Association between Nonfood Pre- or Probiotic Use and Cognitive Function: Results from NHANES 2011–2014
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population under Investigation
2.2. Assessment of Nonfood Pre- or Probiotic Use
2.3. Cognitive Functioning Evaluation
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Modulation of Cognitive Function Score According to Nonfood Pre- or Probiotic Use
3.3. Interaction Effects
3.4. Cognitive Impairment and Nonfood Pre- or Probiotic Use
3.5. Balance Test and PSM Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rehman, T. Role of the gut microbiota in age-related chronic inflammation. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tan, Z.; Li, S.; Zhu, F.; Qin, C.; Zhang, Q.; Yang, Y. Serum creatinine to cystatin C ratio and cognitive function among middle-aged and older adults in China. Front. Aging Neurosci. 2022, 14, 919430. [Google Scholar] [CrossRef]
- Hebert, L.E.; Weuve, J.; Scherr, P.A.; Evans, D.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 2013, 80, 1778–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iranpour, S.; Saadati, H.M.; Koohi, F.; Sabour, S. Association between caffeine intake and cognitive function in adults; effect modification by sex: Data from National Health and Nutrition Examination Survey (NHANES) 2013–2014. Clin. Nutr. 2020, 39, 2158–2168. [Google Scholar] [CrossRef]
- Brenner, S.R. Hypothesis: Intestinal barrier permeability may contribute to cognitive dysfunction and dementia. Age Ageing 2010, 39, 278. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.C.; Nocera, J.R.; Kelleher, J.L.; Addison, O. Prebiotic Intake in Older Adults: Effects on Brain Function and Behavior. Curr. Nutr. Rep. 2019, 8, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Wiley, N.C.; Dinan, T.G.; Ross, R.P.; Stanton, C.; Clarke, G.; Cryan, J.F. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health. J. Anim. Sci. 2017, 95, 3225–3246. [Google Scholar] [PubMed]
- Woodmansey, E.J.; McMurdo, M.E.; Macfarlane, G.T.; Macfarlane, S. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl. Environ. Microbiol. 2004, 70, 6113–6122. [Google Scholar] [CrossRef] [Green Version]
- Białecka-Dębek, A.; Granda, D.; Szmidt, M.K.; Zielińska, D. Gut Microbiota, Probiotic Interventions, and Cognitive Function in the Elderly: A Review of Current Knowledge. Nutrients 2021, 13, 2514. [Google Scholar] [CrossRef]
- Yang, X.; Yu, D.; Xue, L.; Li, H.; Du, J. Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged SAMP8 mice. Acta Pharm. Sinica B 2020, 10, 475–487. [Google Scholar] [CrossRef]
- O’Connor, L.E.; Gahche, J.J.; Herrick, K.A.; Davis, C.D.; Potischman, N.; Vargas, A.J. Nonfood Prebiotic, Probiotic, and Synbiotic Use Has Increased in US Adults and Children From 1999 to 2018. Gastroenterology 2021, 161, 476–486.e3. [Google Scholar] [CrossRef]
- Marx, W.; Scholey, A.; Firth, J.; D’Cunha, N.M.; Lane, M.; Hockey, M.; Ashton, M.M.; Cryan, J.F.; O’Neil, A.; Naumovski, N.; et al. Prebiotics, probiotics, fermented foods and cognitive outcomes: A meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 2020, 118, 472–484. [Google Scholar] [CrossRef] [PubMed]
- Baldi, S.; Mundula, T.; Nannini, G.; Amedei, A. Microbiota shaping—The effects of probiotics, prebiotics, and fecal microbiota transplant on cognitive functions: A systematic review. World J. Gastroenterol. 2021, 27, 6715–6732. [Google Scholar] [CrossRef] [PubMed]
- Lovden, M.; Fratiglioni, L.; Glymour, M.M.; Lindenberger, U.; Tucker-Drob, E.M. Education and Cognitive Functioning Across the Life Span. Psychol. Sci. Public Interes. 2020, 21, 6–41. [Google Scholar] [CrossRef]
- Marioni, R.E.; Yang, J.; Dykiert, D.; Mottus, R.; Campbell, A.; Group, C.C.W.; Davies, G.; Hayward, C.; Porteous, D.J.; Visscher, P.M.; et al. Assessing the genetic overlap between BMI and cognitive function. Mol. Psychiatry 2016, 21, 1477–1482. [Google Scholar] [CrossRef]
- Topiwala, A.; Ebmeier, K.P. Effects of drinking on late-life brain and cognition. Evid. Based Ment. Health 2018, 21, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Swan, G.E.; Lessov-Schlaggar, C.N. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol. Rev. 2007, 17, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, Y.; Li, J.; Liu, Y.; Chang, H.; Jiang, Y.; Tuo, X.; Zhou, L.; Yu, Y. Association between healthy eating index-2015 and various cognitive domains in US adults aged 60 years or older: The National Health and Nutrition Examination Survey (NHANES) 2011–2014. BMC Public Health 2021, 21, 1862. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, H.; Zhu, Z.; Ye, Q.; Lin, F.; Cai, G. Association between exposure to phenols and parabens and cognitive function in older adults in the United States: A cross-sectional study. Sci. Total Environ. 2023, 858, 160129. [Google Scholar] [CrossRef]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [Green Version]
- Lv, T.; Ye, M.; Luo, F.; Hu, B.; Wang, A.; Chen, J. Probiotics treatment improves cognitive impairment in patients and animals: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 120, 159–172. [Google Scholar] [CrossRef]
- Den, H.; Dong, X.; Chen, M.; Zou, Z. Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer’s disease or mild cognitive impairment—A meta-analysis of randomized controlled trials. Aging 2020, 12, 4010–4039. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Gonzalez, C.; Roman, P.; Rueda-Ruzafa, L.; Rodriguez-Arrastia, M.; Cardona, D. Effects of probiotics supplementation on dementia and cognitive impairment: A systematic review and meta-analysis of preclinical and clinical studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 108, 110189. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, X.; Chang, X. Intestinal Flora Balance Therapy Based on Probiotic Support Improves Cognitive Function and Symptoms in Patients with Alzheimer’s Disease: A Systematic Review and Meta-analysis. Biomed. Res. Int. 2022, 2022, 4806163. [Google Scholar] [CrossRef] [PubMed]
- Tahmasbi, F.; Mirghafourvand, M.; Shamekh, A.; Mahmoodpoor, A.; Sanaie, S. Effects of probiotic supplementation on cognitive function in elderly: A systematic review and Meta-analysis. Aging Ment. Health 2022, 26, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Krüger, J.F.; Hillesheim, E.; Pereira, A.C.S.N.; Camargo, C.Q.; Rabito, E.I. Probiotics for dementia: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2021, 79, 160–170. [Google Scholar] [CrossRef]
- Thion, M.S.; Low, D.; Silvin, A.; Chen, J.; Grisel, P.; Schulte-Schrepping, J.; Blecher, R.; Ulas, T.; Squarzoni, P.; Hoeffel, G.; et al. Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner. Cell 2018, 172, 500–516.e16. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, S.; Gilbert, S.; Serpell, L. Systematic review: Are overweight and obese individuals impaired on behavioural tasks of executive functioning? Neuropsychol. Rev. 2013, 23, 138–156. [Google Scholar] [CrossRef]
- Prickett, C.; Brennan, L.; Stolwyk, R. Examining the relationship between obesity and cognitive function: A systematic literature review. Obes. Res. Clin. Pract. 2015, 9, 93–113. [Google Scholar] [CrossRef]
Characteristic | Nonfood Pre- or Probiotic Use | No Nonfood Pre- or Probiotic Use | p |
---|---|---|---|
135 (7.56%) | 1653 (92.4%) | ||
Age | 69.05 (67.78, 70.32) | 69.36 (68.92, 69.80) | 0.65 |
Age_subgroup | 0.72 | ||
60–69 | 67 (57.00) | 838 (54.86) | |
≥70 | 68 (43.00) | 815 (45.14) | |
Gender | 0.56 | ||
Female | 68 (54.94) | 940 (57.55) | |
Male | 67 (45.06) | 713 (42.45) | |
Ethnicity | 0.01 | ||
White | 87 (89.63) | 892 (82.67) | |
Black | 26 (4.81) | 345 (6.95) | |
Mexican | 8 (1.85) | 120 (2.63) | |
Other | 14 (3.71) | 296 (7.75) | |
Education | 0.1 | ||
Less than high school | 12 (6.51) | 347 (13.31) | |
High school or higher | 123 (93.49) | 1306 (86.69) | |
PIR | 0.16 | ||
<1.3 | 21 (9.34) | 448 (15.62) | |
1.3–3.5 | 53 (37.32) | 632 (37.96) | |
>3.5 | 61 (53.34) | 573 (46.42) | |
BMI | 0.32 | ||
<25 | 40 (32.50) | 444 (25.91) | |
25–29.9 | 45 (37.06) | 588 (36.82) | |
≥30 | 50 (30.44) | 621 (37.27) | |
Smoker | 0.75 | ||
Never | 68 (52.96) | 855 (51.63) | |
Former | 57 (40.19) | 617 (39.00) | |
Current | 10 (6.84) | 181 (9.37) | |
Alcohol | 0.37 | ||
Current | 82 (69.56) | 928 (64.13) | |
Former | 38 (21.66) | 458 (22.57) | |
Never | 15 (8.78) | 267 (13.30) | |
Hypertension | 0.12 | ||
No | 45 (41.40) | 470 (32.25) | |
Yes | 90 (58.60) | 1183 (67.75) | |
Stroke | 0.28 | ||
No | 123 (90.64) | 1534 (93.70) | |
Yes | 12 (9.36) | 119 (6.30) | |
DM | 0.43 | ||
No | 85 (66.90) | 958 (63.43) | |
Yes | 50 (33.10) | 695 (36.57) | |
CVD | 0.57 | ||
No | 103 (76.22) | 1283 (78.78) | |
Yes | 32 (23.78) | 370 (21.22) | |
z.CERD | 0.27 (0.03, 0.51) | 0.14 (0.05, 0.24) | 0.3 |
z.AFT | 0.51 (0.26, 0.75) | 0.26 (0.18, 0.33) | 0.05 |
z.DSST | 0.61 (0.45, 0.76) | 0.31 (0.25, 0.38) | 0.002 |
sum.z | 1.39 (0.88, 1.89) | 0.71 (0.53, 0.90) | 0.02 |
z.AFT | z.CEART | z.DSST | Sum.z | |
---|---|---|---|---|
All participants (n = 1788) | ||||
Model 1 | 0.25 (0.00, 0.50) | 0.13 (−0.12, 0.38) | 0.29 (0.11, 0.47) ** | 0.67 (0.14, 1.21) * |
Model 2 | 0.14 (−0.08, 0.36) | 0.06 (−0.17, 0.29) | 0.15 (−0.01, 0.32) | 0.35 (−0.08, 0.78) |
Model 3 | 0.13 (−0.09, 0.36) | 0.07 (−0.17, 0.30) | 0.16 (−0.01, 0.33) | 0.36 (−0.09, 0.80) |
Male (n = 780) | ||||
Model 1 | 0.4 (−0.02, 0.83) | 0.27 (−0.05, 0.60) | 0.41 (0.11, 0.72) * | 1.09 (0.30, 1.88) * |
Model 2 | 0.29 (−0.07, 0.65) | 0.19 (−0.07, 0.45) | 0.25 (0.00, 0.50) | 0.73 (0.19, 1.27) * |
Model 3 | 0.25 (−0.11, 0.61) | 0.18 (−0.09, 0.45) | 0.26 (−0.01, 0.52) | 0.69 (0.13, 1.24) * |
Female (n = 1008) | ||||
Model 1 | 0.12(−0.15, 0.39) | 0.03 (−0.31, 0.37) | 0.2 (−0.01, 0.41) | 0.35 (−0.35, 1.05) |
Model 2 | 0.01 (−0.25, 0.27) | −0.05 (−0.36, 0.25) | 0.06 (−0.13, 0.25) | 0.01 (−0.57, 0.60) |
Model 3 | 0.03 (−0.24, 0.31) | −0.03 (−0.35, 0.29) | 0.08 (−0.12, 0.29) | 0.09 (−0.54, 0.72) |
Characteristic | Cognitive Impairment | Non-Cognitive Impairment | p |
---|---|---|---|
447 (25.00) | 1341 (75.00) | ||
Age | 71.51 (70.70, 72.33) | 68.94 (68.46, 69.42) | <0.0001 |
Age_subgroup | 0.003 | ||
60–69 | 226 (46.49) | 679 (56.59) | |
≥70 | 221 (53.51) | 662 (43.41) | |
Gender | 0.57 | ||
Female | 223 (55.54) | 785 (57.64) | |
Male | 224 (44.46) | 556 (42.36) | |
Ethnicity | <0.0001 | ||
White | 157 (65.82) | 822 (86.43) | |
Black | 143 (16.20) | 228 (5.06) | |
Mexican | 48 (6.15) | 80 (1.92) | |
Other | 99 (11.83) | 211 (6.59) | |
Education | <0.0001 | ||
Less than high school | 180 (29.57) | 179 (9.67) | |
High school or higher | 267 (70.43) | 1162 (90.33) | |
PIR | <0.0001 | ||
<1.3 | 205 (36.65) | 264 (11.18) | |
1.3–3.5 | 151 (40.26) | 534 (37.48) | |
>3.5 | 91 (23.09) | 543 (51.34) | |
BMI | 0.59 | ||
<25 | 122 (29.01) | 362 (26.05) | |
25–29.9 | 157 (35.00) | 476 (37.17) | |
≥30 | 168 (35.98) | 503 (36.78) | |
Smoker | 0.02 | ||
Never | 229 (52.43) | 694 (51.63) | |
Former | 151 (34.63) | 523 (39.91) | |
Current | 67 (12.94) | 124 (8.46) | |
Alcohol | <0.0001 | ||
Current | 183 (43.27) | 827 (68.45) | |
Former | 163 (32.51) | 333 (20.69) | |
Never | 101 (24.22) | 181 (10.86) | |
Hypertension | <0.0001 | ||
No | 101 (19.10) | 414 (35.58) | |
Yes | 346 (80.90) | 927 (64.42) | |
Stroke | 0.003 | ||
No | 388 (86.10) | 1269 (94.74) | |
Yes | 59 (13.90) | 72 (5.26) | |
DM | 0.01 | ||
No | 230 (54.74) | 813 (65.35) | |
Yes | 217 (45.26) | 528 (34.65) | |
CVD | 0.01 | ||
No | 310 (68.38) | 1076 (80.37) | |
Yes | 137 (31.62) | 265 (19.63) | |
Group | <0.001 | ||
No pre- or probiotic use | 432 (97.29) | 1221 (89.89) | |
Pre- or probiotic use | 15 (2.71) | 120 (10.11) |
Model 1 | Model 2 | Model 3 | ||||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Male | 0.06 (0.02, 0.19) | <0.0001 | 0.08 (0.02, 0.25) | <0.001 | 0.08 (0.02, 0.27) | <0.001 |
Female | 0.38 (0.17, 0.83) | 0.02 | 0.52 (0.21, 1.26) | 0.14 | 0.50 (0.20, 1.24) | 0.13 |
Variable | Sample | Mean Value | Standard Bias (%) | Bias Reduction (%) | T | p | |
---|---|---|---|---|---|---|---|
Nonfood Pre- or Probiotic Use | No Nonfood Pre- or Probiotic Use | ||||||
Age | U | 70.015 | 70.289 | −4.1 | −0.32 | 0.752 | |
M | 70.015 | 70.212 | −2.9 | 28.2 | −0.17 | 0.867 | |
Ethnicity | U | 0.731 | 0.889 | −14.5 | −1.09 | 0.277 | |
M | 0.731 | 0.792 | −5.6 | 61.7 | −0.32 | 0.746 | |
PIR | U | 1.478 | 1.149 | 45.3 | 3.32 | 0.001 | |
M | 1.478 | 1.377 | 13.9 | 69.4 | 0.84 | 0.401 | |
Education | U | 0.94 | 0.781 | 47.1 | 3.1 | 0.002 | |
M | 0.94 | 0.927 | 4 | 91.5 | 0.31 | 0.756 | |
BMI | U | 1.03 | 1.077 | −6.1 | −0.48 | 0.628 | |
M | 1.03 | 1.059 | −3.8 | 37.6 | −0.22 | 0.827 | |
Smoking | U | 0.642 | 0.776 | −21.1 | −1.58 | 0.114 | |
M | 0.642 | 0.7 | −9.3 | 56.2 | −0.54 | 0.589 | |
Alcohol | U | 1.642 | 1.539 | 16.8 | 1.28 | 0.201 | |
M | 1.642 | 1.594 | 7.7 | 54.1 | 0.45 | 0.654 | |
Hypertension | U | 0.612 | 0.697 | −17.9 | −1.44 | 0.15 | |
M | 0.612 | 0.663 | −10.7 | 40.4 | −0.61 | 0.545 | |
Stroke | U | 0.06 | 0.067 | −3.1 | −0.24 | 0.811 | |
M | 0.06 | 0.061 | −0.6 | 80.5 | −0.04 | 0.971 | |
CVD | U | 0.224 | 0.264 | −9.2 | −0.71 | 0.478 | |
M | 0.224 | 0.242 | −4.2 | 54.3 | −0.25 | 0.805 | |
DM | U | 0.358 | 0.467 | −22.2 | −1.71 | 0.088 | |
M | 0.358 | 0.406 | −9.7 | 56.1 | −0.57 | 0.573 |
Variable | Sample | Mean Value | Standard Bias (%) | Bias Reduction (%) | T | p | |
---|---|---|---|---|---|---|---|
Nonfood Pre- or Probiotic Use | No Nonfood Pre- or Probiotic Use | ||||||
Age | U | 70.235 | 69.766 | 7.1 | 0.55 | 0.584 | |
M | 70.235 | 70.013 | 3.4 | 52.6 | 0.19 | 0.846 | |
Ethnicity | U | 0.515 | 0.893 | −35.7 | −2.64 | 0.008 | |
M | 0.515 | 0.67 | −14.7 | 59 | −0.91 | 0.362 | |
PIR | U | 1.118 | 1.02 | 12.8 | 1 | 0.316 | |
M | 1.118 | 1.072 | 6 | 53.5 | 0.35 | 0.728 | |
Education | U | 0.882 | 0.797 | 23.4 | 1.71 | 0.087 | |
M | 0.882 | 0.846 | 10 | 57.2 | 0.62 | 0.537 | |
BMI | U | 1.118 | 1.13 | −1.5 | −0.12 | 0.906 | |
M | 1.118 | 1.133 | −1.9 | −28.3 | −0.11 | 0.913 | |
Smoking | U | 0.5 | 0.453 | 7.1 | 0.57 | 0.569 | |
M | 0.5 | 0.473 | 4.1 | 42.4 | 0.24 | 0.812 | |
Alcohol | U | 1.353 | 1.295 | 7.5 | −0.16 | 0.869 | |
M | 1.353 | 1.325 | 3.5 | 52.9 | −0.05 | 0.962 | |
Hypertension | U | 0.721 | 0.73 | −2.1 | 1.25 | 0.212 | |
M | 0.721 | 0.724 | −0.8 | 59.8 | 0.83 | 0.408 | |
Stroke | U | 0.118 | 0.076 | 14.2 | 1.13 | 0.26 | |
M | 0.118 | 0.075 | 14.3 | −0.3 | 0.72 | 0.474 | |
CVD | U | 0.25 | 0.194 | 13.5 | −0.05 | 0.964 | |
M | 0.25 | 0.198 | 12.4 | 8.3 | 0.04 | 0.971 | |
DM | U | 0.382 | 0.385 | −0.6 | 0.57 | 0.566 | |
M | 0.382 | 0.379 | 0.6 | −12.4 | 0.21 | 0.838 |
Nonfood Pre- or Probiotic Use | No Nonfood Pre- or Probiotic Use | Difference (ATT) | SE | T | p | |
---|---|---|---|---|---|---|
Male | 0.54 | −0.015 | 0.555 | 0.282 | 1.97 | <0.05 |
Female | 0.604 | 0.37 | 0.235 | 0.266 | 0.88 | >0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yang, N.; Peng, Y.; Zhou, H.; Li, Q. Association between Nonfood Pre- or Probiotic Use and Cognitive Function: Results from NHANES 2011–2014. Nutrients 2023, 15, 3408. https://doi.org/10.3390/nu15153408
Chen J, Yang N, Peng Y, Zhou H, Li Q. Association between Nonfood Pre- or Probiotic Use and Cognitive Function: Results from NHANES 2011–2014. Nutrients. 2023; 15(15):3408. https://doi.org/10.3390/nu15153408
Chicago/Turabian StyleChen, Jingyi, Nian Yang, Yilei Peng, Honghao Zhou, and Qing Li. 2023. "Association between Nonfood Pre- or Probiotic Use and Cognitive Function: Results from NHANES 2011–2014" Nutrients 15, no. 15: 3408. https://doi.org/10.3390/nu15153408
APA StyleChen, J., Yang, N., Peng, Y., Zhou, H., & Li, Q. (2023). Association between Nonfood Pre- or Probiotic Use and Cognitive Function: Results from NHANES 2011–2014. Nutrients, 15(15), 3408. https://doi.org/10.3390/nu15153408