Integration of USDA Food Classification System and Food Composition Database for Image-Based Dietary Assessment among Individuals Using Insulin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identify Commonly Consumed Food Types and Those Contributing the Most to Total Energy Intake in the Population of Interest
2.2. Mine Images from the Web
2.3. Annotate the Food Images
2.4. Identify Range of Error for the Total Image Database
2.5. Review Food Images in the Food Image Database
3. Results
3.1. Range of Errors in the Food Types by Food Group in the Food Image Database
3.2. Errors Identified in the First Two Independent Reviews of Food Image Database
3.3. Finalize the Food Images Included and Their Classification to Food Type within the MEAL-DM Food Image Database
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dao, M.C.; Subar, A.F.; Warthon-Medina, M.; Cade, J.; Burrows, T.; Golley, R.K.; Forouhi, N.G.; Pearce, M.; Holmes, B.A. Dietary Assessment Toolkits: An Overview. Public Health Nutr. 2019, 22, 404–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, F.E.; Subar, A.F. Chapter 1—Dietary Assessment Methodology. In Nutrition in the Prevention and Treatment of Disease, 4th ed.; Coulston, A.M., Boushey, C.J., Ferruzzi, M.G., Delahanty, L.M., Eds.; Academic Press: London, UK, 2017; pp. 5–48. ISBN 978-0-12-802928-2. [Google Scholar]
- Gemming, L.; Utter, J.; Ni Mhurchu, C. Image-Assisted Dietary Assessment: A Systematic Review of the Evidence. J. Acad. Nutr. Diet. 2015, 115, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Hassannejad, H.; Matrella, G.; Ciampolini, P.; De Munari, I.; Mordonini, M.; Cagnoni, S. Automatic diet monitoring: A review of computer vision and wearable sensor-based methods. Int. J. Food Sci. Nutr. 2017, 68, 656–670. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Shao, Z.; Mao, R.; Fu, C.; Delp, E.J.; Zhu, F.; Kerr, D.A.; Boushey, C.J. Single-View Food Portion Estimation: Learning Image-to-Energy Mappings Using Generative Adversarial Networks. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 251–255. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Shao, Z.; Wright, J.; Kerr, D.; Boushey, C.; Zhu, F. Multi-task Image-Based Dietary Assessment for Food Recognition and Portion Size Estimation. In Proceedings of the 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Shenzhen, China, 6–8 August 2020; pp. 49–54. [Google Scholar] [CrossRef]
- He, J.; Zhu, F. Online Continual Learning for Visual Food Classification. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 2337–2346. [Google Scholar] [CrossRef]
- He, J.; Mao, R.; Shao, Z.; Wright, J.L.; Kerr, D.A.; Boushey, C.J.; Zhu, F. An End-to-End Food Image Analysis System. arXiv 2021, arXiv:12102.00645. [Google Scholar] [CrossRef]
- Boushey, C.J.; Spoden, M.; Zhu, F.M.; Delp, E.J.; Kerr, D.A. New mobile methods for dietary assessment: Review of image-assisted and image-based dietary assessment methods. Proc. Nutr. Soc. 2017, 76, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Eicher-Miller, H.A.; Prapkree, L.; Palacios, C. Expanding the Capabilities of Nutrition Research and Health Promotion Through Mobile-Based Applications. Adv. Nutr. 2021, 12, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Shroff, G.; Smailagic, A.; Siewiorek, D.P. Wearable context-aware food recognition for calorie monitoring. In Proceedings of the 2008 12th IEEE International Symposium on Wearable Computers, Pittsburgh, PA, USA, 28 September–1 October 2008; pp. 119–120. [Google Scholar] [CrossRef]
- Joutou, T.; Yanai, K. A food image recognition system with Multiple Kernel Learning. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 285–288. [Google Scholar] [CrossRef]
- Kong, F.; Tan, J. DietCam: Automatic dietary assessment with mobile camera phones. Pervasive Mob. Comput. 2012, 8, 147–163. [Google Scholar] [CrossRef]
- Oliveira, L.; Costa, V.; Neves, G.; Oliveira, T.; Jorge, E.; Lizarraga, M. A mobile, lightweight, poll-based food identification system. Pattern Recognit. 2014, 47, 1941–1952. [Google Scholar] [CrossRef]
- Liu, R. Food Recognition and Detection with Minimum Supervision. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2016. Available online: https://ir.lib.uwo.ca/etd/3507 (accessed on 11 August 2022).
- Min, W.; Wang, Z.; Liu, Y.; Luo, M.; Kang, L.; Wei, X.; Wei, X.; Jiang, S. Large Scale Visual Food Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 9932–9949. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.; Hao, W.; Ke, S.; Xiongwei, W.; Le, H.; Achananuparp, P.; Lim, E.-P.; Hoi, S.C.H. FoodAI: Food Image Recognition via Deep Learning for Smart Food Logging. In Proceedings of the KDD ‘19: 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2260–2268. [Google Scholar] [CrossRef]
- Merler, M.; Wu, H.; Uceda-Sosa, R.; Nguyen, Q.-B.; Smith, J.R. Snap, Eat, RepEat: A Food Recognition Engine for Dietary Logging. In Proceedings of the MADiMa ’16: 2nd International Workshop on Multimedia Assisted Dietary Management, Amsterdam, The Netherlands, 16 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 31–40. [Google Scholar] [CrossRef]
- Kaur, P.; Sikka, K.; Wang, W.; Belongie, S.; Divakaran, A. FoodX-251: A Dataset for Fine-grained Food Classification. arXiv 2019, arXiv:1907.06167. [Google Scholar]
- Chen, M.-Y.; Yang, Y.-H.; Ho, C.-J.; Wang, S.-H.; Liu, S.-M.; Chang, E.; Yeh, C.-H.; Ouhyoung, M. Automatic Chinese food identification and quantity estimation. In Proceedings of the SA ‘12: SIGGRAPH Asia 2012 Technical Briefs, Singapore, 28 November–1 December 2012; ACM Press: Singapore, 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Kawano, Y.; Yanai, K. Food image recognition with deep convolutional features. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication, Seattle, WA, USA, 13–17 September 2014; ACM: Seattle, WA, USA, 2014; pp. 589–593. [Google Scholar] [CrossRef]
- Salvador, A.; Hynes, N.; Aytar, Y.; Marin, J.; Ofli, F.; Weber, I.; Torralba, A. Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3020–3028. Available online: https://openaccess.thecvf.com/content_cvpr_2017/html/Salvador_Learning_Cross-Modal_Embeddings_CVPR_2017_paper.html (accessed on 11 August 2022).
- Marín, J.; Biswas, A.; Ofli, F.; Hynes, N.; Salvador, A.; Aytar, Y.; Weber, I.; Torralba, A. Recipe1M+: A Dataset for Learning Cross-Modal Embeddings for Cooking Recipes and Food Images. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 187–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farinella, G.M.; Allegra, D.; Stanco, F. A Benchmark Dataset to Study the Representation of Food Images. In Lecture Notes in Computer Science, Proceedings of the Computer Vision—ECCV 2014 Workshops, Zurich, Switzerland, 6–7,12 September 2014; Agapito, L., Bronstein, M.M., Rother, C., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 584–599. [Google Scholar] [CrossRef]
- Pouladzadeh, P.; Yassine, A.; Shirmohammadi, S. FooDD: Food Detection Dataset for Calorie Measurement Using Food Images. In Lecture Notes in Computer Science, Proceedings of the New Trends in Image Analysis and Processing—ICIAP 2015 Workshops, Genoa, Italy, 7–8 September 2015; Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 441–448. [Google Scholar] [CrossRef] [Green Version]
- Bossard, L.; Guillaumin, M.; Van Gool, L. Food-101—Mining Discriminative Components with Random Forests. In Lecture Notes in Computer Science, Proceedings of the Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 446–461. [Google Scholar] [CrossRef]
- Chen, J.; Ngo, C. Deep-based Ingredient Recognition for Cooking Recipe Retrieval. In Proceedings of the MM ’16: 24th ACM International Conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 32–41. [Google Scholar]
- FNDDS Download Databases: USDA ARS. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/ (accessed on 2 June 2022).
- Food Surveys Research Group; U.S. Department of Health; Centers for Disease Control and Prevention; National Center for Health Statistics. What We Eat in America (WWEIA) 2015. Available online: https://data.nal.usda.gov/dataset/what-we-eat-america-wweia-database (accessed on 11 August 2022).
- McClure, S.T.; Schlechter, H.; Oh, S.; White, K.; Wu, B.; Pilla, S.J.; Maruthur, N.M.; Yeh, H.-C.; Miller, E.R.; Appel, L.J. Dietary intake of adults with and without diabetes: Results from NHANES 2013–2016. BMJ Open Diabetes Res. Care 2020, 8, e001681. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Pareja, M.; León-Muñoz, L.M.; Guallar-Castillón, P.; Graciani, A.; López-García, E.; Banegas, J.R.; Rodríguez-Artalejo, F. The Diet of Diabetic Patients in Spain in 2008–2010: Accordance with the Main Dietary Recommendations—A Cross-Sectional Study. PLoS ONE 2012, 7, e39454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffeis, C.; Tomasselli, F.; Tommasi, M.; Bresadola, I.; Trandev, T.; Fornari, E.; Marigliano, M.; Morandi, A.; Olivieri, F.; Piona, C. Nutrition habits of children and adolescents with type 1 diabetes changed in a 10 years span. Pediatr. Diabetes 2020, 21, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhu, F.; Delp, E.J.; Eicher-Miller, H.A. Differences in Dietary Intake Exist among U.S. Adults by Diabetic Status Using NHANES 2009–2016. Nutrients 2022, 14, 3284. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; He, J.; Shao, Z.; Yarlagadda, S.K.; Zhu, F. Visual Aware Hierarchy Based Food Recognition. In Proceedings of the Pattern Recognition—ICPR International Workshops and Challenges, Virtual Event, 10–15 January 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 571–598. [Google Scholar]
- Shao, Z.; Mao, R.; Zhu, F. Semi-Automatic Crowdsourcing Tool for Online Food Image Collection and Annotation. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 5186–5189. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28, Available online: https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html (accessed on 11 August 2022).
- Rhodes, D.G.; Morton, S.; Hymes, M.A.; Friday, J.E.; Martin, C.L.; Steinfeldt, L.C.; Moshfegh, A.J. 2017–2018 Food and Nutrient Database for Dietary Studies. Available online: https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/fndds/2017_2018_FNDDS_Doc.pdf (accessed on 11 August 2022).
Food Group (Number of Food Types) | Total Number of Images | Range of Error % for Food Types in Food Groups | Mean Error % for Food Groups | ||
---|---|---|---|---|---|
Wrong Food | Incorrect Box Placement | Wrong Food | Incorrect Box Placement | ||
Milk and Dairy (1) | 173 | 12.7% | 0.0% | 12.7% | 0.0% |
Grains (10) | 2056 | 0–24.3% | 0–1.6% | 9.9% | 0.3% |
Mixed Dishes (14) | 3165 | 0–24.5% | 0–0.5% | 8.1% | 0.2% |
Snacks and Sweets (10) | 2555 | 0–14.8% | 0–1.0% | 5.3% | 0.2% |
Vegetables (12) | 2664 | 0.8–19.2% | 0–2.7% | 5.1% | 0.5% |
Protein Foods (21) | 4371 | 0–16.5% | 0–2.8% | 4.5% | 0.7% |
Fruits (6) | 1315 | 0.5–13.0% | 0–2.1% | 3.2% | 0.7% |
Total (74) | 16,299 | 0–24.5% | 0–2.8% | 6.4% | 0.4% |
Images | Errors | Revision |
---|---|---|
Incorrect food type (identified as taco) | Move to the food type of “Tortilla and corn chips” | |
Raw food | Delete | |
Incorrect bounding box (blue bounding box on the left was incorrectly placed on both the red bell pepper and tomato) | Two bounding boxes should be used to designate the red bell pepper and tomato separately | |
Incorrect bounding box (missing one bounding box for the soup on the left) | Add a bounding box to identify the soup on the left side of the image |
Images Number | Image | FNDDS Code 1 1 | Food Description 1 1 | FNDDS Code 2 2 | Food Description 2 2 | Final Code | Final Description | Notes 3 |
---|---|---|---|---|---|---|---|---|
767361.jpg | 42100100 | Almonds, NFS | 42101130 | Almonds, unsalted | 42101130 | Almonds, unsalted | Based on the image, almonds are not salted, so 42101130 Almonds, unsalted is a more suited food code for this image | |
754266.jpg | 24120120 | Chicken breast, NS as to cooking method, skin not eaten | 24103050 | Chicken, NS as to part, grilled without sauce, NS as to skin eaten | 24123301 | Chicken breast, grilled without sauce, skin not eaten | The final code specified the cooking method and excluded the skin that did not show in the image |
Image Number | Image | Food Broad Group (WWEIA) | Food Category (WWEIA) | Food Subcategory (WWEIA) | USDA Food Code | USDA Food Code Description | Standard Serving Size 2 | Energy (kcal) | Protein (g) | Fat (g) | Carbohydrate (g) | Calcium (mg) | Vitamin D (mcg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
732381.jpg | Fruits | Apple | Apple | 63101000 | Apple, raw | 100 g | 61 | 0.17 | 0.15 | 14.8 | 5 | 0 | |
733566.jpg | Mixed Dishes | Meat mixed dishes | Stew beef | 27311310 | Beef stew with potatoes and vegetables including carrots, broccoli, and/or dark-green leafy; tomato-based sauce | 100 g | 90 | 5.24 | 3.98 | 8.25 | 14 | 0 | |
783254.jpg | Mixed dishes | Pasta mixed dishes | Pasta | 58146301 | Pasta with tomato-based sauce and added vegetables, restaurant | 100 g | 158 | 3.47 | 7.85 | 18.13 | 14 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; He, J.; Zhu, F.; Delp, E.J.; Eicher-Miller, H.A. Integration of USDA Food Classification System and Food Composition Database for Image-Based Dietary Assessment among Individuals Using Insulin. Nutrients 2023, 15, 3183. https://doi.org/10.3390/nu15143183
Lin L, He J, Zhu F, Delp EJ, Eicher-Miller HA. Integration of USDA Food Classification System and Food Composition Database for Image-Based Dietary Assessment among Individuals Using Insulin. Nutrients. 2023; 15(14):3183. https://doi.org/10.3390/nu15143183
Chicago/Turabian StyleLin, Luotao, Jiangpeng He, Fengqing Zhu, Edward J. Delp, and Heather A. Eicher-Miller. 2023. "Integration of USDA Food Classification System and Food Composition Database for Image-Based Dietary Assessment among Individuals Using Insulin" Nutrients 15, no. 14: 3183. https://doi.org/10.3390/nu15143183
APA StyleLin, L., He, J., Zhu, F., Delp, E. J., & Eicher-Miller, H. A. (2023). Integration of USDA Food Classification System and Food Composition Database for Image-Based Dietary Assessment among Individuals Using Insulin. Nutrients, 15(14), 3183. https://doi.org/10.3390/nu15143183