Impact of COVID-19 on Micronutrient Adequacy and Dietary Diversity among Women of Reproductive Age from Selected Households in Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Designs and Study Population
2.2. The Measure of Nutrient Consumption and Dietary Diversity
2.3. Measurement of Nutrient Adequacy
2.4. Other Measurements
2.5. Statistical Analysis
2.6. Ethical Consideration
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marangoni, F.; Cetin, I.; Verduci, E.; Canzone, G.; Giovannini, M.; Scollo, P.; Corsello, G.; Poli, A. Maternal Diet and Nutrient Requirements in Pregnancy and Breastfeeding. An Italian Consensus Document. Nutrients 2016, 8, 629. [Google Scholar] [CrossRef] [PubMed]
- Nove, A.; Matthews, Z.; Neal, S.; Camacho, A.V. Maternal mortality in adolescents compared with women of other ages: Evidence from 144 countries. Lancet Glob. Health 2014, 2, e155–e164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torheim, L.E.; Arimond, M. Diet quality, micronutrient intakes and economic vulnerability of women. In Diet Quality: An Evidence-Based Approach; Preedy, V.R., Hunter, L.A., Patel, V.B., Eds.; Springer: New York, NY, USA, 2013; pp. 105–115. [Google Scholar]
- Black, R.e.; Victora, C.g.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Kavle, J.A.; Kavle, J.A.; Landry, M.; Landry, M. Addressing barriers to maternal nutrition in low- and middle-income countries: A review of the evidence and programme implications. Matern. Child Nutr. 2018, 14, e12508. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.H.; Huybregts, L.; Sanghvi, T.G.; Tran, L.M.; A Frongillo, E.; Menon, P.; Ruel, M.T. Dietary Diversity Predicts the Adequacy of Micronutrient Intake in Pregnant Adolescent Girls and Women in Bangladesh, but Use of the 5-Group Cutoff Poorly Identifies Individuals with Inadequate Intake. J. Nutr. 2018, 148, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Helen Keller International & James P Grant School of Public Health. State of Food Security and Nutrition in Bangladesh: 2014; Helen Keller International & James P Grant School of Public Health: Dhaka, Bangladesh, 2016. [Google Scholar]
- Arsenault, J.E.; Yakes, E.A.; Islam, M.M.; Hossain, M.B.; Ahmed, T.; Hotz, C.; Lewis, B.; Rahman, A.S.; Jamil, K.M.; Brown, K.H. Very Low Adequacy of Micronutrient Intakes by Young Children and Women in Rural Bangladesh Is Primarily Explained by Low Food Intake and Limited Diversity. J. Nutr. 2013, 143, 197–203. [Google Scholar] [CrossRef] [Green Version]
- FAO. Guidelines for Measuring Household and Individual Dietary Diversity; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- FAO, FHI360. Minimum Dietary Diversity for Women: A Guide to Measurement; FAO: Rome, Italy, 2016; Available online: http://www.fao.org/3/a-i5486e.pdf (accessed on 14 June 2018).
- Tavakoli, S.; Dorosty-Motlagh, A.R.; Hoshiar-Rad, A.; Eshraghian, M.R.; Sotoudeh, G.; Azadbakht, L.; Karimi, M.; Jalali-Farahani, S. Is dietary diversity a proxy measurement of nutrient adequacy in Iranian elderly women? Appetite 2016, 105, 468–476. [Google Scholar] [CrossRef]
- Hamadani, J.D.; Hasan, M.I.; Baldi, A.J.; Hossain, S.J.; Shiraji, S.; Bhuiyan, M.; Mehrin, S.F.; Fisher, J.; Tofail, F.; Tipu, M.U.; et al. Immediate impact of stay- at-home orders to control COVID-19 transmission on socioeconomic conditions, food insecurity, mental health, and intimate partner violence in Bangladeshi women and their families: An interrupted time series. Lancet Glob. Health 2020, 8, e1380–e1389. [Google Scholar] [CrossRef]
- Karim, K.M.R.; Tasnim, T. Impact of lockdown due to COVID-19 on nutrition and food security of the selected low-income households in Bangladesh. Heliyon 2022, 8, e09368. [Google Scholar] [CrossRef]
- World Bank. Food Security and COVID-19. 2021. Available online: https://www.worldbank.org/en/topic/agriculture/brief/food-security-and-covid-19 (accessed on 30 January 2022).
- Shannon, K.; Shannon, K.; Mahmud, Z.; Mahmud, Z.; Asfia, A.; Asfia, A.; Ali, M.; Ali, M. The Social and Environmental Factors Underlying Maternal Malnutrition in Rural Bangladesh: Implications for Reproductive Health and Nutrition Programs. Health Care Women Int. 2008, 29, 826–840. [Google Scholar] [CrossRef]
- Harris-Fry, H.; Shrestha, N.; Costello, A.; Saville, N.M. Determinants of intra-household food allocation between adults in South Asia—A systematic review. Int. J. Equity Health 2017, 16, 107. [Google Scholar] [CrossRef] [PubMed]
- Roberton, T.; Carter, E.D.; Chou, V.B.; Stegmuller, A.R.; Jackson, B.D.; Tam, Y.; Sawadogo-Lewis, T.; Walker, N. Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: A modelling study. Lancet Glob. Health 2020, 8, e901–e908. [Google Scholar] [CrossRef] [PubMed]
- Picchioni, F.; Goulao, L.F.; Roberfroid, D. The impact of COVID-19 on diet quality, food security and nutrition in low and middle income countries: A systematic review of the evidence. Clin. Nutr. 2022, 43, 2955–2964. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, N.; Rahim, A.T.M.A.; Mohiduzzaman, M.; Banu, C.P.; Bari, M.L.; Tukun, A.B.; Mannan, M.A.; Bhattacharjee, L.; Stadlmayr, B. Food Composition Table for Bangladesh, 1st ed.; Intergraphic Limited: Dhaka, Bangladesh, 2013; Available online: http://www.fao.org/fileadmin/templates/food_composition/documents/FCT_10_2_14_final_version.pdf (accessed on 14 June 2015).
- ICMR-NIN. Expert Group on Nutrient Requirement for Indians, Recommended Dietary Allowances (RDA) and Estimated Average Requirements (EAR); Indian Council of Medical Research-National Institute of Nutrition: Hyderabad, India, 2020. [Google Scholar]
- Martin-Prevel, Y.; Arimond, M.; Allemand, P.; Wiesmann, D.; Ballard, T.J.; Deitchler, M.; Dop, M.C.; Kennedy, G.; Lartey, A.; Lee, W.T.; et al. Development of a dichotomous indicator for population-level assessment of the dietary diversity of women of reproductive age. Curr. Dev. Nutr. 2017, 1, cdn.117.00170. [Google Scholar] [CrossRef] [Green Version]
- Coates, J.; Swindale, A.; Bilinsky, P. Household Food Insecurity Access Scale (HFIAS) for Measurement of Household Food Access: Indicator Guide (v. 3); Food and Nutrition Technical Assistance Project, Academy for Educational Development: Washington, DC, USA, 2007. [Google Scholar]
- Chakona, G.; Shackleton, C.M. Household Food Insecurity along an Agro-Ecological Gradient Influences Children’s Nutritional Status in South Africa. Front. Nutr. 2018, 4, 72. [Google Scholar] [CrossRef] [Green Version]
- Saaka, M.; Oladele, J.; Larbi, A.; Hoeschle-Zeledon, I. Household food insecurity, coping strategies, and nutritional status of pregnant women in rural areas of Northern Ghana. Food Sci. Nutr. 2017, 5, 1154–1162. [Google Scholar] [CrossRef]
- BRAC James P Grant School of Public Health and National Nutrition Services. State of Food Security and Nutrition in Bangladesh 2018–2019; BRAC James P Grant School of Public Health and National Nutrition Services: Dhaka, Bangladesh, 2019; Available online: https://www.bracjpgsph.org/assets/pdf/research/research-reports/State%20of%20Food%20Security%20and%20Nutrition%20in%20Bangladesh%202018-19.pdf (accessed on 1 January 2021).
- Akter, F.; Hossain, M.; Shamim, A.A.; Khan, S.A.; Hasan, M.; Hanif, A.A.M.; Hossaine, M.; Urmy, N.J.; Ullah, M.A.; Sarker, S.K.; et al. Prevalence and socio-economic determinants of inadequate dietary diversity among adolescent girls and boys in Bangladesh: Findings from a nationwide cross-sectional survey. J. Nutr. Sci. 2021, 10, e103. [Google Scholar] [CrossRef]
- Lecoutere, E.; Berg, M.V.D.; de Brauw, A. Changes in women’s empowerment in the household, women’s diet diversity, and their relationship against the background of COVID-19 in southern Bangladesh. J. Asian Econ. 2023, 84, 101559. [Google Scholar] [CrossRef]
- Roy, D.; Zulfiqar, F.; Tsusaka, T.W.; Datta, A. Household food insecurity and dietary diversity of women of reproductive age among smallholder farming households in northwest Bangladesh. Ecol. Food Nutr. 2022, 61, 460–483. [Google Scholar] [CrossRef]
- Rahman, H.Z.; Das, N.; Matin, I.; Wazed, M.A.; Ahmed, S.; Jahan, N.; Zillur, U. Livelihoods, Coping, and Support during COVID-19 Crisis; BRAC Institute of Governance and Development: Dhaka, Bangladesh, 2020; Available online: https://bigd.bracu.ac.bd/wp-content/uploads/2021/04/PPRC-BIGD_Press-Conference_Phase-1_16_April_.pdf (accessed on 1 January 2021).
- Tian, X.; Zhou, Y.; Wang, H. The Impact of COVID-19 on Food Consumption and Dietary Quality of Rural Households in China. Foods 2022, 11, 510. [Google Scholar] [CrossRef]
- Gómez, G.; Previdelli, N.; Fisberg, R.M.; Kovalskys, I.; Fisberg, M.; Herrera-Cuenca, M.; Sanabria, L.Y.C.; García, M.C.Y.; Rigotti, A.; Liria-Domínguez, M.R.; et al. Dietary Diversity and Micronutrients Adequacy in Women of Childbearing Age: Results from ELANS Study. Nutrients 2020, 12, 1994. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.U.; Bakhtiar, M.M.; Ali, M.; Ghostlaw, J.; Nguyen, P.H. Trends and Inequities in Food, Energy, Protein, Fat, and Carbohydrate Intakes in Rural Bangladesh. J. Nutr. 2022, 152, 2591–2603. [Google Scholar] [CrossRef] [PubMed]
- Na, M.; Mehra, S.; Christian, P.; Ali, H.; Shaikh, S.; Shamim, A.A.; Labrique, A.B.; Klemm, R.D.; Wu, L.S.; West, K.P. Maternal Dietary Diversity Decreases with Household Food Insecurity in Rural Bangladesh: A Longitudinal Analysis. J. Nutr. 2016, 146, 2109–2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Custodio, E.; Kayikatire, F.; Fortin, S.; Thomas, A.-C.; Kameli, Y.; Nkunzimana, T.; Ndiaye, B.; Martin-Prevel, Y. Minimum dietary diversity among women of reproductive age in urban Burkina Faso. Matern. Child Nutr. 2020, 16, e12897. [Google Scholar] [CrossRef] [PubMed]
- Weigel, M.M.; Armijos, R.X.; Racines, M.; Cevallos, W. Food Insecurity Is Associated with Undernutrition but Not Overnutrition in Ecuadorian Women from Low-Income Urban Neighborhoods. J. Environ. Public Health 2016, 2016, 8149459. [Google Scholar] [CrossRef] [Green Version]
- Fan, S. Preventing Global Food Security Crisis under COVID-19 Emergency. 2020. Available online: https://www.ifpri.org/blog/preventing-global-food-security-crisis-under-covid-19-emergency (accessed on 29 July 2022).
- Madzorera, I.; Ismail, A.; Hemler, E.C.; Korte, M.L.; Olufemi, A.A.; Wang, D.; Assefa, N.; Workneh, F.; Lankoande, B.; Chukwu, A.; et al. Impact of COVID-19 on Nutrition, Food Security, and Dietary Diversity and Quality in Burkina Faso, Ethiopia and Nigeria. Am. J. Trop. Med. Hyg. 2021, 105, 295–309. [Google Scholar] [CrossRef]
- Shahbaz, P.; Haq, S.U.; Bin Khalid, U.; Boz, I. Gender-based implications of the COVID-19 pandemic on household diet diversity and nutritional security in Pakistan. Br. Food J. 2021, 124, 951–967. [Google Scholar] [CrossRef]
- Shahbaz, P.; Haq, S.U.; Boz, I.; Aziz, B.; Hafeez, A. Gendered impact of COVID-19 on consumption of perishable and nonperishable food commodities in Pakistan. J. Agribus. Dev. Emerg. Econ. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Harris, J.; Depenbusch, L.; Pal, A.A.; Nair, R.M.; Ramasamy, S. Food system disruption: Initial livelihood and dietary effects of COVID-19 on vegetable producers in India. Food Secur. 2020, 12, 841–851. [Google Scholar] [CrossRef]
- Alderman, H.; Gilligan, D.; Hidrobo, M.; Leight, J.; Tafesse, A.S.; Tambet, H. Short-Term Evidence on Wellbeing of Rural Ethiopian Households during the COVID-19 Pandemic. 2020. Available online: https://www.ifpri.org/publication/short-term-evidence-wellbeing-120rural-ethiopian-households-during-covid-19-pandemic (accessed on 21 August 2020).
- Block, S.A.; Kiess, L.; Webb, P.; Kosen, S.; Moench-Pfanner, R.; Bloem, M.W. Macro shocks and micro outcomes: Child nutrition during Indonesia’s crisis. Econ. Hum. Biol. 2004, 2, 21–44. Available online: https://pubmed.ncbi.nlm.nih.gov/15463991/ (accessed on 12 March 2021). [CrossRef]
- Huber, C.; Finelli, L.; Stevens, W. The Economic and Social Burden of the 2014 Ebola Outbreak in West Africa. J. Infect. Dis. 2018, 218, S698–S704. Available online: https://pubmed.ncbi.nlm.nih.gov/30321368/ (accessed on 12 March 2021). [CrossRef] [PubMed]
- Harrisfry, H.; Azad, K.; Kuddus, A.; Shaha, S.; Nahar, B.; Hossen, M.; Younes, L.; Costello, A.; Fottrell, E. Socio-economic determinants of household food security and women’s dietary diversity in rural Bangladesh: A cross-sectional study. J. Health Popul. Nutr. 2015, 33, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.R.; Rahman, S.M.; Tarafder, C.; Rahman, M.; Rahman, A.; Ekström, E.-C. Exploring Rural Adolescents’ Dietary Diversity and Its Socioeconomic Correlates: A Cross-Sectional Study from Matlab, Bangladesh. Nutrients 2020, 12, 2230. [Google Scholar] [CrossRef]
- Saaka, M.; Mutaru, S.; Osman, S.M. Determinants of dietary diversity and its relationship with the nutritional status of pregnant women. J. Nutr. Sci. 2021, 10, e14. [Google Scholar] [CrossRef] [PubMed]
- Olaimat, A.N.; Alshami, I.K.; Al Hourani, H.; Sarhan, W.; Al-Holy, M.; Abughoush, M.; Al-Awwad, N.J.; Hoteit, M.; Al-Jawaldeh, A. Food Insecurity, Dietary Diversity, and Coping Strategies in Jordan during the COVID-19 Pandemic: A Cross-Sectional Study. Nutrients 2022, 14, 2252. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Al Banna, H.; Sayeed, A.; Sultana, M.S.; Brazendale, K.; Harris, J.; Mandal, M.; Jahan, I.; Abid, M.T.; Khan, S.I. Determinants of household food security and dietary diversity during the COVID-19 pandemic in Bangladesh. Public Health Nutr. 2020, 24, 1079–1087. [Google Scholar] [CrossRef]
Variables | Frequency | Percentage |
---|---|---|
Total women | 217 | 100 |
Distribution by age: | ||
16–19 year | 35 | 16.1 |
20–25 year | 83 | 38.2 |
26–30 year | 78 | 36.0 |
31–36 year | 21 | 9.7 |
Occupation of women: | ||
Garment workers | 47 | 21.7 |
Housewife | 167 | 76.9 |
Private job worker and others | 3 | 1.4 |
Educational status: | ||
Illiterate/informal education | 5 | 2.3 |
Primary school | 72 | 33.2 |
Secondary school | 128 | 59.0 |
Higher secondary or above | 12 | 5.5 |
Family income during COVID-19 lockdown: | ||
4000–5000 | 45 | 20.9 |
>5000–10,000 | 125 | 58.1 |
>10,000–15,000 | 33 | 15.4 |
>15,000–20,000 | 12 | 5.6 |
Nutritional status (BMI) (WHO criteria): | ||
Chronic energy deficiency (BMI < 18.5) | 11 | 5.1 |
Normal (BMI 18.5–24.99) | 144 | 66.4 |
Overweight (BMI 25–29.99) | 53 | 24.4 |
Obese (BMI ≥ 30) | 9 | 4.1 |
Dietary diversity: | ||
Low MDDS (0–4) | 130 | 59.9 |
Acceptable MDDS (5–10) | 87 | 40.1 |
Overall MDDS (mean ± SD) | 4.34 ± 0.91 | |
Household food insecurity access prevalence: | ||
Food secure (Score 0–1) | 15 | 6.9 |
Mildly food insecure (score 2–7) | 70 | 32.3 |
Moderately food insecure (score 8–11) | 40 | 18.4 |
Severely food insecure (score > 11) | 92 | 42.4 |
CSI score | ||
No/low coping (0–3) | 65 | 30.0 |
Medium coping (4–9) | 50 | 23.0 |
High coping (>9) | 102 | 47.0 |
Factor | Non-Diverse Group (DDS < 5) | Diverse Group (DDS ≥ 5) | λ2 Test, p Value |
---|---|---|---|
DDS (mean ± SD) | 3.708 ± 0.49 | 5.288 ± 0.48 | <0.001 (t test) |
Education | |||
Primary/informal | 62 (80.5%) | 15 (19.5%) | <0.001 |
Secondary to higher | 68 (48.6%) | 72 (51.4%) | |
Age | |||
Less than 25 years | 71 (65.1%) | 38 (34.9%) | 0.114 |
25 and above | 59 (54.6%) | 49 (45.4%) | |
Occupation | |||
Unemployed/housewife | 103 (61.3%) | 65 (38.7%) | 0.435 |
Employed | 27 (55.1%) | 22 (44.9%) | |
Family Income | |||
<8000 BDT/ month | 83 (80.6%) | 20 (19.4%) | <0.001 |
≥8000 BDT/month | 45 (40.2%) | 67 (59.8%) | |
BMI | |||
Normal | 78 (54.2%) | 66 (45.8%) | 0.015 |
Underweight/overweight | 52 (71.2%) | 21 (28.8%) | |
HFISA | |||
Moderately/severely food insecure | 103 (78%) | 29 (22%) | <0.001 |
Mildly insecure to food secure | 27 (31.8%) | 58 (68.2%) | |
Coping index | |||
Low coping | 18 (27.7%) | 47 (72.3%) | <0.001 |
Moderate coping | 29 (58.0%) | 21 (42.0%) | |
High coping | 83 (81.4%) | 19 (18.6%) | |
Family size | |||
≥4 | 28 (44.8%) | 32 (55.2) | 0.006 |
<4 | 102 (65.0%) | 55 (35.0%) |
Variables | Overall | Non-Diverse Group (DDS < 5) | Diverse Group (DDS ≥ 5) | p Value | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
Energy (Kcal) | 1475.1 | 191.3 | 1418.2 | 165.0 | 1560.1 | 196.1 | <0.001 |
Protein (g) | 46.3 | 9.9 | 42.64 | 8.24 | 51.68 | 9.97 | <0.001 |
Carbohydrates (g) | 256.8 | 32.9 | 250.2 | 30.37 | 265.5 | 34.47 | <0.001 |
Fat and oil (g) | 25.2 | 8.2 | 23.47 | 7.78 | 27.76 | 8.24 | <0.001 |
Dietary fiber (g) | 18.7 | 3.6 | 17.87 | 3.35 | 19.87 | 3.68 | <0.001 |
Calcium (mg) | 195.8 | 110.0 | 180.98 | 95.26 | 217.93 | 126.41 | 0.015 |
Magnesium (mg) | 247.2 | 45.8 | 238.95 | 48.95 | 259.47 | 37.81 | <0.001 |
Iron (mg) | 8.1 | 1.9 | 7.65 | 1.67 | 8.87 | 2.02 | <0.001 |
Zinc (mg) | 6.8 | 1.1 | 6.44 | 0.93 | 7.24 | 1.20 | <0.001 |
Copper (mg) | 1.2 | 0.2 | 1.19 | 0.26 | 1.27 | 0.24 | 0.023 |
Vitamin B1 (mg) | 0.7 | 0.2 | 0.663 | 0.25 | 0.74 | 0.27 | 0.045 |
Vitamin B2 (mg) | 0.37 | 0.12 | 0.35 | 0.11 | 0.41 | 0.13 | <0.001 |
Vitamin B6 (mg) | 0.64 | 0.15 | 0.60 | 0.16 | 0.70 | 0.13 | <0.001 |
Folate (µg) | 90.3 | 32.2 | 86.83 | 35.0 | 95.41 | 26.85 | <0.001 |
Vitamin C (mg) | 54.7 | 43.1 | 50.27 | 40.71 | 61.45 | 45.9 | 0.061 |
Vitamin A (µg) | 355.1 | 396. | 315.61 | 369.2 | 414.23 | 428.54 | 0.072 |
Vitamin D (µg) | 0.73 | 1.3 | 0.70 | 1.37 | 0.76 | 1.41 | 0.730 |
Nutrients | Overall | Non-Diverse Group | Diverse Group | p ** | Pearson Correlation * | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | p | r | p | |
Calcium | 0.243 | 0.136 | 0.224 | 0.118 | 0.271 | 0.156 | 0.013 | 0.171 | 0.012 |
Magnesium | 0.785 | 0.119 | 0.756 | 0.120 | 0.828 | 0.105 | <0.001 | 0.335 | <0.001 |
Iron | 0.534 | 0.132 | 0.499 | 0.116 | 0.586 | 0.138 | <0.001 | 0.317 | <0.001 |
Zinc | 0.610 | 0.102 | 0.580 | 0.084 | 0.655 | 0.110 | <0.001 | 0.454 | <0.001 |
Vitamin B1 | 0.594 | 0.187 | 0.568 | 0.182 | 0.634 | 0.189 | 0.011 | 0.262 | <0.001 |
Vitamin B2 | 0.230 | 0.078 | 0.214 | 0.073 | 0.253 | 0.080 | <0.001 | 0.288 | <0.001 |
Vitamin B6 | 0.396 | 0.100 | 0.369 | 0.099 | 0.435 | 0.087 | <0.001 | 0.364 | <0.001 |
Folate | 0.489 | 0.169 | 0.467 | 0.182 | 0.522 | 0.143 | 0.019 | 0.173 | 0.011 |
Vitamin C | 0.664 | 0.336 | 0.638 | 0.335 | 0.704 | 0.335 | 0.153 | 0.107 | 0.115 |
Vitamin A | 0.530 | 0.380 | 0.491 | 0.384 | 0.589 | 0.369 | 0.062 | 0.144 | 0.034 |
Vitamin D | 0.073 | 0.138 | 0.070 | 0.137 | 0.077 | 0.141 | 0.730 | 0.061 | 0.373 |
MAR | 0.468 | 0.096 | 0.444 | 0.094 | 0.505 | 0.087 | <0.001 | 0.365 | <0.001 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
OR | 95% CI of ORs | Sig | AOR | 95% CI of AORs | Sig | |
Family Size: family member ≤ 3 | 2.327 | 1.262–4.292 | 0.007 | 2.389 | 1.07–5.33 | 0.034 |
Family member > 3 (r) | ||||||
Monthly income during pandemic: <8000 (BDT) | 6.179 | 3.333–11.455 | <0.001 | 1.343 | 0.519–3.477 | 0.543 |
Income ≥ 8000 (r) | ||||||
Age of respondents: <25 years | 1.552 | 0.898–2.680 | 0.115 | 1.242 | 0.608–2.535 | 0.553 |
Age ≥ 25 years (r) | ||||||
Occupation: Housewife/unemployed | 1.291 | 0.679–2.456 | 0.436 | Remove from here | ||
Garment/service worker (r) | ||||||
Education: Primary/informal | 4.376 | 2.275–8.418 | <0.001 | 3.567 | 1.53–8.306 | 0.003 |
Secondary/higher (r) | ||||||
BMI: Underweight/overweight | 2.095 | 1.146–3.831 | 0.016 | 1.601 | 0.761–3.388 | 0.214 |
Normal (18.5–24.99) (r) | ||||||
HFI: Moderately to severely food insecure | 7.63 | 4.125–14.113 | <0.001 | 1.528 | 0.495–4.714 | 0.461 |
Secure to mildly food insecure (r) | ||||||
HH Coping Strategy Index (CSI): | <0.001 | 0.074 | ||||
Medium (4–9) | 3.606 | 1.651–7.877 | <0.001 | 3.014 | 1.09–8.36 | 0.034 |
High (>9) | 11.41 | 5.457–23.483 | <0.001 | 4.42 | 1.05–18.53 | 0.042 |
No/low (0–3) (r) | ||||||
Micronutrient Adequacy Ratio | 0.001 | 0.000–0.017 | <0.001 | 0.002 | 0.000–0.118 | 0.002 |
Constant | 2.052 | 0.531 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tasnim, T.; Karim, K.M.R. Impact of COVID-19 on Micronutrient Adequacy and Dietary Diversity among Women of Reproductive Age from Selected Households in Bangladesh. Nutrients 2023, 15, 3202. https://doi.org/10.3390/nu15143202
Tasnim T, Karim KMR. Impact of COVID-19 on Micronutrient Adequacy and Dietary Diversity among Women of Reproductive Age from Selected Households in Bangladesh. Nutrients. 2023; 15(14):3202. https://doi.org/10.3390/nu15143202
Chicago/Turabian StyleTasnim, Tasmia, and Kazi Muhammad Rezaul Karim. 2023. "Impact of COVID-19 on Micronutrient Adequacy and Dietary Diversity among Women of Reproductive Age from Selected Households in Bangladesh" Nutrients 15, no. 14: 3202. https://doi.org/10.3390/nu15143202
APA StyleTasnim, T., & Karim, K. M. R. (2023). Impact of COVID-19 on Micronutrient Adequacy and Dietary Diversity among Women of Reproductive Age from Selected Households in Bangladesh. Nutrients, 15(14), 3202. https://doi.org/10.3390/nu15143202