Association between Dietary Patterns and Cognitive Function among Qatari Adults: A Cross-Sectional Analysis of the Qatar Biobank Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Outcome Variable: Mean Reaction Time
2.3. Exposure Variable: Dietary Patterns
2.4. Covariates
2.5. Statistical Analyses
2.6. Ethical Considerations
3. Results
3.1. Sample Characteristics
3.2. Dietary Patterns and Mean Reaction Time
3.3. Mediation and Subgroup Analyses
3.3.1. Mediation Effects
3.3.2. Effect Modifications
3.4. Individual Food Intake and Mean Reaction Time
3.5. Dietary Patterns and Chronic Conditions
4. Discussion
4.1. Dietary Patterns and Cognition
4.1.1. Traditional Dietary Pattern
4.1.2. Modern Dietary Pattern
4.1.3. Convenient Dietary Pattern
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 15 January 2023).
- World Health Organization. Global Status Report on the Public Health Response to Dementia. Available online: https://www.who.int/publications/i/item/9789240033245 (accessed on 15 January 2023).
- Patterson, C.; Feightner, J.; Garcia, A.; MacKnight, C. General Risk Factors for Dementia: A Systematic Evidence Review. Alzheimers Dement. 2007, 3, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Walker, K.A.; Power, M.C.; Gottesman, R.F. Defining the Relationship between Hypertension, Cognitive Decline, and Dementia: A Review. Curr. Hypertens. Rep. 2017, 19, 24. [Google Scholar] [CrossRef]
- Xue, M.; Xu, W.; Ou, Y.-N.; Cao, X.-P.; Tan, M.-S.; Tan, L.; Yu, J.-T. Diabetes Mellitus and Risks of Cognitive Impairment and Dementia: A Systematic Review and Meta-Analysis of 144 Prospective Studies. Ageing Res. Rev. 2019, 55, 100944. [Google Scholar] [CrossRef] [PubMed]
- Al Thani, A.; Fthenou, E.; Paparrodopoulos, S.; Al Marri, A.; Shi, Z.; Qafoud, F.; Afifi, N. Qatar Biobank Cohort Study: Study Design and First Results. Am. J. Epidemiol. 2019, 188, 1420–1433. [Google Scholar] [CrossRef]
- Chowdhary, N.; Barbui, C.; Anstey, K.J.; Kivipelto, M.; Barbera, M.; Peters, R.; Zheng, L.; Kulmala, J.; Stephen, R.; Ferri, C.P.; et al. Reducing the Risk of Cognitive Decline and Dementia: WHO Recommendations. Front. Neurol. 2021, 12, 765584. [Google Scholar] [CrossRef]
- Van den Brink, A.C.; Brouwer-Brolsma, E.M.; Berendsen, A.A.M.; van de Rest, O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer’s Disease: A Review. Adv. Nutr. 2019, 10, 1040–1065. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND Diet Associated with Reduced Incidence of Alzheimer’s Disease. Alzheimers Dement. 2015, 11, 1007–1014. [Google Scholar] [CrossRef]
- Schulz, C.-A.; Oluwagbemigun, K.; Nöthlings, U. Advances in Dietary Pattern Analysis in Nutritional Epidemiology. Eur. J. Nutr. 2021, 60, 4115–4130. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Gao, Q.; Zhao, H.; Chen, S.; Huang, L.; Wang, W.; Wang, T. A Review of Statistical Methods for Dietary Pattern Analysis. Nutr. J. 2021, 20, 37. [Google Scholar] [CrossRef]
- Cheung, B.H.K.; Ho, I.C.H.; Chan, R.S.M.; Sea, M.M.M.; Woo, J. Current Evidence on Dietary Pattern and Cognitive Function. Adv. Food Nutr. Res. 2014, 71, 137–163. [Google Scholar] [CrossRef] [PubMed]
- Akbaraly, T.N.; Singh-Manoux, A.; Marmot, M.G.; Brunner, E.J. Education Attenuates the Association between Dietary Patterns and Cognition. Dement. Geriatr. Cogn. Disord. 2009, 27, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Kesse-Guyot, E.; Andreeva, V.A.; Jeandel, C.; Ferry, M.; Hercberg, S.; Galan, P. A Healthy Dietary Pattern at Midlife Is Associated with Subsequent Cognitive Performance. J. Nutr. 2012, 142, 909–915. [Google Scholar] [CrossRef]
- Torres, S.J.; Lautenschlager, N.T.; Wattanapenpaiboon, N.; Greenop, K.R.; Beer, C.; Flicker, L.; Alfonso, H.; Nowson, C.A. Dietary Patterns Are Associated with Cognition among Older People with Mild Cognitive Impairment. Nutrients 2012, 4, 1542–1551. [Google Scholar] [CrossRef]
- Anderson, A.L.; Harris, T.B.; Tylavsky, F.A.; Perry, S.E.; Houston, D.K.; Hue, T.F.; Strotmeyer, E.S.; Sahyoun, N.R. Health ABC Study Dietary Patterns and Survival of Older Adults. J. Am. Diet. Assoc. 2011, 111, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Nieves, J.W.; Stern, Y.; Luchsinger, J.A.; Scarmeas, N. Food Combination and Alzheimer Disease Risk: A Protective Diet. Arch. Neurol. 2010, 67, 699–706. [Google Scholar] [CrossRef]
- Allès, B.; Samieri, C.; Féart, C.; Jutand, M.-A.; Laurin, D.; Barberger-Gateau, P. Dietary Patterns: A Novel Approach to Examine the Link between Nutrition and Cognitive Function in Older Individuals. Nutr. Res. Rev. 2012, 25, 207–222. [Google Scholar] [CrossRef]
- Ozawa, M.; Ninomiya, T.; Ohara, T.; Doi, Y.; Uchida, K.; Shirota, T.; Yonemoto, K.; Kitazono, T.; Kiyohara, Y. Dietary Patterns and Risk of Dementia in an Elderly Japanese Population: The Hisayama Study. Am. J. Clin. Nutr. 2013, 97, 1076–1082. [Google Scholar] [CrossRef]
- Chan, R.; Chan, D.; Woo, J. A Cross Sectional Study to Examine the Association between Dietary Patterns and Cognitive Impairment in Older Chinese People in Hong Kong. J. Nutr. Health Aging 2013, 17, 757–765. [Google Scholar] [CrossRef]
- Hashemi, R.; Vahabi, Z.; Rasekhi, H.; Shiraseb, F.; Amini, M. Dietary Patterns and the Risk of Alzheimer’s Disease in an Elderly Iranian Population: A Case-Control Study. J. Health Popul. Nutr. 2023, 42, 56. [Google Scholar] [CrossRef]
- Shi, Z.; El-Obeid, T.; Meftah, Z.; Alawi, A.; Said, S.; Ganji, V. Fast Food and Sweet Intake Pattern Is Directly Associated with the Prevalence of Asthma in a Qatari Population. Eur. J. Clin. Nutr. 2022, 76, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Alaradi, M.; Ouagueni, A.; Khatib, R.; Attieh, G.; Bawadi, H.; Shi, Z. Dietary Patterns and Glycaemic Control among Qatari Adults with Type 2 Diabetes. Public Health Nutr. 2021, 24, 4506–4513. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Abou-Samra, A.B. Association of Low Serum Magnesium with Diabetes and Hypertension: Findings from Qatar Biobank Study. Diabetes Res. Clin. Pract. 2019, 158, 107903. [Google Scholar] [CrossRef]
- Nafea, H.; Abdelmegid, O.; Qaddourah, S.; Abdulwahab, Z.; Moawad, J.; Shi, Z. Higher Habitual Nuts Consumption Is Associated with Better Cognitive Function among Qatari Adults. Nutrients 2021, 13, 3580. [Google Scholar] [CrossRef]
- Elrahmani, A.; Youssef, F.; Elsayed, H.; Mohamed, N.; El-Obeid, T.; Shi, Z. Rice Intake Is Associated with Longer Reaction Time and Interacts with Blood Lipids and Hypertension among Qatari Adults. Life 2023, 13, 251. [Google Scholar] [CrossRef] [PubMed]
- Heggy, A.; Masoumi, A.; Al-Yafei, M.; Al-Bader, F.; Al-Abdi, T.; Shi, Z. Habitual Tea and Coffee Consumption and Mean Reaction Time among Qatari Adults. J. Alzheimers Dis. 2021, 84, 767–776. [Google Scholar] [CrossRef]
- Al-Ghazali, K.; Eltayeb, S.; Musleh, A.; Al-Abdi, T.; Ganji, V.; Shi, Z. Serum Magnesium and Cognitive Function among Qatari Adults. Front. Aging Neurosci. 2020, 12, 101. [Google Scholar] [CrossRef]
- Al Kuwari, H.; Al Thani, A.; Al Marri, A.; Al Kaabi, A.; Abderrahim, H.; Afifi, N.; Qafoud, F.; Chan, Q.; Tzoulaki, I.; Downey, P.; et al. The Qatar Biobank: Background and Methods. BMC Public Health 2015, 15, 1208. [Google Scholar] [CrossRef]
- Qatar Biobank Qatar Biobank Annual Report: 2020–2021. Available online: https://www.qatarbiobank.org.qa/index.php/downloads/annual-reports (accessed on 15 January 2023).
- Digital Cognitive Assessments. Available online: https://cambridgecognition.com/digital-cognitive-assessments/ (accessed on 9 August 2023).
- Khaled, Y.; Abdelhamid, A.A.; Al-Mazroey, H.; Almannai, A.K.; Fetais, S.; Al-Srami, A.S.; Ahmed, S.; Al-Hajri, N.; Mustafa, A.; Chivese, T.; et al. Higher Serum Uric Acid Is Associated with Poorer Cognitive Performance in Healthy Middle-Aged People: A Cross-Sectional Study. Intern. Emerg. Med. 2023, 18, 1701–1709. [Google Scholar] [CrossRef]
- Bawadi, H.; Akasheh, R.T.; Kerkadi, A.; Haydar, S.; Tayyem, R.; Shi, Z. Validity and Reproducibility of a Food Frequency Questionnaire to Assess Macro and Micro-Nutrient Intake among a Convenience Cohort of Healthy Adult Qataris. Nutrients 2021, 13, 2002. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 2014, 37 (Suppl. S1), S81–S90. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Dominiczak, A. The New International Society of Hypertension Guidelines on Hypertension. J. Hypertens. 2020, 38, 981. [Google Scholar] [CrossRef] [PubMed]
- Newby, P.K.; Tucker, K.L. Empirically Derived Eating Patterns Using Factor or Cluster Analysis: A Review. Nutr. Rev. 2004, 62, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Esmaillzadeh, A.; Azadbakht, L. Major Dietary Patterns in Relation to General Obesity and Central Adiposity among Iranian Women. J. Nutr. 2008, 138, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Esmaillzadeh, A.; Azadbakht, L. Food Intake Patterns May Explain the High Prevalence of Cardiovascular Risk Factors among Iranian Women. J. Nutr. 2008, 138, 1469–1475. [Google Scholar] [CrossRef] [PubMed]
- Roohafza, H.; Feizi, A.; Tirani, S.A.; Sadeghi, M.; Sarrafzadegan, N. Dietary Patterns in Relation to Major Cardiovascular Diseases Risk Factors: Hypertension and Hyperlipidemia Results from the ESCOME Study. Nutr. Food Sci. 2020, 50, 921–935. [Google Scholar] [CrossRef]
- Tayyem, R.; Al-Qawasmeh, R.; Khawaja, N. Dietary Patterns and Nutrients Associated with Metabolic Syndrome: Preliminary Findings from Jordanian Case-Control Study. Nutr. Food Sci. 2020, 50, 253–268. [Google Scholar] [CrossRef]
- Dave, J.M.; An, L.C.; Jeffery, R.W.; Ahluwalia, J.S. Relationship of Attitudes toward Fast Food and Frequency of Fast-Food Intake in Adults. Obesity 2009, 17, 1164–1170. [Google Scholar] [CrossRef]
- Kim, E.; Je, Y. Fish Consumption and the Risk of Dementia: Systematic Review and Meta-Analysis of Prospective Studies. Psychiatry Res. 2022, 317, 114889. [Google Scholar] [CrossRef]
- Jiang, X.; Huang, J.; Song, D.; Deng, R.; Wei, J.; Zhang, Z. Increased Consumption of Fruit and Vegetables Is Related to a Reduced Risk of Cognitive Impairment and Dementia: Meta-Analysis. Front. Aging Neurosci. 2017, 9, 18. [Google Scholar] [CrossRef]
- Zhu, J.; Xiang, Y.-B.; Cai, H.; Li, H.; Gao, Y.-T.; Zheng, W.; Shu, X.-O. A Prospective Investigation of Dietary Intake and Functional Impairments Among the Elderly. Am. J. Epidemiol. 2018, 187, 2372–2386. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yue, L.; Li, G.; Xiao, S. Higher Weekly White Rice Consumption Is Associated with an Increased Risk of Incident MCI: A Two-Year Follow-up Study of Elderly People in Shanghai Community. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Huang, Q.; Jia, X.; Zhang, J.; Huang, F.; Wang, H.; Zhang, B.; Wang, L.; Jiang, H.; Wang, Z. Diet-Cognition Associations Differ in Mild Cognitive Impairment Subtypes. Nutrients 2021, 13, 1341. [Google Scholar] [CrossRef] [PubMed]
- Uenobe, M.; Saika, T.; Waku, N.; Ohno, M.; Inagawa, H. Effect of Continuous Dewaxed Brown Rice Ingestion on the Cognitive Function of Elderly Individuals. J. Nutr. Sci. Vitaminol. 2019, 65, S122–S124. [Google Scholar] [CrossRef]
- Al-Thani, M.; Al-Thani, A.-A.; Al-Mahdi, N.; Al-Kareem, H.; Barakat, D.; Al-Chetachi, W.; Tawfik, A.; Akram, H. An Overview of Food Patterns and Diet Quality in Qatar: Findings from the National Household Income Expenditure Survey. Cureus 2017, 9, e1249. [Google Scholar] [CrossRef]
- Prokopidis, K.; Giannos, P.; Ispoglou, T.; Witard, O.C.; Isanejad, M. Dietary Fiber Intake Is Associated with Cognitive Function in Older Adults: Data from the National Health and Nutrition Examination Survey. Am. J. Med. 2022, 135, e257–e262. [Google Scholar] [CrossRef]
- Tao, M.-H.; Liu, J.; Cervantes, D. Association between Magnesium Intake and Cognition in US Older Adults: National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Alzheimers Dement. 2022, 8, e12250. [Google Scholar] [CrossRef]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White Rice Consumption and Risk of Type 2 Diabetes: Meta-Analysis and Systematic Review. BMJ 2012, 344, e1454. [Google Scholar] [CrossRef]
- Ren, G.; Qi, J.; Zou, Y. Association between Intake of White Rice and Incident Type 2 Diabetes-An Updated Meta-Analysis. Diabetes Res. Clin. Pract. 2021, 172, 108651. [Google Scholar] [CrossRef]
- Aune, D.; Norat, T.; Romundstad, P.; Vatten, L.J. Whole Grain and Refined Grain Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-Analysis of Cohort Studies. Eur. J. Epidemiol. 2013, 28, 845–858. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Brand-Miller, J.C.; Foster-Powell, K.; Buyken, A.E.; Goletzke, J. International Tables of Glycemic Index and Glycemic Load Values 2021: A Systematic Review. Am. J. Clin. Nutr. 2021, 114, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Philippou, E.; Constantinou, M. The Influence of Glycemic Index on Cognitive Functioning: A Systematic Review of the Evidence. Adv. Nutr. 2014, 5, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Philippou, E.; Pot, G.K.; Heraclides, A.; Richards, M.; Bendayan, R. Dietary Glycaemic Index and Cognitive Function: Prospective Associations in Adults of the 1946 British Birth Cohort. Public Health Nutr. 2019, 22, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.-Y.; Li, M.; Han, L.; Tayie, F.; Yao, S.-S.; Huang, Z.; Ai, P.; Liu, Y.-Z.; Hu, Y.-H.; Xu, B. Dietary Fat Intake and Cognitive Function among Older Populations: A Systematic Review and Meta-Analysis. J. Prev. Alzheimers Dis. 2019, 6, 204–211. [Google Scholar] [CrossRef]
- Elias, P.K.; Elias, M.F.; D’Agostino, R.B.; Sullivan, L.M.; Wolf, P.A. Serum Cholesterol and Cognitive Performance in the Framingham Heart Study. Psychosom. Med. 2005, 67, 24–30. [Google Scholar] [CrossRef]
- Whitmer, R.A.; Sidney, S.; Selby, J.; Johnston, S.C.; Yaffe, K. Midlife Cardiovascular Risk Factors and Risk of Dementia in Late Life. Neurology 2005, 64, 277–281. [Google Scholar] [CrossRef]
- Rudajev, V.; Novotny, J. Cholesterol as a Key Player in Amyloid β-Mediated Toxicity in Alzheimer’s Disease. Front. Mol. Neurosci. 2022, 15, 937056. [Google Scholar] [CrossRef]
- van Vliet, P. Cholesterol and Late-Life Cognitive Decline. J. Alzheimers Dis. 2012, 30 (Suppl. S2), S147–S162. [Google Scholar] [CrossRef]
- Al-Jawaldeh, A.; Taktouk, M.; Chatila, A.; Naalbandian, S.; Al-Thani, A.-A.M.; Alkhalaf, M.M.; Almamary, S.; Barham, R.; Baqadir, N.M.; Binsunaid, F.F.; et al. Salt Reduction Initiatives in the Eastern Mediterranean Region and Evaluation of Progress towards the 2025 Global Target: A Systematic Review. Nutrients 2021, 13, 2676. [Google Scholar] [CrossRef]
- Karppanen, H.; Mervaala, E. Sodium Intake and Hypertension. Prog. Cardiovasc. Dis. 2006, 49, 59–75. [Google Scholar] [CrossRef]
- Canavan, M.; O’Donnell, M.J. Hypertension and Cognitive Impairment: A Review of Mechanisms and Key Concepts. Front. Neurol. 2022, 13, 821135. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xing, S.; Wei, F.; Yao, Y.; Zhang, H.; Li, Y.-C.; Liu, Z. Excessive Dietary Salt Intake Exacerbates Cognitive Impairment Progression and Increases Dementia Risk in Older Adults. J. Am. Med. Dir. Assoc. 2023, 24, 125–129.e4. [Google Scholar] [CrossRef] [PubMed]
- López-Taboada, I.; González-Pardo, H.; Conejo, N.M. Western Diet: Implications for Brain Function and Behavior. Front. Psychol. 2020, 11, 564413. [Google Scholar] [CrossRef] [PubMed]
- Beigrezaei, S.; Ghiasvand, R.; Feizi, A.; Iraj, B. Relationship between Dietary Patterns and Incidence of Type 2 Diabetes. Int. J. Prev. Med. 2019, 10, 122. [Google Scholar] [CrossRef]
- Lin, Y.; Gong, Z.; Ma, C.; Wang, Z.; Wang, K. Relationship between Glycemic Control and Cognitive Impairment: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2023, 15, 1126183. [Google Scholar] [CrossRef]
- Hess, J.M.; Jonnalagadda, S.S.; Slavin, J.L. Dairy Foods: Current Evidence of Their Effects on Bone, Cardiometabolic, Cognitive, and Digestive Health. Compr. Rev. Food Sci. Food Saf. 2016, 15, 251–268. [Google Scholar] [CrossRef]
- Spitsberg, V.L. Invited Review: Bovine Milk Fat Globule Membrane as a Potential Nutraceutical. J. Dairy Sci. 2005, 88, 2289–2294. [Google Scholar] [CrossRef]
- Lee, J.; Fu, Z.; Chung, M.; Jang, D.-J.; Lee, H.-J. Role of Milk and Dairy Intake in Cognitive Function in Older Adults: A Systematic Review and Meta-Analysis. Nutr. J. 2018, 17, 82. [Google Scholar] [CrossRef]
- Arab, L.; Khan, F.; Lam, H. Epidemiologic Evidence of a Relationship between Tea, Coffee, or Caffeine Consumption and Cognitive Decline. Adv. Nutr. 2013, 4, 115–122. [Google Scholar] [CrossRef]
- Feng, L.; Langsetmo, L.; Yaffe, K.; Sun, Y.; Fink, H.A.; Shikany, J.M.; Leung, P.C.; Lane, N.E.; Cauley, J.A. Osteoporotic Fractures in Men (MrOS) Study Group No Effects of Black Tea on Cognitive Decline Among Older US Men: A Prospective Cohort Study. J. Alzheimers Dis. 2018, 65, 99–105. [Google Scholar] [CrossRef]
- Park, J.; Han, J.W.; Lee, J.R.; Byun, S.; Suh, S.W.; Kim, J.H.; Kim, K.W. Association between Lifetime Coffee Consumption and Late Life Cerebral White Matter Hyperintensities in Cognitively Normal Elderly Individuals. Sci. Rep. 2020, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Christ, B.U.; Combrinck, M.I.; Thomas, K.G.F. Both Reaction Time and Accuracy Measures of Intraindividual Variability Predict Cognitive Performance in Alzheimer’s Disease. Front. Hum. Neurosci. 2018, 12, 124. [Google Scholar] [CrossRef]
- Noethlings, U.; Hoffmann, K.; Bergmann, M.M.; Boeing, H. Portion Size Adds Limited Information on Variance in Food Intake of Participants in the EPIC-Potsdam Study. J. Nutr. 2003, 133, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Jakes, R.W.; Day, N.E.; Luben, R.; Welch, A.; Bingham, S.; Mitchell, J.; Hennings, S.; Rennie, K.; Wareham, N.J. Adjusting for Energy Intake--What Measure to Use in Nutritional Epidemiological Studies? Int. J. Epidemiol. 2004, 33, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
- Naska, A.; Lagiou, A.; Lagiou, P. Dietary Assessment Methods in Epidemiological Research: Current State of the Art and Future Prospects. F1000Research 2017, 6, 926. [Google Scholar] [CrossRef]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, Validation and Utilisation of Food-Frequency Questionnaires-a Review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef]
Total | Modern Dietary Pattern | Convenient Dietary Pattern | Traditional Dietary Pattern | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q4 | p-Value | Q1 | Q4 | p-Value | Q1 | Q4 | p-Value | ||
n = 1000 | n = 250 | n = 250 | n = 250 | n = 250 | n = 250 | n = 250 | ||||
Mean reaction time (milliseconds) | 715.3 (204.1) | 762.9 (255.1) | 687.6 (175.1) | <0.001 | 700.8 (224.2) | 730.2 (204.0) | 0.45 | 681.0 (159.4) | 759.2 (246.2) | <0.001 |
Age (years) | 35.8 (10.3) | 41.5 (11.3) | 31.0 (8.2) | <0.001 | 32.4 (9.6) | 37.6 (9.8) | <0.001 | 32.7 (7.8) | 38.6 (11.9) | <0.001 |
Gender | 0.17 | 0.25 | <0.001 | |||||||
Male | 500 (50.0%) | 118 (47.2%) | 119 (47.6%) | 138 (55.2%) | 117 (46.8%) | 95 (38.0%) | 137 (54.8%) | |||
Female | 500 (50.0%) | 132 (52.8%) | 131 (52.4%) | 112 (44.8%) | 133 (53.2%) | 155 (62.0%) | 113 (45.2%) | |||
Education | <0.001 | 0.34 | 0.14 | |||||||
Low | 338 (33.9%) | 71 (28.5%) | 111 (44.6%) | 95 (38.2%) | 79 (31.6%) | 94 (37.8%) | 83 (33.2%) | |||
High | 660 (66.1%) | 9178 (71.5%) | 138 (55.4%) | 154 (61.8%) | 171 (68.4%) | 155 (62.2%) | 167 (66.8%) | |||
Smoking status | 0.50 | 0.31 | 0.71 | |||||||
Non-smokers | 673 (67.3%) | 179 (71.6%) | 161 (64.4%) | 170 (68.0%) | 165 (66.0%) | 168 (67.2%) | 161 (64.4%) | |||
Smokers | 187 (18.7%) | 39 (15.6%) | 54 (21.6%) | 42 (16.8%) | 45 (18.0%) | 45 (18.0%) | 49 (19.6%) | |||
Ex-smokers | 140 (14.0%) | 32 (12.8%) | 35 (14.0%) | 38 (15.2%) | 40 (16.0%) | 37 (14.8%) | 40 (16.0%) | |||
Leisure time physical activity (MET hours/week) | 6.3 (22.5) | 8.0 (22.7) | 7.2 (32.0) | 0.26 | 6.7 (20.7) | 6.7 (32.2) | 0.64 | 2.6 (10.6) | 11.2 (36.6) | <0.001 |
BMI (kg/m2) | 28.2 (5.7) | 28.9 (5.4) | 28.0 (6.3) | 0.13 | 27.7 (6.3) | 29.0 (5.4) | 0.086 | 27.8 (5.8) | 29.0 (5.7) | 0.034 |
BMI categories | 0.010 | 0.27 | 0.015 | |||||||
Normal | 293 (29.3%) | 54 (21.6%) | 85 (34.0%) | 84 (33.6%) | 58 (23.2%) | 86 (34.4%) | 57 (22.8%) | |||
Overweight | 382 (38.2%) | 106 (42.4%) | 82 (32.8%) | 91 (36.4%) | 100 (40.0%) | 86 (34.4%) | 107 (42.8%) | |||
Obese | 325 (32.5%) | 90 (36.0%) | 83 (33.2%) | 75 (30.0%) | 92 (36.8%) | 78 (31.2%) | 86 (34.4%) | |||
Serum magnesium (mmol/L) | 0.84 (0.06) | 0.84 (0.06) | 0.83 (0.06) | 0.43 | 0.84 (0.06) | 0.83 (0.06) | 0.34 | 0.84 (0.05) | 0.83 (0.07) | 0.74 |
Total cholesterol (mmol/L) | 4.9 (0.9) | 4.9 (0.9) | 4.8 (0.9) | 0.003 | 4.8 (0.9) | 5.0 (0.9) | 0.23 | 4.9 (0.9) | 4.8 (0.9) | 0.12 |
LDL-cholesterol (mmol/L) | 3.0 (0.9) | 2.9 (0.8) | 2.8 (0.9) | 0.002 | 2.9 (0.8) | 3.0 (0.8) | 0.58 | 2.9 (0.8) | 2.9 (0.9) | 0.015 |
HDL-cholesterol (mmol/L) | 1.4 (0.4) | 1.4 (0.4) | 1.4 (0.4) | 0.26 | 1.3 (0.3) | 1.4 (0.4) | 0.061 | 1.4 (0.4) | 1.3 (0.3) | 0.001 |
HbA1c (%) | 5.5 (0.9) | 5.7 (0.9) | 5.4 (0.7) | 0.006 | 5.5 (1.0) | 5.7 (1.1) | 0.020 | 5.5 (0.9) | 5.8 (1.2) | <0.001 |
Diabetes | 116 (12.1%) | 41 (16.8%) | 21 (8.9%) | 0.050 | 26 (11.0%) | 38 (15.6%) | 0.24 | 22 (9.3%) | 45 (18.7%) | <0.001 |
Hypertension | 96 (9.6%) | 40 (16.0%) | 15 (6.0%) | <0.001 | 18 (7.2%) | 28 (11.2%) | 0.46 | 9 (3.6%) | 37 (14.8%) | <0.001 |
Diabetes medication use (other than insulin) | 55 (5.5%) | 22 (8.8%) | 6 (2.4%) | 0.013 | 14 (5.6%) | 19 (7.6%) | 0.33 | 9 (3.6%) | 27 (10.8%) | <0.001 |
Insulin use | 19 (1.9%) | 6 (2.4%) | 4 (1.6%) | 0.69 | 3 (1.2%) | 10 (4.0%) | 0.040 | 2 (0.8%) | 10 (4.0%) | 0.004 |
Hypertension medication use | 55 (5.5%) | 25 (10.0%) | 9 (3.6%) | 0.003 | 12 (4.8%) | 19 (7.6%) | 0.42 | 5 (2.0%) | 28 (11.2%) | <0.001 |
Q1 | Q2 | Q3 | Q4 | p-Value | Continuous | p-Value | |
---|---|---|---|---|---|---|---|
Modern | |||||||
Model 1 | 0.0 | −11.2 (−43.6, 21.3) | 6.9 (−26.3, 40.2) | 11.7 (−22.6, 46.0) | 0.333 | 8.3 (−3.7, 20.3) | 0.173 |
Model 2 | 0.0 | −10.6 (−42.7, 21.5) | 7.2 (−25.6, 40.1) | 2.2 (−31.8, 36.2) | 0.649 | 4.6 (−7.3, 16.5) | 0.449 |
Model 3 | 0.0 | −10.3 (−42.3, 21.8) | 8.0 (−25.1, 41.0) | 1.0 (−33.3, 35.4) | 0.690 | 3.4 (−8.6, 15.4) | 0.578 |
Model 4 | 0.0 | −12.5 (−44.6, 19.5) | 6.1 (−26.7, 38.9) | −0.3 (−34.3, 33.7) | 0.734 | 3.9 (−8.0, 15.7) | 0.525 |
Convenient | |||||||
Model 1 | 0.0 | −23.5 (−55.8, 8.7) | −29.8 (−62.3, 2.6) | −21.3 (−53.9, 11.2) | 0.188 | −7.5 (−19.0, 4.1) | 0.204 |
Model 2 | 0.0 | −20.0 (−51.9, 11.8) | −25.2 (−57.3, 6.8) | −16.2 (−48.4, 16.0) | 0.311 | −6.2 (−17.6, 5.2) | 0.285 |
Model 3 | 0.0 | −18.7 (−51.1, 13.8) | −20.4 (−52.9, 12.0) | −14.1 (−46.6, 18.4) | 0.415 | −5.1 (−16.6, 6.4) | 0.386 |
Model 4 | 0.0 | −19.9 (−51.8, 11.9) | −23.7 (−55.7, 8.3) | −16.5 (−48.6, 15.6) | 0.314 | −6.2 (−17.6, 5.1) | 0.282 |
Traditional | |||||||
Model 1 | 0.0 | 4.5 (−27.5, 36.6) | 33.9 (1.5, 66.2) | 49.2 (16.5, 81.9) | <0.001 | 14.3 (2.8, 25.9) | 0.015 |
Model 2 | 0.0 | 5.4 (−26.3, 37.1) | 37.9 (5.7, 70.1) | 51.7 (19.1, 84.3) | <0.001 | 14.6 (3.1, 26.1) | 0.013 |
Model 3 | 0.0 | 12.3 (−19.9, 44.5) | 37.6 (4.9, 70.4) | 50.0 (16.9, 83.1) | 0.001 | 12.4 (0.7, 24.1) | 0.038 |
Model 4 | 0.0 | 4.2 (−27.5, 35.9) | 37.4 (5.2, 69.5) | 50.5 (18.0, 83.1) | <0.001 | 14.3 (2.8, 25.9) | 0.015 |
β (95% CI) | p-Value | |
---|---|---|
Total effect | 14.34 (2.84, 25.83) | 0.015 |
Direct effect | 13.96 (2.48, 25.44) | 0.017 |
Indirect effect (via serum magnesium) | 0.38 (−0.43, 1.18) | 0.356 |
β (95% CI) | p-Value | |
---|---|---|
Total effect | 14.34 (2.84, 25.83) | 0.015 |
Direct effect | 13.23 (1.75, 24.71) | 0.024 |
Indirect effect (via total cholesterol) | 1.11 (−0.16, 2.37) | 0.086 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fituri, S.; Shi, Z. Association between Dietary Patterns and Cognitive Function among Qatari Adults: A Cross-Sectional Analysis of the Qatar Biobank Study. Nutrients 2023, 15, 4053. https://doi.org/10.3390/nu15184053
Fituri S, Shi Z. Association between Dietary Patterns and Cognitive Function among Qatari Adults: A Cross-Sectional Analysis of the Qatar Biobank Study. Nutrients. 2023; 15(18):4053. https://doi.org/10.3390/nu15184053
Chicago/Turabian StyleFituri, Sundus, and Zumin Shi. 2023. "Association between Dietary Patterns and Cognitive Function among Qatari Adults: A Cross-Sectional Analysis of the Qatar Biobank Study" Nutrients 15, no. 18: 4053. https://doi.org/10.3390/nu15184053
APA StyleFituri, S., & Shi, Z. (2023). Association between Dietary Patterns and Cognitive Function among Qatari Adults: A Cross-Sectional Analysis of the Qatar Biobank Study. Nutrients, 15(18), 4053. https://doi.org/10.3390/nu15184053