The Possible Role of Food and Diet in the Quality of Life in Patients with COPD—A State-of-the-Art Review
Abstract
:1. Introduction
2. Methods
2.1. Inclusion Criteria
- -
- Study population: patients over 40 years of age admitted with a diagnosis of COPD.
- -
- Intervention: nutritional intervention (protein, carbohydrate, fiber, vegetables, fruits, omega-3 polyunsaturated fatty acids, probiotics, nuts, legumes, whole grains, olive oil, fish, nutritional intervention, nutritional support, dietary intervention, dietary therapy, and macronutrient supplementation).
- -
- Outcome concepts: lung function (spirometry, exacerbation), physical activity level (6-Minute Walk Test, Incremental Shuttle Walk Test), systemic inflammatory parameters (C-reactive protein, interleukins, and tumor necrosis factor alpha), quality of life (COPD Assessment Test, St George’s Respiratory Questionnaire, and EuroQol-5D), mortality risk.
- -
- Study design: randomized controlled trials and human clinical trials.
- -
- Language of publication: no language restrictions applied.
- -
- Published articles in the PubMed, ClinicalTrials.gov, and Cochrane Central Register of Controlled Trials (CENTRAL) databases.
2.2. Exclusion Criteria
- -
- Animal experiments.
- -
- In vitro studies.
- -
- Vitamins, antioxidants, minerals, and micronutrients interventions.
- -
- Dietary advice without intervention.
- -
- Short-term intervention (<7 days).
- -
- Intravenous nutrition only.
- -
- Nutritional interventions for obese patients (body mass index (BMI) ≥ 30 kg/m2).
3. Results
4. Discussion
4.1. Potentially Harmful Foods for Respiratory Function
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Agarwal, A.K.; Raja, A.; Brown, B.D. Chronic Obstructive Pulmonary Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 7 August 2023. [Google Scholar]
- Syamlal, G.; Kurth, L.M.; Dodd, K.E.; Blackley, D.J.; Hall, N.B.; Mazurek, J.M. Chronic Obstructive Pulmonary Disease Mortality by Industry and Occupation—United States, 2020. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1550–1554. [Google Scholar] [CrossRef] [PubMed]
- Terzikhan, N.; Verhamme, K.M.C.; Hofman, A.; Stricker, B.H.; Brusselle, G.G.; Lahousse, L. Prevalence and incidence of COPD in smokers and non-smokers: The Rotterdam Study. Eur. J. Epidemiol. 2016, 31, 785–792. [Google Scholar] [CrossRef]
- Montuschi, P. Pharmacological treatment of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2006, 1, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Szollosi, G.; Tarantini, S.; Lehoczki, A.; Nemeth, A.N.; Bodola, C.; Varga, L.; Varga, J.T. Metabolic syndrome in patients with COPD: Causes and pathophysiological consequences. Imaging 2022, 109, 90–105. [Google Scholar] [CrossRef]
- Tamás, V.J.; Ildikó, M.; Erzsébet, B.; Csilla, C.; Zsuzsanna, K.; Krisztina, B.; Veronika, M.; Mária, S. Complex Rehabilitation of COVID-19 Patients. [COVID-19-betegek komplex rehabilitációja. Szakmai protokoll]. 2020. Available online: https://tudogyogyasz.hu/Media/Download/29632 (accessed on 3 September 2023).
- Collins, P.F.; Yang, I.A.; Chang, Y.-C.; Vaughan, A. Nutritional support in chronic obstructive pulmonary disease (COPD): An evidence update. J. Thorac. Dis. 2019, 11, S2230–S2237. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Kováts, Z.; Müller, V.; Varga, J.T. Outpatient rehabilitation programs for COVID-19 patients. Orv. Hetil. 2021, 162, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Fazekas-Pongor, V.; Szőllősi, G.; Varga, J.T. Metabolic consequences of chronic obstructive pulmonary disease. Orv. Hetil. 2021, 162, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Tsuji, T.; Nemoto, K.; Nakamura, H.; Aoshiba, K. Undernutrition in Patients with COPD and Its Treatment. Nutrients 2013, 5, 1316–1335. [Google Scholar] [CrossRef]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liang, Q.; Li, Z.; Li, F. Body Composition and COPD: A New Perspective. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 79–97. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Seidu, S.; Laukkanen, J.A. Physical activity reduces the risk of pneumonia: Systematic review and meta-analysis of 10 prospective studies involving 1,044,492 participants. Geroscience 2022, 44, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.; Palinkas, A.; Lajko, I.; Horváth, I.; Boda, K.; Somfay, A. Pulmonary Arterial Pressure Response During Exercise in COPD: A Correlation with C-Reactive Protein (hsCRP). Open Respir. Med. J. 2016, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Varga, J.T. Smoking and pulmonary complications: Respiratory prehabilitation. J. Thorac. Dis. 2019, 11 (Suppl. S5), S639–S644. [Google Scholar] [CrossRef] [PubMed]
- Márton, J.; Farkas, G.; Nagy, Z.; Takács, T.; Varga, J.; Szász, Z.; Balogh, A.; Lonovics, J. Plasma levels of TNF and IL-6 following induction of acute pancreatitis and pentoxifylline treatment in rats. Acta Chir. Hung. 1997, 36, 223–225. [Google Scholar] [PubMed]
- Farkas, Á.; Szipőcs, A.; Horváth, A.; Horváth, I.; Gálffy, G.; Varga, J.; Galambos, K.; Kugler, S.; Nagy, A.; Szalai, Z. Establishment of relationships between native and inhalation device specific spirometric parameters as a step towards patient tailored inhalation device selection. Respir. Med. 2019, 154, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Lázár, G., Jr.; Varga, J.; Lázár, G.; Duda, E.; Takács, T.; Balogh, A.; Lonovics, J. The effects of glucocorticoids and a glucocorticoid antagonist (RU 38486) on experimental acute pancreatitis in rat. Acta Chir. Hung. 1997, 36, 190–191. [Google Scholar]
- Recio Iglesias, J.; Díez-Manglano, J.; López García, F.; Díaz Peromingo, J.A.; Almagro, P.; Varela Aguilar, J.M. Management of the COPD Patient with Comorbidities: An Experts Recommendation Document. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 1015–1037. [Google Scholar] [CrossRef]
- Fekete, M.; Kerti, M.; Fazekas-Pongor, V.; Balazs, P.; Csizmadia, Z.; Nemeth, A.N.; Tarantini, S.; Varga, J.T. Effect of interval training with non-invasive ventilation in severe chronic obstructive pulmonary disease—A prospective cohort study with matched control group. Ann. Palliat. Med. 2021, 10, 5289–5298. [Google Scholar] [CrossRef]
- Hegedűs, B.; Varga, J.; Somfay, A. Interdisciplinary rehabilitation in patients with ankylosing spondylitis. Orv. Hetil. 2016, 157, 1126–1132. [Google Scholar] [CrossRef]
- Frisard, M.I.; Rood, J.C.; Fang, X.; Su, J.; Welsh, D.A.; Jazwinski, S.M.; Ravussin, E.; Louisiana Healthy Aging Study. Metabolic syndrome and risk factors for cardiovascular disease: Are nonagenarians protected? Age 2009, 31, 67–75. [Google Scholar] [CrossRef]
- Osler, M.; Tjønneland, A.; Suntum, M.; Thomsen, B.; Stripp, C.; Grønbæk, M.; Overvad, K. Does the association between smoking status and selected healthy foods depend on gender? A population-based study of 54 417 middle-aged Danes. Eur. J. Clin. Nutr. 2002, 56, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Bollmeier, S.G.; Hartmann, A.P. Management of chronic obstructive pulmonary disease: A review focusing on exacerbations. Am. J. Health Syst. Pharm. 2020, 77, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Seyedrezazadeh, E.; Pour Moghaddam, M.; Ansarin, K.; Jafarabadi, M.A.; Sharifi, A.; Sharma, S.; Kolahdooz, F. Dietary Factors and Risk of Chronic Obstructive Pulmonary Disease: A Systemic Review and Meta-Analysis. Tanaffos 2019, 18, 294–309. [Google Scholar] [PubMed]
- Hosseini, B.; Berthon, B.S.; Wark, P.; Wood, L.G. Effects of Fruit and Vegetable Consumption on Risk of Asthma, Wheezing and Immune Responses: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 341. [Google Scholar] [CrossRef]
- Keranis, E.; Makris, D.; Rodopoulou, P.; Martinou, H.; Papamakarios, G.; Daniil, Z.; Zintzaras, E.; Gourgoulianis, K.I. Impact of dietary shift to higher-antioxidant foods in COPD: A randomised trial. Eur. Respir. J. 2010, 36, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Frontela-Saseta, C.; González-Bermúdez, C.A.; García-Marcos, L. Diet: A Specific Part of the Western Lifestyle Pack in the Asthma Epidemic. J. Clin. Med. 2020, 9, 2063. [Google Scholar] [CrossRef]
- Valencia, A.P.; Nagaraj, N.; Osman, D.H.; Rabinovitch, P.S.; Marcinek, D.J. Are fat and sugar just as detrimental in old age? GeroScience 2021, 43, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzawi, M.A.; AboZaid, M.M.; Ibrahem, R.A.L.; Sakr, M.A. Therapeutic effects of black seed oil supplementation on chronic obstructive pulmonary disease patients: A randomized controlled double blind clinical trial. Heliyon 2020, 6, e04711. [Google Scholar] [CrossRef]
- Buha, I.; Mirić, M.; Agić, A.; Simić, M.; Stjepanović, M.; Milenković, B.; Nagorni-Obradović, L.; Škodrić-Trifunović, V.; Ilić, B.; Popević, S.; et al. A randomized, double-blind, placebo-controlled study evaluating the efficacy of propolis and N-acetylcysteine in exacerbations of chronic obstructive pulmonary disease. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4809–4815. [Google Scholar] [CrossRef]
- Han, M.K.; Barreto, T.A.; Martinez, F.J.; Comstock, A.T.; Sajjan, U.S. Randomised clinical trial to determine the safety of quercetin supplementation in patients with chronic obstructive pulmonary disease. BMJ Open Respir. Res. 2020, 7, e000392. [Google Scholar] [CrossRef]
- Lu, M.C.; Yang, M.D.; Li, P.C.; Fang, H.Y.; Huang, H.Y.; Chan, Y.C.; Bau, D.T. Effect of Oligomeric Proanthocyanidin on the Antioxidant Status and Lung Function of Patients with Chronic Obstructive Pulmonary Disease. In Vivo 2018, 32, 753–758. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Rui, W.; Chen, S.; Li, Y.; Ren, M. Effect of Enteral and Parenteral Nutrition Support on Pulmonary Function in Elderly Patients with Chronic Obstructive Pulmonary Disease Complicated by Respiratory Failure. Comput. Math. Methods Med. 2022, 2022, 4743070. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Eftekhari, M.H.; Mazloom, Z.; Masoompour, M.; Fararooei, M.; Eskandari, M.H.; Mehrabi, S.; Bedeltavana, A.; Famouri, M.; Zare, M.; et al. Fortified whey beverage for improving muscle mass in chronic obstructive pulmonary disease: A single-blind, randomized clinical trial. Respir. Res. 2020, 21, 216. [Google Scholar] [CrossRef] [PubMed]
- Beijers, R.J.; Gosker, H.R.; Sanders, K.J.; de Theije, C.; Kelders, M.; Clarke, G.; Cryan, J.F.; Borst, B.v.D.; Schols, A.M. Resveratrol and metabolic health in COPD: A proof-of-concept randomized controlled trial. Clin. Nutr. 2020, 39, 2989–2997. [Google Scholar] [CrossRef] [PubMed]
- Matheson, E.M.; Nelson, J.L.; Baggs, G.E.; Luo, M.; Deutz, N.E. Specialized oral nutritional supplement (ONS) improves handgrip strength in hospitalized, malnourished older patients with cardiovascular and pulmonary disease: A randomized clinical trial. Clin. Nutr. 2020, 40, 844–849. [Google Scholar] [CrossRef]
- Møgelberg, N.; Tobberup, R.; Møller, G.; Godtfredsen, N.S.; Nørgaard, A.; Andersen, J.R. High-protein diet during pulmonary rehabilitation in patients with chronic obstructive pulmonary disease. Dan. Med. J. 2022, 69, A03220185. [Google Scholar]
- Deutz, N.E.; Ziegler, T.R.; Matheson, E.M.; Matarese, L.E.; Tappenden, K.A.; Baggs, G.E.; Nelson, J.L.; Luo, M.; Hegazi, R.; Jonnalagadda, S.S. Reduced mortality risk in malnourished hospitalized older adult patients with COPD treated with a specialized oral nutritional supplement: Sub-group analysis of the NOURISH study. Clin. Nutr. 2021, 40, 1388–1395. [Google Scholar] [CrossRef]
- De Benedetto, F.; Pastorelli, R.; Ferrario, M.; de Blasio, F.; Marinari, S.; Brunelli, L.; Wouters, E.F.M.; Polverino, F.; Celli, B.R.; Interdisciplinary Association for Research in Lung Disease (AIMAR) Study Group. Supplementation with Qter® and Creatine improves functional performance in COPD patients on long term oxygen therapy. Respir. Med. 2018, 142, 86–93. [Google Scholar] [CrossRef]
- Aldhahir, A.M.; Aldabayan, Y.S.; Alqahtani, J.S.; Ridsdale, H.A.; Smith, C.; Hurst, J.R.; Mandal, S. A double-blind randomised controlled trial of protein supplementation to enhance exercise capacity in COPD during pulmonary rehabilitation: A pilot study. ERJ Open Res. 2021, 7, 00077–02021. [Google Scholar] [CrossRef]
- Karim, A.; Muhammad, T.; Iqbal, M.S.; Qaisar, R. A multistrain probiotic improves handgrip strength and functional capacity in patients with COPD: A randomized controlled trial. Arch. Gerontol. Geriatr. 2022, 102, 104721. [Google Scholar] [CrossRef]
- De Brandt, J.; Derave, W.; Vandenabeele, F.; Pomiès, P.; Blancquaert, L.; Keytsman, C.; Barusso-Grüninger, M.S.; de Lima, F.F.; Hayot, M.; Spruit, M.A.; et al. Efficacy of 12 weeks oral beta-alanine supplementation in patients with chronic obstructive pulmonary disease: A double-blind, randomized, placebo-controlled trial. J. Cachexia Sarcopenia Muscle 2022, 13, 2361–2372. [Google Scholar] [CrossRef]
- Ogasawara, T.; Marui, S.; Miura, E.; Sugiura, M.; Matsuyama, W.; Aoshima, Y.; Kasamatsu, N.; Ogiku, M.; Ikematsu, Y. Effect of eicosapentaenoic acid on prevention of lean body mass depletion in patients with exacerbation of chronic obstructive pulmonary disease: A prospective randomized controlled trial. Clin. Nutr. ESPEN 2018, 28, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Beijers, R.J.; Huysmans, S.M.; van de Bool, C.; Kingma, B.R.; Verdijk, L.B.; van Loon, L.J.; Meex, S.J.; Gosker, H.R.; Schols, A.M. The effect of acute and 7-days dietary nitrate on mechanical efficiency, exercise performance and cardiac biomarkers in patients with chronic obstructive pulmonary disease. Clin. Nutr. 2018, 37, 1852–1861. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.P.K.J.; Jonker, R.; Sulaiman, H.; Fisk, H.L.; Calder, P.C.; Deutz, N.E.P. ω-3 polyunsaturated fatty acid supplementation improves postabsorptive and prandial protein metabolism in patients with chronic obstructive pulmonary disease: A randomized clinical trial. Am. J. Clin. Nutr. 2022, 116, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Kerley, C.P.; James, P.E.; McGowan, A.; Faul, J.; Cormican, L. Dietary nitrate improved exercise capacity in COPD but not blood pressure or pulmonary function: A 2 week, double-blind randomised, placebo-controlled crossover trial. Int. J. Food Sci. Nutr. 2018, 70, 222–231. [Google Scholar] [CrossRef]
- Pavitt, M.J.; Lewis, A.; Buttery, S.C.; Fernandez, B.O.; Mikus-Lelinska, M.; Banya, W.A.S.; Feelisch, M.; Polkey, M.I.; Hopkinson, N.S. Dietary nitrate supplementation to enhance exercise capacity in hypoxic COPD: EDEN-OX, a double-blind, placebo-controlled, randomised cross-over study. Thorax 2021, 77, 968–975. [Google Scholar] [CrossRef]
- Pavitt, M.J.; Tanner, R.J.; Lewis, A.; Buttery, S.; Mehta, B.; Jefford, H.; Curtis, K.J.; Banya, W.A.S.; Husain, S.; Satkunam, K.; et al. Oral nitrate supplementation to enhance pulmonary rehabilitation in COPD: ON-EPIC a multicentre, double-blind, placebo-controlled, randomised parallel group study. Thorax 2020, 75, 547–555. [Google Scholar] [CrossRef]
- van Beers, M.; Rutten-van Mölken, M.; van de Bool, C.; Boland, M.; Kremers, S.P.J.; Franssen, F.M.E.; van Helvoort, A.; Gosker, H.R.; Wouters, E.F.; Schols, A.M.W.J. Clinical outcome and cost-effectiveness of a 1-year nutritional intervention programme in COPD patients with low muscle mass: The randomized controlled NUTRAIN trial. Clin. Nutr. 2020, 39, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Ingadottir, A.R.; Beck, A.M.; Baldwin, C.; Weekes, C.E.; Geirsdottir, O.G.; Ramel, A.; Gislason, T.; Gunnarsdottir, I. Oral nutrition supplements and between-meal snacks for nutrition therapy in patients with COPD identified as at nutritional risk: A randomised feasibility trial. BMJ Open Respir. Res. 2019, 6, e000349. [Google Scholar] [CrossRef]
- Zhang, J.H.; Zhang, L.Q.; Yang, Y.P.; Li, X.; Zhang, Y.; Wang, L.Y.; Shi, H.; Jiang, H.; Guo, W.; Mu, L.; et al. Clinical effect of nutritional and psychological intervention combined with pulmonary rehabilitation exercise on patients with chronic obstructive pulmonary disease. Zhonghua Yi Xue Za Zhi 2020, 100, 110–115. [Google Scholar] [PubMed]
- Kim, J.S.; Thomashow, M.A.; Yip, N.H.; Burkart, K.M.; Cascio, C.M.L.; Shimbo, D.; Barr, R.G. Randomization to Omega-3 Fatty Acid Supplementation and Endothelial Function in COPD: The COD-Fish Randomized Controlled Trial. Chronic Obstr. Pulm. Dis. 2021, 8, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, A.; Hasenboehler, F.; Cantone, J.; Hersberger, L.; Bargetzi, A.; Bargetzi, L.; Kaegi-Braun, N.; Tribolet, P.; Gomes, F.; Hoess, C.; et al. Effect of nutritional support in patients with lower respiratory tract infection: Secondary analysis of a randomized clinical trial. Clin. Nutr. 2020, 40, 1843–1850. [Google Scholar] [CrossRef]
- Calder, P.C.; Laviano, A.; Lonnqvist, F.; Muscaritoli, M.; Öhlander, M.; Schols, A. Targeted medical nutrition for cachexia in chronic obstructive pulmonary disease: A randomized, controlled trial. J. Cachexia Sarcopenia Muscle 2017, 9, 28–40. [Google Scholar] [CrossRef]
- Ruano-Rodrãguez, C.; Serra-Majem, L.; Dubois, D. Assessing the impact of dietary habits on health-related quality of life requires contextual measurement tools. Front. Pharmacol. 2015, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.F.; Stratton, R.J.; Elia, M. Nutritional support in chronic obstructive pulmonary disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1385–1395. [Google Scholar] [CrossRef]
- Gea, J.; Sancho-Muñoz, A.; Chalela, R. Nutritional status and muscle dysfunction in chronic respiratory diseases: Stable phase versus acute exacerbations. J. Thorac. Dis. 2018, 10 (Suppl. S12), S1332–S1354. [Google Scholar] [CrossRef]
- Aniwidyaningsih, W.; Varraso, R.; Cano, N.; Pison, C. Impact of nutritional status on body functioning in chronic obstructive pulmonary disease and how to intervene. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Csípő, T.; Fazekas-Pongor, V.; Fehér, Á.; Szarvas, Z.; Kaposvári, C.; Horváth, K.; Lehoczki, A.; Tarantini, S.; Varga, J.T. The Effectiveness of Supplementation with Key Vitamins, Minerals, Antioxidants and Specific Nutritional Supplements in COPD—A Review. Nutrients 2023, 15, 2741. [Google Scholar] [CrossRef]
- Pál, É.; Ungvári, Z.; Benyó, Z.; Várbíró, S. Role of Vitamin D Deficiency in the Pathogenesis of Cardiovascular and Cerebrovascular Diseases. Nutrients 2023, 15, 334. [Google Scholar] [CrossRef]
- De Vita, F.; Lauretani, F.; Bauer, J.; Bautmans, I.; Shardell, M.; Cherubini, A.; Bondi, G.; Zuliani, G.; Bandinelli, S.; Pedrazzoni, M.; et al. Relationship between vitamin D and inflammatory markers in older individuals. Age 2014, 36, 9694. [Google Scholar] [CrossRef]
- Rawal, G.; Yadav, S. Nutrition in chronic obstructive pulmonary disease: A review. J. Transl. Intern. Med. 2015, 3, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Böszörményi, N.G.; Balikó, Z.; Kovács, G.; Somfay, A.; Strausz, J.; Szilasi, M.; Varga, J. Egészségügyi szakmai irányelv a krónikus tüdőbetegség (chronic obstructive pulmonary disease—COPD) diagnosztikájáról és kezeléséről, az alap -, szak -, és sürgősségi ellátás területére. Med. Thor. 2014, 79–113. Available online: https://www.copdplatform.com/res/file/national-documents/hun-guidelines.pdf (accessed on 3 September 2023).
- Casanova, N.; Beaulieu, K.; Finlayson, G.; Hopkins, M. Metabolic adaptations during negative energy balance and their potential impact on appetite and food intake. Proc. Nutr. Soc. 2019, 78, 279–289. [Google Scholar] [CrossRef]
- Lin, T.-F.; Shune, S. Chronic Obstructive Pulmonary Disease and Dysphagia: A Synergistic Review. Geriatrics 2020, 5, 45. [Google Scholar] [CrossRef]
- Dixon, A.E.; Peters, U. The effect of obesity on lung function. Expert Rev. Respir. Med. 2018, 12, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Pongor, V.; Fehér, Á.; Veresné Bálint, M.; Varga, J.T.; Horváth, I. Relationship of chronic obstructive pulmonary disease and nutritional status—Clinical observations. Orv. Hetil. 2019, 160, 908–913. [Google Scholar] [CrossRef]
- Keogh, E.; Williams, E.M. Managing malnutrition in COPD: A review. Respir. Med. 2021, 176, 106248. [Google Scholar] [CrossRef] [PubMed]
- Verberne, L.D.M.; Leemrijse, C.J.; Swinkels, I.C.S.; van Dijk, C.E.; de Bakker, D.H.; Nielen, M.M.J. Overweight in patients with chronic obstructive pulmonary disease needs more attention: A cross-sectional study in general practice. Npj. Prim. Care Respir. Med. 2017, 27, 63. [Google Scholar] [CrossRef]
- Abuhajar, S.M.; Taleb, M.H.; Ellulu, M.S. Vitamin C deficiency and risk of metabolic complications among adults with chronic respiratory diseases: A case–control study. Clin. Nutr. ESPEN 2021, 43, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Henrot, P.; Dupin, I.; Schilfarth, P.; Esteves, P.; Blervaque, L.; Zysman, M.; Gouzi, F.; Hayot, M.; Pomiès, P.; Berger, P. Main Pathogenic Mechanisms and Recent Advances in COPD Peripheral Skeletal Muscle Wasting. Int. J. Mol. Sci. 2023, 24, 6454. [Google Scholar] [CrossRef]
- Kim, S.H.; Shin, M.J.; Shin, Y.B.; Kim, K.U. Sarcopenia Associated with Chronic Obstructive Pulmonary Disease. J. Bone Metab. 2019, 26, 65–74. [Google Scholar] [CrossRef]
- Chan, O.Y.A.; Van Houwelingen, A.H.; Gussekloo, J.; Blom, J.W.; den Elzen, W.P.J. Comparison of quadriceps strength and handgrip strength in their association with health outcomes in older adults in primary care. Age 2014, 36, 9714. [Google Scholar] [CrossRef] [PubMed]
- Sillanpää, E.; Stenroth, L.; Bijlsma, A.Y.; Rantanen, T.; McPhee, J.S.; Maden-Wilkinson, T.M.; Jones, D.A.; Narici, M.V.; Gapeyeva, H.; Pääsuke, M.; et al. Associations between muscle strength, spirometric pulmonary function and mobility in healthy older adults. Age 2014, 36, 9667. [Google Scholar] [CrossRef]
- Shetty, B.S.P.; Chaya, S.K.; Kumar V, S.; Mahendra, M.; Jayaraj, B.S.; Lokesh, K.S.; Ganguly, K.; Mahesh, P.A. Inflammatory Biomarkers Interleukin 1 Beta (IL-1β) and Tumour Necrosis Factor Alpha (TNF-α) Are Differentially Elevated in Tobacco Smoke Associated COPD and Biomass Smoke Associated COPD. Toxics 2021, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Singh-Manoux, A.; Dugravot, A.; Kauffmann, F.; Elbaz, A.; Ankri, J.; Nabi, H.; Kivimaki, M.; Sabia, S. Association of lung function with physical, mental and cognitive function in early old age. Age 2010, 33, 385–392. [Google Scholar] [CrossRef]
- Ma, K.; Huang, F.; Qiao, R.; Miao, L. Pathogenesis of sarcopenia in chronic obstructive pulmonary disease. Front. Physiol. 2022, 13, 850964. [Google Scholar] [CrossRef] [PubMed]
- Marton, J.; Farkas, G.; Takacs, T.; Nagy, Z.; Szasz, Z.; Varga, J.; Jarmay, K.; Balogh, A.; Lonovics, J. Beneficial effects of pentoxifylline treatment of experimental acute pancreatitis in rats. Res. Exp. Med. 1997, 197, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Pako, J.; Nemeth, A.N.; Tarantini, S.; Varga, J.T. Prevalence of influenza and pneumococcal vaccination in chronic obstructive pulmonary disease patients in association with the occurrence of acute exacerbations. J. Thorac. Dis. 2020, 12, 4233–4242. [Google Scholar] [CrossRef]
- Vogelmeier, C.F.; Román-Rodríguez, M.; Singh, D.; Han, M.K.; Rodríguez-Roisin, R.; Ferguson, G.T. Goals of COPD treatment: Focus on symptoms and exacerbations. Respir. Med. 2020, 166, 105938. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food based dietary patterns and chronic disease prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef]
- Iersel, L.E.J.v.; Beijers, R.J.H.C.G.; Gosker, H.R.; Schols, A.M.W.J. Nutrition as a modifiable factor in the onset and progression of pulmonary function impairment in COPD: A systematic review. Nutr. Rev. 2022, 80, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, E.; Massaro, M.; Garbarino, S.; Toraldo, D.M. Role of Diet in Chronic Obstructive Pulmonary Disease Prevention and Treatment. Nutrients 2019, 11, 1357. [Google Scholar] [CrossRef]
- Whyand, T.; Hurst, J.R.; Beckles, M.; Caplin, M.E. Pollution and respiratory disease: Can diet or supplements help? A review. Respir. Res. 2018, 19, 79. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Honig, L.S.; Schupf, N.; Lee, J.H.; Luchsinger, J.A.; Stern, Y.; Scarmeas, N. Mediterranean diet and leukocyte telomere length in a multi-ethnic elderly population. Age 2015, 37, 24. [Google Scholar] [CrossRef]
- Neville, C.E.; Young, I.S.; Gilchrist, S.E.C.M.; McKinley, M.C.; Gibson, A.; Edgar, J.D.; Woodside, J.V. Effect of increased fruit and vegetable consumption on physical function and muscle strength in older adults. Age 2013, 35, 2409–2422. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef]
- Zhai, H.; Wang, Y.; Jiang, W. Fruit and Vegetable Intake and the Risk of Chronic Obstructive Pulmonary Disease: A Dose-Response Meta-Analysis of Observational Studies. BioMed Res. Int. 2020, 2020, 3783481. [Google Scholar] [CrossRef]
- Kaluza, J.; Harris, H.R.; Linden, A.; Wolk, A. Long-term consumption of fruits and vegetables and risk of chronic obstructive pulmonary disease: A prospective cohort study of women. Leuk. Res. 2018, 47, 1897–1909. [Google Scholar] [CrossRef]
- Kaluza, J.; Larsson, S.C.; Orsini, N.; Linden, A.; Wolk, A. Fruit and vegetable consumption and risk of COPD: A prospective cohort study of men. Thorax 2017, 72, 500–509. [Google Scholar] [CrossRef]
- Garcia-Larsen, V.; Thawer, N.; Charles, D.; Cassidy, A.; Van Zele, T.; Thilsing, T.; Ahlström, M.; Haahtela, T.; Keil, T.; Matricardi, P.M.; et al. Dietary Intake of Flavonoids and Ventilatory Function in European Adults: A GA2LEN Study. Nutrients 2018, 10, 95. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Csipo, T.; Forrai, J.; Dosa, N.; Peterfi, A.; Lehoczki, A.; Tarantini, S.; et al. Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, A.; Frazer, Z.A.; Hansbro, P.M.; Yang, I.A. COPD and the gut-lung axis: The therapeutic potential of fibre. J. Thorac. Dis. 2019, 11 (Suppl. S17), S2173–S2180. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Gensous, N.; Garagnani, P.; Santoro, A.; Giuliani, C.; Ostan, R.; Fabbri, C.; Milazzo, M.; Gentilini, D.; di Blasio, A.M.; Pietruszka, B.; et al. One-year Mediterranean diet promotes epigenetic rejuvenation with country- and sex-specific effects: A pilot study from the NU-AGE project. GeroScience 2020, 42, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef] [PubMed]
- Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fat. Acids 2018, 132, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Zupo, R.; Donghia, R.; Castellana, F.; Bortone, I.; De Nucci, S.; Sila, A.; Tatoli, R.; Lampignano, L.; Sborgia, G.; Panza, F.; et al. Ultra-processed food consumption and nutritional frailty in older age. GeroScience 2023, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Varraso, R.; Barr, R.G.; Willett, W.C.; Speizer, F.E.; Camargo, C.A. Fish intake and risk of chronic obstructive pulmonary disease in 2 large US cohorts. Am. J. Clin. Nutr. 2015, 101, 354–361. [Google Scholar] [CrossRef]
- Yu, W.; Shi, K.; Cao, W.; Lv, J.; Guo, Y.; Pei, P.; Xia, Q.; Du, H.; Chen, Y.; Yang, L.; et al. Association between Fish Consumption and Risk of Chronic Obstructive Pulmonary Disease among Chinese Men and Women: An 11-Year Population-Based Cohort Study. J. Nutr. 2022, 152, 2771–2777. [Google Scholar] [CrossRef]
- Berthon, B.S.; Wood, L.G. Nutrition and respiratory health--feature review. Nutrients 2015, 7, 1618–1643. [Google Scholar] [CrossRef] [PubMed]
- Călinoiu, L.F.; Vodnar, D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed]
- Root, M.M.; Houser, S.M.; Anderson, J.J.; Dawson, H.R. Healthy Eating Index 2005 and selected macronutrients are correlated with improved lung function in humans. Nutr. Res. 2014, 34, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Giugliano, D. Whole-grain intake cools down inflammation. Am. J. Clin. Nutr. 2006, 83, 1440–1441. [Google Scholar] [CrossRef]
- Kaluza, J.; Harris, H.; Wallin, A.; Linden, A.; Wolk, A. Dietary Fiber Intake and Risk of Chronic Obstructive Pulmonary Disease: A Prospective Cohort Study of Men. Epidemiology 2018, 29, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Hanson, C.; Sayles, H.; Rutten, E.; Wouters, E.; MacNee, W.; Calverley, P.; Meza, J.; Rennard, S. The Association Between Dietary Intake and Phenotypical Characteristics of COPD in the ECLIPSE Cohort. Chronic Obstr. Pulm. Dis. 2014, 1, 115–124. [Google Scholar] [CrossRef]
- Alfaro, T.M.; Monteiro, R.A.; Cunha, R.A.; Cordeiro, C.R. Chronic coffee consumption and respiratory disease: A systematic review. Clin. Respir. J. 2017, 12, 1283–1294. [Google Scholar] [CrossRef]
- Salari-Moghaddam, A.; Milajerdi, A.; Larijani, B.; Esmaillzadeh, A. Processed red meat intake and risk of COPD: A systematic review and dose-response meta-analysis of prospective cohort studies. Clin. Nutr. 2019, 38, 1109–1116. [Google Scholar] [CrossRef]
- Shuval, H.I.; Gruener, N. Epidemiological and toxicological aspects of nitrates and nitrites in the environment. Am. J. Public Health 1972, 62, 1045–1052. [Google Scholar] [CrossRef]
- Wood, L.G.; Attia, J.; McElduff, P.; McEvoy, M.; Gibson, P.G. Assessment of dietary fat intake and innate immune activation as risk factors for impaired lung function. Eur. J. Clin. Nutr. 2010, 64, 818–825. [Google Scholar] [CrossRef]
- Cornell, K.; Alam, M.; Lyden, E.; Wood, L.; LeVan, T.D.; Nordgren, T.M.; Bailey, K.; Hanson, C. Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007–2012. Nutrients 2019, 11, 317. [Google Scholar] [CrossRef]
- Ungvari, Z.; Tarantini, S.; Donato, A.J.; Galvan, V.; Csiszar, A. Mechanisms of Vascular Aging. Circ. Res. 2018, 123, 849–867. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Torralba, M.G.; Moncera, K.J.; DiLello, L.; Petrini, J.; Nelson, K.E.; Pieper, R. Gastro-intestinal and oral microbiome signatures associated with healthy aging. GeroScience 2019, 41, 907–921. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Mean Follow-Up | Country | Sample Size | Average Age (Year) | Sex (Male/Female) | Intervention | Main Results |
---|---|---|---|---|---|---|---|---|
Al-Azzawi MA et al. [30] | RCT | 3 months | Egypt | 91 | 55.2 ± 4.3 | 69%/31% | Treated with 1 g of 100% pure cold-pressed black seed oil twice daily. | Significant reduction in oxidant and inflammatory markers. A significant improvement in pulmonary function tests versus baseline levels and control group (CG). |
Buha I et al. [31] | RCT | 1 year | Serbia | 46 | 65 ± 8 | 63%/37% | One patient (AS-600) received 600 mg of NAC + 80 mg of propolis, while the other (AS-1200) received 1200 mg of NAC + 160 mg of propolis. | Compared to placebo, AECOPD frequency was significantly lower only in AS-1200 (p = 0.009). Compared to placebo, the relative risk for exacerbation was 0.29 in AS-600 and 0.13 in AS-1200. |
Han MK et al. [32] | RCT | 7 days | Michigan | 9 | 68 ± 6 | 56%/64% | Quercetin at 500, 1000 or 2000 mg/d. | Quercetin was safely tolerated up to 2000 mg/d based on lung function, blood profile, and COPD assessment test questionnaire. |
Lu MC et al. [33] | RCT | 8 Weeks | Taiwan | 27 | 71 ± 2 | - | 150 mg/d oligomeric proanthocyanidins extracted from grape seed suppl. | Oligomeric proanthocyanidins supplementation significantly reduced the concentration of malondialdehyde and superoxide dismutase. |
Wang L et al. [34] | RCT | Retrospective analysis | China | 127 | 70 ± 3 | 53%/47% | Enteral and parenteral nutrition support. | Lung function improved, and inflammatory factor levels decreased (p < 0.05). The levels of serum albumin, prealbumin, serum hemoglobin, and serum transferrin increased after nutritional support (p < 0.05). |
Ahmadi A et al. [35] | RCT | 8 weeks | Iran | 44 | 62 ± 7 | 100% male | Intervention group (IG) daily received 250 mL of whey beverage fortified with magnesium and vitamin C. | This nutritional intervention decreased inflammatory cytokine levels, improved indices of skeletal muscle mass and muscle strength, and ultimately, increased quality of life (QOL). |
Beijers RJ et al. [36] | RCT | 4 weeks | Netherlands | 21 | 67 ± 9 | 57%/43% | Resveratrol supplementation (150 mg/nap). | They did not confirm previously reported positive effects of resveratrol on skeletal muscle mitochondrial function in patients with COPD, but showed an unexpected decline in lean mass. |
Matheson EM et al. [37] | RCT | 90 days | USA | 354 (124 COPD) | ≥65 | 50.8%/49.2% | Received a high dose of protein and beta-hydroxy-beta-methylbutyrate containing oral nutritional supplement (ONS). | ONS provided during hospitalization and up to 90 days post-discharge improves handgrip strength (HGS) in malnourished older adults. |
Møgelberg N et al. [38] | RCT | 12 weeks | Denmark | 10 | 68 ± 12 | 30%/70% | High-protein diet. | High-protein diet combined with physical exercise had a clinically relevant effect on walking distance: 6MWD (97 ± 93 m, p = 0.04). |
Deutz NE et al. [39] | RCT | 90 days | USA | 214 | 74.5 ± 7.3 | 47.2%/52.8% | High-protein oral nutritional supplement (ONS) containing β-hydroxy-β-methylbutyrate (HMB). | Improved handgrip strength, body weight, and nutritional biomarkers within a 90-day period after hospital discharge. |
De Benedetto F et al. [40] | RCT | 2 months | Italy | 90 | 73 ± 7 | 75.5%/24.5% | Received 160 mg Coenzyme QTer® + 170 mg creatine. | Supplemented patients showed improvements in 6MWT (51 ± 69 versus 15 ± 91 m, p < 0.05), body cell mass and phase angle, sodium/potassium ratio, dyspnea indices, and ADL score. |
Aldhahir AM et al. [41] | RCT | 6 weeks | U.K. | 68 | 70 ± 9 | 62%/38% | High-protein supplementation during pulmonary rehabilitation. | No significant difference in Incremental Shuttle Walk Test (ISWT) distance: (IG: 342 ± 149 m; CG: 305 ± 148 m; p = 0.1). |
Karim A et al. [42] | RCT | 16 weeks | United Arab Emirates | 104 | 66.9 ± 3.4 | 100% male | Vivomix 112 billion *, one capsule a day. | Probiotics reduced plasma zonulin, claudin-3, and CAF22, along with an improvement in HGS, gait speed, and Short Physical Performance Battery (SPPB) scores (all p < 0.05). |
De Brandt J et al. [43] | RCT | 12 weeks | Belgium | 40 | 65 ± 6 | 70%/30% | Beta-alanine supplementation (3.2 g/d). | Beta-alanine supplementation is efficacious in augmenting muscle carnosine (+54% from mean baseline value) without side effects. |
Ogasawara T et al. [44] | RCT | 2 weeks | Japan | 45 | 77 ± 9 | 91%/9% | Received 1 g/d of eicosapentaenoic acid-enriched (EPA) oral nutrition supplementation. | EPA-enriched ONS supplementation had no significant benefit on lean body mass (LBM) and muscle mass. |
Beijers RJHCG et al. [45] | RCT | 7 days | Netherlands | 18 | 66.6 ± 7.5 | 72.2%/27.8% | Sodium nitrate (beetroot juice) ingestion (∼8 mmol/d). | 7 days of sodium nitrate supplementation does not modulate mechanical efficiency and blood pressure in COPD. |
Engelen M et al. [46] | RCT | 1 month | USA | 32 | - | - | 3.5 g of EPA + DHA/2.0 g of EPA + DHA or placebo capsules/ | Daily omega-3 (EPA + DHA) supplementation induces a shift toward a positive daily protein homeostasis. Extremity lean mass increased. |
Kerley CP et al. [47] | RCT | 2 weeks | Ireland | 8 | - | - | Daily nitrate-rich beetroot juice (BRJ; 12.9 mmol). | BRJ supplementation was associated with significantly increased NOx (p < 0.05) and a 14.6% increase in ISWT distance (+56 m, p = 0.00004). |
Pavitt MJ et al. [48] | RCT | 4 weeks | U.K. | 20 | - | - | 140 mL of nitrate-rich beetroot juice (12.9 mmol nitrate) (BRJ). | Nitrate-rich BRJ supplementation prolonged exercise endurance time in the IG as compared with the CG: 194.6 (147.5–411.7) s vs. 159.1 (121.9–298.5) s. |
Pavitt MJ et al. [49] | RCT | 8 weeks | U.K. | 122 | 70 ± 8 | 56%/44% | 140 mL of nitrate-rich beetroot juice (12.9 mmol nitrate). | Change in ISWT distance +60 m (10, 85) vs. +30 m (0, 70), p = 0.027, and estimated treatment effect on systolic blood pressure -7 mmHg. |
van Beers M et al. [50] | RCT | 12 months | Netherlands | 81 | 62.5 ± 0.9 | 51%/49% | 3 portions of nutritional supplementation per day (enriched with leucine, vitamin D, and polyunsaturated fatty acids). | Physical activity was higher in nutrition than in placebo (Δ1030 steps/day, p = 0.025); weight gain in nutrition (Δ1.54 kg, p = 0.041); improved EQ-5D (p = 0.009). |
Ingadottir AR et al. [51] | RCT | 12 months | Iceland | 34 | 72 ± 8 | 29%/71% | Hospitalized patients were randomized to ONS (n = 19) or snacks (n = 15) providing 600 kcal and 22 g of protein a day. | The SGRQ-C TS improved from baseline to 12 months in both groups (score of 3.9 ± 11.0 (p = 0.176) in the ONS group and score of 8.9 ± 14.1 (p = 0.041) in the snacks group). |
Zhang JH et al. [52] | RCT | 12 months | China | 260 | 65 ± 10.4 | 86%/14% | The IG was given nutritional support and complex pulmonary rehabilitation with psychological intervention. | The number of acute exacerbations was significantly reduced. PaO2 was significantly higher than in the control group. The anxiety score (4.1 ± 2.2) vs. (5.6 ± 2.7), depression score (4.1 ± 2.0) vs. (5.5 ± 2.6). and St George’s Score (36.8 ± 20.8) vs. (48.6 ± 19.5) were significantly decreased. |
Kim JS et al. [53] | RCT | 6 months | Columbia | 40 | 67.5 ± 6.5 | 55%/45% | Daily administration of high-dose fish oil capsules for six months. | Quality of life (SGRQ) improved significantly in COPD (4-point improvement in the SGRQ; p = 0.01). |
BaumgartnerA et al. [54] | RCT | 30 days | Switzerland | 378 (91 COPD) | 73.5 ± 13.5 | 55.1%/44.9% | Individualized nutritional support to reach protein and energy goals. | Individualized nutritional support to reach calorie and protein goals showed beneficial effect on mortality risk in the subgroup of patients with respiratory tract infection. |
Calder PC et al. [55] | RCT | 12 weeks | Norway | 45 | 69.5 | 51%/49% | 200 mL of targeted medical nutrition: 2 g omega-3 PUFA + 10 μg vitamin D3/d. | Reductions in exercise-induced fatigue (p = 0.0223), dyspnea (p = 0.0382), and systolic blood pressure (p = 0.0418) were observed. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, M.; Csípő, T.; Fazekas-Pongor, V.; Bálint, M.; Csizmadia, Z.; Tarantini, S.; Varga, J.T. The Possible Role of Food and Diet in the Quality of Life in Patients with COPD—A State-of-the-Art Review. Nutrients 2023, 15, 3902. https://doi.org/10.3390/nu15183902
Fekete M, Csípő T, Fazekas-Pongor V, Bálint M, Csizmadia Z, Tarantini S, Varga JT. The Possible Role of Food and Diet in the Quality of Life in Patients with COPD—A State-of-the-Art Review. Nutrients. 2023; 15(18):3902. https://doi.org/10.3390/nu15183902
Chicago/Turabian StyleFekete, Mónika, Tamás Csípő, Vince Fazekas-Pongor, Madarász Bálint, Zoltán Csizmadia, Stefano Tarantini, and János Tamás Varga. 2023. "The Possible Role of Food and Diet in the Quality of Life in Patients with COPD—A State-of-the-Art Review" Nutrients 15, no. 18: 3902. https://doi.org/10.3390/nu15183902