Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. Extraction of OMWW
2.3. LC–MS/MS Instrumental Layout and Parameters
2.4. DPPH• Radical Scavenging Activity
2.5. Ferric Reducing Antioxidant Power Assay (FRAP)
2.6. ABTS Assay
2.7. Cyclooxygenase Enzyme Inhibitory Assay
2.8. Statistical Analysis
3. Results
3.1. LC–MS/MS Analysis and Characterization
3.2. Antioxidant/Antiradical Properties
3.3. Anti-Inflammatory Properties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential Health Benefits of Olive Oil and Plant Polyphenols. Int. J. Mol. Sci. 2018, 19, 686. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity. Nutrients 2021, 13, 2028. [Google Scholar] [CrossRef]
- Foti, P.; Romeo, F.V.; Russo, N.; Pino, A.; Vaccalluzzo, A.; Caggia, C.; Randazzo, C.L. Olive Mill Wastewater as Renewable Raw Materials to Generate High Added-Value Ingredients for Agro-Food Industries. Appl. Sci. 2021, 11, 7511. [Google Scholar] [CrossRef]
- Zahi, M.R.; Zam, W.; El Hattab, M. State of Knowledge on Chemical, Biological and Nutritional Properties of Olive Mill Wastewater. Food Chem. 2022, 381, 132238. [Google Scholar] [CrossRef]
- Shabir, S.; Ilyas, N.; Saeed, M.; Bibi, F.; Sayyed, R.Z.; Almalki, W.H. Treatment Technologies for Olive Mill Wastewater with Impacts on Plants. Environ. Res. 2023, 216, 114399. [Google Scholar] [CrossRef]
- Barbera, A.C.; Maucieri, C.; Cavallaro, V.; Ioppolo, A.; Spagna, G. Effects of Spreading Olive Mill Wastewater on Soil Properties and Crops, a Review. Agric. Water Manag. 2013, 119, 43–53. [Google Scholar] [CrossRef]
- Sierra, J.; Martí, E.; Garau, M.A.; Cruañas, R. Effects of the Agronomic Use of Olive Oil Mill Wastewater: Field Experiment. Sci. Total Environ. 2007, 378, 90–94. [Google Scholar] [CrossRef]
- Tajini, F.A.T.M.A.; Ouerghi, A.B.I.D.; Hosni, K.A.R.I.M. Effect of Irrigation with Olive-Mill Waste-Water on Physiological and Biochemical Parameters as Well as Heavy-Metal Accumulation in Common Bean (Phaseolus vulgaris L.). J. New Sci. 2019, 66, 4193–4203. [Google Scholar]
- Caporaso, N.; Formisano, D.; Genovese, A. Use of Phenolic Compounds from Olive Mill Wastewater as Valuable Ingredients for Functional Foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2829–2841. [Google Scholar] [CrossRef]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.I.; Losito, I. Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef] [PubMed]
- Pinho, I.A.; Lopes, D.V.; Martins, R.C.; Quina, M.J. Phytotoxicity Assessment of Olive Mill Solid Wastes and the Influence of Phenolic Compounds. Chemosphere 2017, 185, 258–267. [Google Scholar] [CrossRef]
- Leouifoudi, I.; Zyad, A.; Ali, A.; Moulay, A.; Oukerrou, M.A.; Ait Mouse, H.; Mbarki, M. Identification and Characterisation of Phenolic Compounds Extracted from Moroccan Olive Mill Wastewater. Food Sci. Technol. 2014, 34, 249–257. [Google Scholar] [CrossRef]
- Di Mauro, M.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, M.; Centonze, G.; Maggiore, R.; D’Antona, N. Polyphenolic Fraction from Olive Mill Wastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications. Antioxidants 2019, 8, 462. [Google Scholar] [CrossRef] [PubMed]
- Khwaldia, K.; Attour, N.; Matthes, J.; Beck, L.; Schmid, M. Olive Byproducts and Their Bioactive Compounds as a Valuable Source for Food Packaging Applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1218–1253. [Google Scholar] [CrossRef]
- Silvan, J.M.; Pinto-Bustillos, M.A.; Vásquez-Ponce, P.; Prodanov, M.; Martinez-Rodriguez, A.J. Olive Mill Wastewater as a Potential Source of Antibacterial and Anti-Inflammatory Compounds against the Food-Borne Pathogen Campylobacter. Innov. Food Sci. Emerg. Technol. 2019, 51, 177–185. [Google Scholar] [CrossRef]
- Borzì, A.M.; Biondi, A.; Basile, F.; Luca, S.; Vicari, E.S.D.; Vacante, M. Olive Oil Effects on Colorectal Cancer. Nutrients 2018, 11, 32. [Google Scholar] [CrossRef]
- Barbara Bassani, T.R. Effect of a Purified Extract of Olive Mill Waste Water on Endothelial Cell Proliferation, Apoptosis, Migration and Capillary-Like Structure in Vitro and in Vivo. J. Bioanal. Biomed. 2015, 12, 1–8. [Google Scholar] [CrossRef]
- Rodrigues, F.; Pimentel, F.B.; Oliveira, M.B.P.P. Olive By-Products: Challenge Application in Cosmetic Industry. Ind. Crops Prod. 2015, 70, 116–124. [Google Scholar] [CrossRef]
- Nunes, M.A.; Pimentel, F.B.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Olive By-Products for Functional and Food Applications: Challenging Opportunities to Face Environmental Constraints. Innov. Food Sci. Emerg. Technol. 2016, 35, 139–148. [Google Scholar] [CrossRef]
- Carpi, S.; Polini, B.; Manera, C.; Digiacomo, M.; Salsano, J.E.; Macchia, M.; Scoditti, E.; Nieri, P. MiRNA Modulation and Antitumor Activity by the Extra-Virgin Olive Oil Polyphenol Oleacein in Human Melanoma Cells. Front. Pharmacol. 2020, 11, 574317. [Google Scholar] [CrossRef]
- Gabbia, D.; Carpi, S.; Sarcognato, S.; Cannella, L.; Colognesi, M.; Scaffidi, M.; Polini, B.; Digiacomo, M.; Esposito Salsano, J.; Manera, C.; et al. The Extra Virgin Olive Oil Polyphenol Oleocanthal Exerts Antifibrotic Effects in the Liver. Front. Nutr. 2021, 8, 715183. [Google Scholar] [CrossRef]
- Tasioula-Margari, M.; Tsabolatidou, E. Extraction, Separation, and Identification of Phenolic Compounds in Virgin Olive Oil by HPLC-DAD and HPLC-MS. Antioxidants 2015, 4, 548–562. [Google Scholar] [CrossRef] [PubMed]
- De Marco, E.; Savarese, M.; Paduano, A.; Sacchi, R. Characterization and Fractionation of Phenolic Compounds Extracted from Olive Oil Mill Wastewaters. Food Chem. 2007, 104, 858–867. [Google Scholar] [CrossRef]
- Cuffaro, D.; Bertini, S.; Macchia, M.; Digiacomo, M. Enhanced Nutraceutical Properties of Extra Virgin Olive Oil Extract by Olive Leaf Enrichment. Nutrients 2023, 15, 1073. [Google Scholar] [CrossRef]
- Borges, T.H.; Cabrera-Vique, C.; Seiquer, I. Antioxidant Properties of Chemical Extracts and Bioaccessible Fractions Obtained from Six Spanish Monovarietal Extra Virgin Olive Oils: Assays in Caco-2 Cells. Food Funct. 2015, 6, 2375–2383. [Google Scholar] [CrossRef]
- Pellegrini, N.; Del Rio, D.; Colombi, B.; Bianchi, M.; Brighenti, F. Application of the 2,2′-Azinobis(3-Ethylbenzothiazoline-6-Sulfonic Acid) Radical Cation Assay to a Flow Injection System for the Evaluation of Antioxidant Activity of Some Pure Compounds and Beverages. J. Agric. Food Chem. 2003, 51, 260–264. [Google Scholar] [CrossRef]
- Cuffaro, D.; Pinto, D.; Silva, A.M.; Bertolini, A.; Bertini, S.; Saba, A.; Macchia, M.; Rodrigues, F.; Digiacomo, M. Insights into the Antioxidant/Antiradical Effects and In Vitro Intestinal Permeation of Oleocanthal and Its Metabolites Tyrosol and Oleocanthalic Acid. Molecules 2023, 28, 5150. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2017, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Nuti, E.; Rossello, A.; Cuffaro, D.; Camodeca, C.; Van Bael, J.; van der Maat, D.; Martens, E.; Fiten, P.; Pereira, R.V.S.; Ugarte-Berzal, E.; et al. Bivalent Inhibitor with Selectivity for Trimeric MMP-9 Amplifies Neutrophil Chemotaxis and Enables Functional Studies on MMP-9 Proteoforms. Cells 2020, 9, 1634. [Google Scholar] [CrossRef]
- Tangney, C.; Rasmussen, H.E. Polyphenols, Inflammation, and Cardiovascular Disease. Curr. Atheroscler. Rep. 2013, 15, 324. [Google Scholar] [CrossRef]
- Lucas, L.; Russell, A.; Keast, R. Molecular Mechanisms of Inflammation. Anti-Inflammatory Benefits of Virgin Olive Oil and the Phenolic Compound Oleocanthal. Curr. Pharm. Des. 2011, 17, 754–768. [Google Scholar] [CrossRef] [PubMed]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef]
- Rosignoli, P.; Fuccelli, R.; Fabiani, R.; Servili, M.; Morozzi, G. Effect of Olive Oil Phenols on the Production of Inflammatory Mediators in Freshly Isolated Human Monocytes. J. Nutr. Biochem. 2013, 24, 1513–1519. [Google Scholar] [CrossRef]
- Carluccio, M.A.; Siculella, L.; Ancora, M.A.; Massaro, M.; Scoditti, E.; Storelli, C.; Visioli, F.; Distante, A.; De Caterina, R. Olive Oil and Red Wine Antioxidant Polyphenols Inhibit Endothelial Activation: Antiatherogenic Properties of Mediterranean Diet Phytochemicals. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 622–629. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.-H.; Smith, A.B.; Breslin, P.A.S. Phytochemistry: Ibuprofen-like Activity in Extra-Virgin Olive Oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef]
- Costa, V.; Costa, M.; Videira, R.A.; Andrade, P.B.; Paiva-Martins, F. Anti-Inflammatory Activity of Olive Oil Polyphenols-The Role of Oleacein and Its Metabolites. Biomedicines 2022, 10, 2990. [Google Scholar] [CrossRef]
- Moreno, J.J. Effect of Olive Oil Minor Components on Oxidative Stress and Arachidonic Acid Mobilization and Metabolism by Macrophages RAW 264.7. Free Radic. Biol. Med. 2003, 35, 1073–1081. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.; Pimentel, F.B.; Alves, R.C.; Oliveira, M.B.P.P. Phenolic Compounds from Olive Mill Wastes: Health Effects, Analytical Approach and Application as Food Antioxidants. Trends Food Sci. Technol. 2015, 45, 200–211. [Google Scholar] [CrossRef]
- Esposito Salsano, J.; Digiacomo, M.; Cuffaro, D.; Bertini, S.; Macchia, M. Content Variations in Oleocanthalic Acid and Other Phenolic Compounds in Extra-Virgin Olive Oil during Storage. Foods 2022, 11, 1354. [Google Scholar] [CrossRef]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Alvarino, T.; Cortina, J.L.; Saurina, J.; Granados, M. Olive Mill and Winery Wastes as Viable Sources of Bioactive Compounds: A Study on Polyphenols Recovery. Antioxidants 2020, 9, 1074. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Robards, K.; Lavee, S. Changes in Phenolic Content of Olive during Maturation. Int. J. Food Sci. Technol. 1999, 34, 265–274. [Google Scholar] [CrossRef]
- Belaqziz, M.; Tan, S.P.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; O’Donovan, O.; McLoughlin, P. Assessment of the Antioxidant and Antibacterial Activities of Different Olive Processing Wastewaters. PLoS ONE 2017, 12, e0182622. [Google Scholar] [CrossRef] [PubMed]
- Negro, C.; Aprile, A.; Luvisi, A.; Nicolì, F.; Nutricati, E.; Vergine, M.; Miceli, A.; Blando, F.; Sabella, E.; De Bellis, L. Phenolic Profile and Antioxidant Activity of Italian Monovarietal Extra Virgin Olive Oils. Antioxidants 2019, 8, 161. [Google Scholar] [CrossRef] [PubMed]
- Ballus, C.A.; Meinhart, A.D.; de Souza Campos, F.A., Jr.; Godoy, H.T. Total Phenolics of Virgin Olive Oils Highly Correlate with the Hydrogen Atom Transfer Mechanism of Antioxidant Capacity. J. Am. Oil Chem. Soc. 2015, 92, 843–851. [Google Scholar] [CrossRef]
Analyte | Retention Time (min) | SRM Transition (Da) | DP (V) | EP (V) | CE (V) | CxP (V) |
---|---|---|---|---|---|---|
Tyrosol | 7.55 ± 0.01 | 137.0 →106.0 (Q) | −35 | −7.0 | −20 | −5.0 |
137.0 →107.0 (q) | −21 | −5.4 | ||||
137.0 →119.0 (q) | −20 | −5.9 | ||||
Oleocanthal | 10.32 ± 0.01 | 303.1 →59.0 (Q) | −30 | −7.0 | −10 | −6.0 |
303.1 →165.0 (q) | −13 | −8.4 | ||||
303.1 →182.6 (q) | −13 | −9.6 | ||||
Oleocanthalic Acid | 10.40 ± 0.01 | 319.2 →110.8 (q) | −25 | −7.0 | −23 | −5.3 |
319.2 →155.0 (q) | −25 | −7.5 | ||||
319.2 →199.0 (Q) | −19 | −9.8 | ||||
Hydroxytyrosol | 6.49 ± 0.01 | 152.8 →81.2 (Q) | −90 | −7.0 | −29 | −13.0 |
152.8 →93.3 (q) | −30 | −11.0 | ||||
152.8 →122.6 (q) | −18 | −6.0 | ||||
Caffeic acid | 8.04 ± 0.01 | 179.0 →79.2 (q) | −70 | −10.0 | −32 | −14.0 |
179.0 →107.4 (q) | −30 | −9.0 | ||||
179.0 →134.6 (Q) | −20 | −7.0 | ||||
Syringic acid | 8.27 ± 0.01 | 197.0 →78.2 (Q) | −70 | −10.0 | −37 | −12.0 |
197.0 →106.3 (q) | −30 | −8.7 | ||||
197.0 →123.4 (q) | −35 | −6.0 | ||||
p-Coumaric Acid | 8.99 ± 0.01 | 163.0 →65.2 (q) | −70 | −7.5 | −52 | −10.0 |
163.0 →93.3 (q) | −40 | −5.0 | ||||
163.0 →119.2 (Q) | −20 | −3.5 | ||||
Ferulic Acid | 9.12 ± 0.01 | 193.0 →89.2 (Q) | −60 | −10.0 | −35 | −10.0 |
193.0 →106.3 (q) | −31 | −9.0 | ||||
193.0 →149.8 (q) | −30 | −8.0 | ||||
Vanillic Acid | 8.12 ± 0.01 | 167.0 →65.2 (q) | −60 | −5.5 | −37 | −10.0 |
167.0 →91.3 (q) | −25 | −7.0 | ||||
167.0 →108.4 (Q) | −26 | −5.0 | ||||
Vanillin | 8.71 ± 0.01 | 150.8 →92.3 (Q) | −60 | −7.0 | −27 | −7.5 |
150.8 →108.4 (q) | −30 | −5.0 | ||||
150.8 →136.5 (q) | −20 | −5.0 | ||||
Luteolin-7- glucoside | 9.22 ± 0.01 | 447.3 →65.2 (q) | −125 | −7.0 | −130 | −7.0 |
447.3 →83.2 (q) | −90 | −6.7 | ||||
447.3 →132.6 (Q) | −82 | −6.3 | ||||
Verbascoside | 8.63 ± 0.01 | 623.5 →59.0 (q) | −140 | −6.0 | −116 | −7.0 |
623.5 →85.2 (Q) | −92 | −10.0 | ||||
623.5 →133.6 (q) | −110 | −6.0 | ||||
Pinoresinol | 10.07 ± 0.10 | 357.3 →92.2 (Q) | −60 | −8.0 | −70 | −8.0 |
357.3 →121.6 (q) | −36 | −6.0 | ||||
357.3 →136.6 (q) | −45 | −6.5 | ||||
1-Acetoxy pinoresinol | 10.11 ± 0.10 | 415.3 →59.1 (q) | −110 | −9.5 | −71 | −6.0 |
415.3 →92.3 (q) | −70 | −5.0 | ||||
415.3 →136.6 (Q) | −38 | −4.7 | ||||
Oleuropein | 9.63 ± 0.20 | 539.4 →59.1 (Q) | −90 | −8.5 | −85 | −6.5 |
539.4 →89.3 (q) | −50 | −7 | ||||
539.4 →95.3 (q) | −50 | −8 | ||||
Oleacein | 9.63 ± 0.01 | 319.3 →59.1 (Q) | −110 | −9.5 | −18 | −6.4 |
319.3 →69.2 (q) | −38 | −7.0 | ||||
319.3 →95.4 (q) | −36 | −8.0 | ||||
Apigenin-7- glucoside | 9.73 ± 0.01 | 431.2 →63.2 (Q) | −185 | −10.0 | −101 | −9.8 |
431.2 →83.1 (q) | −80 | −9.3 | ||||
431.2 →117.3 (q) | −70 | −9.0 | ||||
Rutin | 9.33 ± 0.01 | 609.4 →65.1 (Q) | −220 | −9.0 | −160 | −10 |
609.4 →107.6 (q) | −90 | −5.0 | ||||
609.4 →108.44 (q) | −90 | −5.0 | ||||
4-Hydroxyphenyl acetic acid (IS) | 7.81 ± 0.01 | 150.8 →79.3 (q) | −70 | −7.5 | −24 | −9.5 |
150.8 →105.3 (q) | −24 | −4.0 | ||||
150.8 →107.4 (Q) | −10 | −4.0 |
Analyte | CL1 (μg/mg) | CL2 (μg/mg) | CF1 (μg/mg) | CF2 (μg/mg) |
---|---|---|---|---|
Hydroxytyrosol | 55.875 ± 1.511 | 6.821 ± 0.058 | 71.919 ± 3.943 | 25.253 ± 1.283 |
Tyrosol | 17.602 ± 0.792 | 8.119 ± 0.318 | 18.808 ± 0.447 | 12.213 ± 1.157 |
Oleocanthal | 2.271 ± 0.071 | 0.181 ± 0.006 | 1.059 ± 0.009 | 0.140 ± 0.006 |
Oleocanthalic acid | 10.628 ± 0.484 | 3.908 ± 0.151 | 2.149 ± 0.091 | 0.120 ± 0.010 |
Caffeic acid | 2.791 ± 0.101 | 1.453 ± 0.044 | 2.234 ± 0.112 | 3.144 ± 0.142 |
Syringic acid | N/A | N/A | N/A | N/A |
p-Coumaric acid | 0.756 ± 0.028 | 0.513 ± 0.019 | 0.428 ± 0.032 | 0.406 ± 0.016 |
Ferulic acid | 0.108 ± 0.020 | 0.195 ± 0.018 | 0.078 ± 0.012 | 0.040 ± 0.003 |
Vanillic acid | 1.321 ± 0.064 | 1.356 ± 0.032 | 0.576 ± 0.010 | 0.273 ± 0.011 |
Vanillin | 0.018 ± 0.001 | 0.001 ± 0.001 | 0.003 ± 0.001 | N/A |
Verbascoside | 1.624 ± 0.035 | 0.958 ± 0.018 | 18.182 ± 0.437 | 0.909 ± 0.035 |
Luteolin 7 glucoside | 0.010 ± 0.001 | 0.013 ± 0.001 | 1.115 ± 0.016 | 0.096 ± 0.004 |
Pinoresinol | 0.391 ± 0.005 | 0.333 ± 0.009 | 0.194 ± 0.006 | 0.194 ± 0.008 |
Oleuropein | 0.253 ± 0.001 | N/A | 2.541 ± 0.061 | 0.221 ± 0.006 |
Oleacein | 314.628 ± 19.535 | 5.896 ± 0.058 | 227.273 ± 3.974 | 23.440 ± 1.257 |
Apigenin 7 glucoside | N/A | N/A | 0.025 ± 0.001 | 0.015 ± 0.001 |
1-acetoxypinoresinol | 1.673 ± 0.180 | 0.162 ± 0.027 | 0.960 ± 0.109 | 1.627 ± 0.045 |
Rutin | N/A | N/A | 0.022 ± 0.004 | 0.014 ± 0.003 |
Sample | DPPH IC50 mg/mL | ABTS IC50 mg/mL | FRAP mmol Trolox/g |
---|---|---|---|
CL1 | 0.93 ± 0.03 a | 0.31 ± 0.015 b | 37.75 ± 2.42 c |
CL2 | 0.73 ± 0.01 b | 0.43 ± 0.013 a | 34.21 ± 0.94 c |
CF1 | 0.50 ± 0.02 c | 0.21 ± 0.006 c | 103.1 ± 5.1 a |
CF2 | 0.11 ± 0.01 d | 0.16 ± 0.002 d | 76.36 ± 5.51 b |
Sample | COX-1 % Inhibition | COX-2 % Inhibition |
---|---|---|
CL1 | 39.46 ± 0.002 | 83.6 ± 0.001 |
CL2 | 25.30 ± 0.004 | 24.40 ± 0.002 |
CF1 | 48.06 ± 0.002 | 88.14 ± 0.001 |
CF2 | 40.04 ± 0.003 | 55.80 ± 0.001 |
Sample | COX-1 IC50 (mg/mL) | COX-2 IC50 (mg/mL) |
---|---|---|
CL1 | 0.563 ± 0.165 | 0.088 ± 0.008 |
CF1 | 0.418 ± 0.145 | 0.082 ± 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuffaro, D.; Bertolini, A.; Bertini, S.; Ricci, C.; Cascone, M.G.; Danti, S.; Saba, A.; Macchia, M.; Digiacomo, M. Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties. Nutrients 2023, 15, 3746. https://doi.org/10.3390/nu15173746
Cuffaro D, Bertolini A, Bertini S, Ricci C, Cascone MG, Danti S, Saba A, Macchia M, Digiacomo M. Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties. Nutrients. 2023; 15(17):3746. https://doi.org/10.3390/nu15173746
Chicago/Turabian StyleCuffaro, Doretta, Andrea Bertolini, Simone Bertini, Claudio Ricci, Maria Grazia Cascone, Serena Danti, Alessandro Saba, Marco Macchia, and Maria Digiacomo. 2023. "Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties" Nutrients 15, no. 17: 3746. https://doi.org/10.3390/nu15173746
APA StyleCuffaro, D., Bertolini, A., Bertini, S., Ricci, C., Cascone, M. G., Danti, S., Saba, A., Macchia, M., & Digiacomo, M. (2023). Olive Mill Wastewater as Source of Polyphenols with Nutraceutical Properties. Nutrients, 15(17), 3746. https://doi.org/10.3390/nu15173746