol. Med. 2009, 46, 1562–1566. [Google Scholar] [CrossRef]
- De la Torre, R.; Covas, M.I.; Pujadas, M.A.; Fitó, M.; Farré, M. Is dopamine behind the health benefits of red wine? Eur. J. Nutr. 2006, 45, 307–310. [Google Scholar] [CrossRef]
- Pérez-Mañá, C.; Farré, M.; Rodríguez-Morató, J.; Papaseit, E.; Pujadas, M.; Fitó, M.; Robledo, P.; Covas, M.-I.; Cheynier, V.; Meudec, E.; et al. Moderate consumption of wine, through both its phenolic compounds and alcohol content, promotes hydroxytyrosol endogenous generation in humans. A randomized controlled trial. Mol. Nutr. Food Res. 2015, 59, 1213–1216. [Google Scholar] [CrossRef]
- De la Torre, R.; Corella, D.; Castañer, O.; Martínez-González, M.A.; Salas-Salvado, J.; Vila, J.; Estruch, R.; Sorli, J.V.; Arós, F.; Fiol, M. Protective effect of homovanillyl alcohol on cardiovascular disease and total mortality: Virgin olive oil, wine, and catechol-methylathion. Am. J. Clin. Nutr. 2018, 105, 1297, Corrigendum in Am. J. Clin. Nutr. 2018, 108, 903–906. [Google Scholar] [CrossRef]
- Bender, C.; Strassmann, S.; Golz, C. Oral Bioavailability and Metabolism of Hydroxytyrosol from Food Supplements. Nutrients 2023, 15, 325. [Google Scholar] [CrossRef]
- Bub, A.; Watzl, B.; Heeb, D.; Rechkemmer, G.; Briviba, K. Malvidin-3-glucoside bioavailability in humans after ingestion of red wine, dealcoholized red wine and red grape juice. Eur. J. Nutr. 2001, 40, 113–120. [Google Scholar] [CrossRef]
- Nuñez-Sánchez, M.A.; García-Villalba, R.; Monedero-Saiz, T.; García-Talavera, N.V.; Gómez-Sánchez, M.B.; Sánchez-Álvarez, C.; García-Albert, A.M.; Rodríguez-Gil, F.J.; Ruiz-Marín, M.; Pastor-Quirante, F.A.; et al. Targeted metabolic profiling of pomegranate polyphenols and urolithins in plasma, urine and colon tissues from colorectal cancer patients. Mol. Nutr. Food Res. 2014, 58, 1199–1211. [Google Scholar] [CrossRef]
- Araki, R.; Yada, A.; Ueda, H.; Tominaga, K.; Isoda, H. Differences in the Effects of Anthocyanin Supplementation on Glucose and Lipid Metabolism According to the Structure of the Main Anthocyanin: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 2003. [Google Scholar] [CrossRef]
- Cassidy, A.; O’Reilly, É.J.; Kay, C.; Sampson, L.; Franz, M.; Forman, J.P.; Curhan, G.; Rimm, E.B. Habitual intake of flavonoid subclasses and incident hypertension in adults. Am. J. Clin. Nutr. 2011, 93, 338–347. [Google Scholar] [CrossRef]
- Perea, R.; Jacquet, R.; Jourdes, M.; Quideau, S.; Teissedre, P.-L. Ellagitannins and Flavano-Ellagitannins: Red Wines Tendency in Different Areas, Barrel Origin and Ageing Time in Barrel and Bottle. Biomolecules 2019, 9, 316. [Google Scholar] [CrossRef]
- Aru, V.; Sørensen, K.M.; Khakimov, B.; Toldam-Andersen, T.B.; Engelsen, S.B. Cool-Climate Red Wines—Chemical Composition and Comparison of Two Protocols for 1H–NMR Analysis. Molecules 2018, 23, 160. [Google Scholar] [CrossRef] [PubMed]
- Fabjanowicz, M.; Simeonov, V.; Frankowski, M.; Wojnowski, W.; Płotka-Wasylka, J. Multivariate Statistical Analysis for Mutual Dependence Assessment of Selected Polyphenols, Organic Acids and Metals in Cool-Climate Wines. Molecules 2022, 27, 6566. [Google Scholar] [CrossRef] [PubMed]
- Boban, M.; Modun, D.; Music, I.; Vukovic, J.; Brizic, I.; Salamunic, I.; Obad, A.; Palada, I.; Dujic, Z. Red Wine Induced Modulation of Vascular Function: Separating the Role of Polyphenols, Ethanol, and Urates. J. Cardiovasc. Pharmacol. 2006, 47, 695–701. [Google Scholar] [CrossRef]
- Bulut, D.; Jelich, U.; Dacanay-Schwarz, R.; Mügge, A. Red Wine Ingestion Prevents Microparticle Formation After a Single High-Fat Meal—A Crossover Study in Healthy Humans. J. Cardiovasc. Pharmacol. 2013, 61, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Djoussé, L.; Ellison, R.; McLennan, C.E.; Cupples, L.; Lipinska, I.; Tofler, G.H.; Gokce, N.; Vita, J.A. Acute effects of a high-fat meal with and without red wine on endothelial function in healthy subjects. Am. J. Cardiol. 1999, 84, 660–664. [Google Scholar] [CrossRef]
- Thomazella, M.C.D.; Góes, M.F.; Andrade, C.R.; Debbas, V.; Barbeiro, D.F.; Correia, R.L.; Marie, S.K.; Cardounel, A.J.; Daluz, P.L.; Laurindo, F.R. Effects of High Adherence to Mediterranean or Low-Fat Diets in Medicated Secondary Prevention Patients. Am. J. Cardiol. 2011, 108, 1523–1529. [Google Scholar] [CrossRef]
- Napoli, R.; Cozzolino, D.; Guardasole, V.; Angelini, V.; Zarra, E.; Matarazzo, M.; Cittadini, A.; Saccà, L.; Torella, R. Red wine consumption improves insulin resistance but not endothelial function in type 2 diabetic patients. Metabolism 2005, 54, 306–313. [Google Scholar] [CrossRef]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Stockley, C.S.; Woodman, R.J. Effects of red wine on established markers of arterial structure and function in human studies: Current knowledge and future research directions. Expert Rev. Clin. Pharmacol. 2013, 6, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Mazidi, M.; Valdes, A.M.; Ordovas, J.M.; Hall, W.L.; Pujol, J.C.; Wolf, J.; Hadjigeorgiou, G.; Segata, N.; Sattar, N.; Koivula, R.; et al. Meal-induced inflammation: Postprandial insights from the Personalised REsponses to DIetary Composition Trial (PREDICT) study in 1000 participants. Am. J. Clin. Nutr. 2021, 114, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.E.; Valdes, A.M.; Drew, D.A.; Asnicar, F.; Mazidi, M.; Wolf, J.; Capdevila, J.; Hadjigeorgiou, G.; Davies, R.; Al Khatib, H.; et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 2020, 26, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Soldevila-Domenech, N.; Boronat, A.; Mateus, J.; Diaz-Pellicer, P.; Matilla, I.; Pérez-Otero, M.; Aldea-Perona, A.; de la Torre, R. Generation of the Antioxidant Hydroxytyrosol from Tyrosol Present in Beer and Red Wine in a Randomized Clinical Trial. Nutrients 2019, 11, 2241. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W. Anthocyanins and Their C6-C3-C6 Metabolites in Humans and Animals. Molecules 2019, 24, 4024. [Google Scholar] [CrossRef]
- Mazza, G.; Kay, C.D.; Cottrell, T.; Holub, B.J. Absorption of Anthocyanins from Blueberries and Serum Antioxidant Status in Human Subjects. J. Agric. Food Chem. 2002, 50, 7731–7737. [Google Scholar] [CrossRef]
- Mueller, D.; Jung, K.; Winter, M.; Rogoll, D.; Melcher, R.; Richling, E. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries. Food Chem. 2017, 231, 275–286. [Google Scholar] [CrossRef]
- Banc, R.; Rusu, M.E.; Filip, L.; Popa, D.-S. The Impact of Ellagitannins and Their Metabolites through Gut Microbiome on the Gut Health and Brain Wellness within the Gut–Brain Axis. Foods 2023, 12, 270. [Google Scholar] [CrossRef]
- Vitolins, M.Z.; Case, T.L. What Makes Nutrition Research So Difficult to Conduct and Interpret? Diabetes Spectr. 2020, 33, 113–117. [Google Scholar] [CrossRef]
Item | Zweigelt 2015 | Zweigelt 2018 |
---|---|---|
Vineyard | Tsurunuma | Kitajima |
Specific gravity | 0.994 | 0.993 |
Alcohol (%) | 12.34 | 12.54 |
Total acidity (g/L as tartaric acid) | 5.23 | 5.73 |
pH | 3.67 | 3.56 |
Total sulfur dioxide (SO2) (ppm) | 98 | 149 |
Sugar (g/L) | 5.6 | 3.5 |
Polyphenols (mg/240 mL) | Zweigelt 2015 | Zweigelt 2018 | White Grape Juice | ||
---|---|---|---|---|---|
2019 Analysis | 2022 Analysis | 2019 Analysis | 2022 Analysis | 2022 Analysis | |
Gallic acid | 9.12 | 8.64 | 4.80 | 5.52 | 0.17 |
Catechin | 3.84 | 5.52 | 3.12 | 4.08 | <0.05 |
Epicatechin | 5.76 | 7.20 | 4.08 | 5.04 | n.d. |
Tannin | 75.6 | 81.60 | 86.40 | 96.48 | 0.77 |
Caftaric acid | 3.84 | 3.36 | 9.12 | 7.92 | 0.77 |
Caffeic acid | 3.36 | 4.08 | 1.68 | 2.40 | <0.05 |
Quercetin glycosides | 2.64 | 2.64 | 2.64 | 1.68 | <0.05 |
Quercetin | 0.24 | 0.48 | 0.48 | 0.72 | n.d. |
Malvidin glucoside | 4.80 | 0.72 | 31.92 | 2.64 | n.d. |
Polymeric anthocyanins | 5.76 | 6.48 | 6.96 | 8.40 | n.d. |
Total anthocyanins | 21.60 | 11.04 | 70.56 | 16.80 | n.d. |
Monomeric anthocyanins | 15.84 | 4.56 | 63.60 | 8.40 | n.d. |
Resveratrol (cis + trans) (HPLC) | 0.31 | 0.48 | 0.48 | 0.60 | n.d. |
Total polyphenol content (mg GAE) | 455.28 | 674.00 | NA | 582.88 | 104.07 |
Wine Sample | Hydroxytyrosol (mg/L) | Tyrosol (mg/L) | |
---|---|---|---|
2015 Zweigelt | Sample 1 | 8.81 | 84.57 |
Sample 2 | 8.97 | 85.14 | |
Average (Mean ± SD) | 8.89 ± 0.11 | 85.86 ± 0.40 | |
2018 Zweigelt | Sample 1 | 15.24 | 49.42 |
Sample 2 | 15.31 | 49.63 | |
Average (Mean ± SD) | 15.28 ± 0.05 | 49.53 ± 0.15 |
Demographics | Mean (SD), Range (min–max) |
Age (years) | 58.6 (6.10), (51–69) |
Weight (kg) | 87.5 (13.85), (71–114) |
Height (cm) | 178.32 (6.84), (167–189.5) |
BMI (kg/m2) | 27.46 (4.02), (22.7–34.0) |
Waist circumference (cm) | 100.45 (14.02), (86–129) |
Selected CMP and CBC parameters | Mean (SD), reference range |
Glucose (mg/dL) | 98.60 (10.81), (74–109) |
Platelet count (K/MM3) | 234.05 (87.60), (130–400) |
Vascular function parameters | Mean ± SEM |
RHI | 2.25 ± 0.10 |
fRHI | 0.78 ± 0.11 |
AI (% pulse pressure) | 17.62 ± 6.46 |
AI75 (% pulse pressure) | 7.70 ± 5.99 |
SBP (mmHg) | 124.47 ± 2.70 |
DBP (mmHg) | 82.20 ± 1.23 |
HR (bpm) | 63.5 ± 2.68 |
Outcomes (Change from Baseline) | Intervention Group | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Zweigelt 2015 | Zweigelt 2018 | White Grape Juice | Time | Treatment | ||||
T2-T0 | T4-T0 | T2-T0 | T4-T0 | T2-T0 | T4-T0 | |||
Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | Mean ± SEM | |||
AI | −16.32 ± 1.64 | −9.64 ± 3.61 | −18.27 ± 3.58 † | −8.40 ± 3.85 | −7.97 ± 2.67 | −2.79 ± 5.30 | 0.001 | 0.002 |
AI75 | −13.20 ± 1.37 | −8.64 ± 3.29 | −15.27 ± 3.82 | −7.28 ± 3.74 | −7.35 ± 2.65 | −3.47 ± 5.46 | 0.01 | 0.04 |
SBP | 0.13 ± 3.37 | 6.77 ± 3.08 | −5.13 ± 3.67 † | −3.13 ± 3.21 | 3.37 ± 2.33 | 2.33 ± 1.35 | 0.28 | 0.02 |
DBP | −3.63 ± 2.84 | 1.70 ± 1.83 | −8.10 ± 1.60 | −3.13 ± 1.75 | −0.13 ± 1.12 | −2.33 ± 1.39 | 0.07 | 0.02 |
HR | 6.33 ± 2.06 | 1.50 ± 2.41 | 10.17 ± 1.67 | 3.57 ± 1.08 | 4.40 ± 1.64 | 1.57 ± 1.31 | 0.001 | 0.051 |
RHI | −0.04 ± 0.13 | 0.74 ± 0.24 ‡ | 0.09 ± 0.10 | 0.33 ± 0.21 | 0.07 ± 0.13 | 0.35 ± 0.14 | 0.003 | 0.62 |
fRHI | −0.08 ± 0.07 | 0.27 ± 0.10 | −0.03 ± 0.06 | 0.14 ± 0.15 | 0.00 ± 0.07 | 0.18 ± 0.08 | 0.003 | 0.88 |
MaxA 1 µg collagen * | −0.45 ± 0.25 | −0.10 ± 0.30 | 0.59 ± 0.33 | −0.30 ± 0.34 | 0.35 ± 0.28 | −0.10 ± 0.29 | 0.24 | 0.37 |
MaxA 3 µg collagen | −0.05 ± 0.13 | −0.21 ± 0.08 | 0.23 ± 0.10 | −0.10 ± 0.08 | 0.13 ± 0.11 | −0.02 ± 0.14 | 0.02 | 0.17 |
MaxA 10 µM ADP * | 0.08 ± 0.35 | −0.04 ± 0.29 | −0.11 ± 0.26 | −0.53 ± 0.28 | 0.48 ± 0.34 | −0.22 ± 0.22 | 0.12 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charoenwoodhipong, P.; Holt, R.R.; Keen, C.L.; Hedayati, N.; Sato, T.; Sone, T.; Hackman, R.M. The Effect of Hokkaido Red Wines on Vascular Outcomes in Healthy Adult Men: A Pilot Study. Nutrients 2023, 15, 4054. https://doi.org/10.3390/nu15184054
Charoenwoodhipong P, Holt RR, Keen CL, Hedayati N, Sato T, Sone T, Hackman RM. The Effect of Hokkaido Red Wines on Vascular Outcomes in Healthy Adult Men: A Pilot Study. Nutrients. 2023; 15(18):4054. https://doi.org/10.3390/nu15184054
Chicago/Turabian StyleCharoenwoodhipong, Prae, Roberta R. Holt, Carl L. Keen, Nasim Hedayati, Tomoyuki Sato, Teruo Sone, and Robert M. Hackman. 2023. "The Effect of Hokkaido Red Wines on Vascular Outcomes in Healthy Adult Men: A Pilot Study" Nutrients 15, no. 18: 4054. https://doi.org/10.3390/nu15184054
APA StyleCharoenwoodhipong, P., Holt, R. R., Keen, C. L., Hedayati, N., Sato, T., Sone, T., & Hackman, R. M. (2023). The Effect of Hokkaido Red Wines on Vascular Outcomes in Healthy Adult Men: A Pilot Study. Nutrients, 15(18), 4054. https://doi.org/10.3390/nu15184054