Current Insights Regarding Intestinal Failure-Associated Liver Disease (IFALD): A Narrative Review
Abstract
:1. Introduction
- Type I: acute condition, usually after abdominal surgery or during critical illness; patients require short-term parenteral nutrition and/or fluid support lasting for days.
- Type II: prolonged acute condition, in which patients are metabolically unstable and require multidisciplinary care lasting for week to months.
2. Methods
2.1. Selection Criteria
2.2. Search Strategy
3. Epidemiology
4. Etiology and Pathophysiology
4.1. Risk Factors
4.2. Intravenous Lipid Emulsions
4.3. Nutrient Toxicity
4.3.1. Glucose Overload
4.3.2. ω-6 vs. ω-3 Fatty Acids
4.3.3. Medium Chain Triglycerides (MCTs)
4.3.4. Phytosterols
- Disruption of the FXR-FGF19 signaling axis. One of the most prevalent phytosterols, stigmasterol is an antagonist to the farnesoid X receptor and reduces the expression of the genes for bile acid transporters. The antagonistic effect of stigmasterol has been found to be dose-dependent and to involve competition at the FXR ligand-binding domain [63].
- Enhancement of the inflammatory response in macrophages. In animal models, it has been shown that phytosterols maximize the inflammatory response in Kupffer cells synergistically with lipopolysaccharides (LPS) [62,64]. A study on a mouse model supported the hypothesis that IFALD results from proinflammatory activation of hepatic macrophages by intestinal derived LPS and circulating phytosterols. This leads to generation of IL-1β, which binds to the receptors on the hepatocytes and increases NF-κB translocation to the nucleus, in turn leading to suppression of genes encoding FXR and LXR as well as FXR-regulated and LXR-regulated genes [65].
4.3.5. Trace Elements Overload
4.4. Nutrient Deficiency
4.4.1. Choline, Carnitine, N-Acetylcysteine
4.4.2. Vitamin E
4.5. IF-Related Risk Factors
4.5.1. Gut Microbiome
4.5.2. Enteral Feeding
4.5.3. Bile Acid Metabolism and Gut–Liver Cross-Talk
4.5.4. Insulin Signaling Pathways
4.5.5. Metabolomics
4.6. Systemic-Related Risk Factors
4.6.1. Prematurity
4.6.2. Central Line-Associated Blood Stream Infections (CLABSI) and Sepsis
5. Diagnosis
5.1. Physical Examination
5.2. Biomarkers and Imaging
5.3. Liver Biopsy, IFALD Phases, and Liver Histology
6. Management
6.1. Optimizing Nutrition
6.1.1. Duration of Nutrition
6.1.2. Composition of Nutrition
6.1.3. Advancing Enteral Feedings
6.2. Pharmacologic Therapies
6.2.1. Ursodeoxycholic Acid
6.2.2. Cholecystokinin-Octapeptide (CCK-OP)
6.2.3. Intestinal Growth Factors
6.2.4. Phenobarbital
6.2.5. Metronidazol
6.2.6. Erythromycin
6.3. Microbiome Therapies
6.4. Prevention of CLABSI/Sepsis
6.5. Surgical Lengthening Procedures
6.6. Transplantation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALA | α-linoleic acid |
CCK-OP | cholecystokinin-octapeptide |
CLABSI | central line-associated blood stream infections |
EFAD | essential fatty acid deficiency |
EN | enteral nutrition |
FOLE | fish oil-based intravenous lipid emulsion |
IF | intestinal failure |
IFALD | intestinal failure-associated liver disease |
ILE | intravenous lipid emulsion |
LA | linoleic acid |
LCT | long chain triglycerides |
LILT | longitudinal intestinal lengthening and tailoring |
LPS | lipopolysaccharides |
MCT | medium chain triglycerides |
MOLE | mixed-oil or composite intravenous lipid emulsion |
MRS | magnetic resonance spectroscopy |
MUFA | monounsaturated fatty acids |
NAFLD | non-alcoholic liver disease |
OOLE | olive oil-based intravenous lipid emulsion |
PN | parenteral nutrition |
PNAC | parenteral nutrition-associated cholestasis |
PNALD | parenteral nutrition-associated liver disease |
PUFA | polyunsaturated fatty acids |
SBS | short bowel syndrome |
SIBO | small intestine bacterial overgrowth |
SOLE | soybean oil-based intravenous lipid emulsion |
STEP | serial transverse enteroplasty |
TE | transient elastography |
UDCA | ursodeoxycholic acid |
References
- Pironi, L.; Arends, J.; Baxter, J.; Bozzetti, F.; Peláez, R.B.; Cuerda, C.; Forbes, A.; Gabe, S.; Gillanders, L.; Holst, M.; et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin. Nutr. 2015, 34, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, L.; Cloutier, A.; Lal, S. Advances in chronic intestinal failure management and therapies. Curr. Opin. Gastroenterol. 2020, 36, 223–229. [Google Scholar] [CrossRef]
- Pironi, L.; Arends, J.; Bozzetti, F.; Cuerda, C.; Gillanders, L.; Jeppesen, P.B.; Joly, F.; Kelly, D.; Lal, S.; Staun, M.; et al. Corrigendum to “ESPEN guidelines on chronic intestinal failure in adults” [Clin Nutr 35 (2) (2016) 247–307]. Clin. Nutr. 2017, 36, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secor, J.D.; Yu, L.; Tsikis, S.; Fligor, S.; Puder, M.; Gura, K.M. Current strategies for managing intestinal failure-associated liver disease. Expert Opin. Drug Saf. 2021, 20, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Inayet, N.; Neild, P. Parenteral nutrition. J. R. Coll. Physicians Edinb. 2015, 45, 45–48. [Google Scholar] [CrossRef]
- Fousekis, F.S.; Mitselos, I.V.; Christodoulou, D.K. New insights into intestinal failure-associated liver disease in adults: A comprehensive review of the literature. Saudi J. Gastroenterol. 2021, 27, 3–12. [Google Scholar] [CrossRef]
- Lee, W.S.; Chew, K.S.; Ng, R.T.; Kasmi, K.E.; Sokol, R.J. Intestinal failure-associated liver disease (IFALD): Insights into pathogenesis and advances in management. Hepatol. Int. 2020, 14, 305–316. [Google Scholar] [CrossRef]
- Lacaille, F.; Gupte, G.; Colomb, V.; D’Antiga, L.; Hartman, C.; Hojsak, I.; Kolacek, S.; Puntis, J.; Shamir, R. Intestinal failure-associated liver disease: A position paper of the ESPGHAN Working Group of Intestinal Failure and Intestinal Transplantation. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Gabe, S.M.; Culkin, A. Abnormal liver function tests in the parenteral nutrition fed patient. Frontline Gastroenterol. 2010, 1, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Khalaf, R.T.; Sokol, R.J. New Insights Into Intestinal Failure-Associated Liver Disease in Children. Hepatology 2020, 71, 1486–1498. [Google Scholar] [CrossRef]
- Javid, P.J.; Oron, A.P.; Duggan, C.P.; Squires, R.H.; Horslen, S.P. The extent of intestinal failure-associated liver disease in patients referred for intestinal rehabilitation is associated with increased mortality: An analysis of the Pediatric Intestinal Failure Consortium database. J. Pediatr. Surg. 2018, 53, 1399–1402. [Google Scholar] [CrossRef] [PubMed]
- Colomb, V.; Dabbas-Tyan, M.; Taupin, P.; Talbotec, C.; Révillon, Y.; Jan, D.; de Potter, S.; Gorski-Colin, A.-M.; Lamor, M.; Herreman, K.; et al. Long-term outcome of children receiving home parenteral nutrition: A 20-year single-center experience in 302 patients. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Cavicchi, M.; Beau, P.; Crenn, P.; Degott, C.; Messing, B. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann. Intern. Med. 2000, 132, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Sasdelli, A.S.; Guidetti, M.; Pazzeschi, C.; Pironi, L. Intestinal failure associated liver disease in adult patients: A one-year prospective study. Nutrition 2019, 65, 2. [Google Scholar] [CrossRef]
- Pichler, J.; Horn, V.; Macdonald, S.; Hill, S. Intestinal failure-associated liver disease in hospitalised children. Arch. Dis. Child. 2012, 97, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Lauriti, G.; Zani, A.; Aufieri, R.; Cananzi, M.; Chiesa, P.L.; Eaton, S.; Pierro, A. Incidence, prevention, and treatment of parenteral nutrition-associated cholestasis and intestinal failure-associated liver disease in infants and children: A systematic review. JPEN J. Parenter. Enter. Nutr. 2014, 38, 70–85. [Google Scholar] [CrossRef]
- Willis, T.C.; Carter, B.A.; Rogers, S.P.; Hawthorne, K.M.; Hicks, P.D.; Abrams, S.A. High rates of mortality and morbidity occur in infants with parenteral nutrition-associated cholestasis. J. Parenter. Enter. Nutr. 2010, 34, 32–37. [Google Scholar] [CrossRef]
- Beath, S.; Pironi, L.; Gabe, S.; Horslen, S.; Sudan, D.; Mazeriegos, G.; Steiger, E.; Goulet, O.; Fryer, J. Collaborative strategies to reduce mortality and morbidity in patients with chronic intestinal failure including those who are referred for small bowel transplantation. Transplantation 2008, 85, 1378–1384. [Google Scholar] [CrossRef]
- Brandt, C.F.; Hvistendahl, M.; Naimi, R.M.; Tribler, S.; Staun, M.; Brøbech, P.; Jeppesen, P.B. Home Parenteral Nutrition in Adult Patients With Chronic Intestinal Failure: The Evolution Over 4 Decades in a Tertiary Referral Center. JPEN J. Parenter. Enter. Nutr. 2017, 41, 1178–1187. [Google Scholar] [CrossRef]
- Lloyd, D.A.J.; Vega, R.; Bassett, P.; Forbes, A.; Gabe, S.M. Survival and dependence on home parenteral nutrition: Experience over a 25-year period in a UK referral centre. Aliment. Pharmacol. Ther. 2006, 24, 1231–1240. [Google Scholar] [CrossRef]
- Dibb, M.; Soop, M.; Teubner, A.; Shaffer, J.; Abraham, A.; Carlson, G.; Lal, S. Survival and nutritional dependence on home parenteral nutrition: Three decades of experience from a single referral centre. Clin. Nutr. 2017, 36, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Fundora, J.; Aucott, S.W. Intestinal Failure-Associated Liver Disease in Neonates. Neoreviews 2020, 21, e591–e599. [Google Scholar] [CrossRef] [PubMed]
- Mutanen, A.; Pakarinen, M.P. Serum fasting GLP-1 and GLP-2 associate with intestinal adaptation in pediatric onset intestinal failure. Clin. Nutr. 2017, 36, 1349–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutanen, A.; Lohi, J.; Heikkilä, P.; Jalanko, H.; Pakarinen, M.P. Loss of ileum decreases serum fibroblast growth factor 19 in relation to liver inflammation and fibrosis in pediatric onset intestinal failure. J. Hepatol. 2015, 62, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Carter, B.A.; Shulman, R.J. Mechanisms of disease: Update on the molecular etiology and fundamentals of parenteral nutrition associated cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol. 2007, 4, 277–287. [Google Scholar] [CrossRef]
- von Rettberg, H.; Hannman, T.; Subotic, U.; Brade, J.; Schaible, T.; Waag, K.L.; Loff, S. Use of di(2-ethylhexyl)phthalate-containing infusion systems increases the risk for cholestasis. Pediatrics 2009, 124, 710–716. [Google Scholar] [CrossRef]
- Gaitantzi, H.; Hakenberg, P.; Theobald, J.; Heinlein, H.; Cai, C.; Loff, S.; Wölfl, S.; Ebert, M.P.; Breitkopf-Heinlein, K.; Subotic, U. Di (2-Ethylhexyl) Phthalate and Its Role in Developing Cholestasis: An In Vitro Study on Different Liver Cell Types. J. Pediatr. Gastroenterol. Nutr. 2018, 66, e28–e35. [Google Scholar] [CrossRef]
- Ayotte, P.; Plaa, G.L. Hepatic subcellular distribution of manganese in manganese and manganese-bilirubin induced cholestasis. Biochem. Pharmacol. 1985, 34, 3857–3865. [Google Scholar] [CrossRef]
- Abdalian, R.; Saqui, O.; Fernandes, G.; Allard, J.P. Effects of manganese from a commercial multi-trace element supplement in a population sample of Canadian patients on long-term parenteral nutrition. J. Parenter. Enter. Nutr. 2013, 37, 538–543. [Google Scholar] [CrossRef]
- Hernández-Sánchez, A.; Tejada-González, P.; Arteta-Jiménez, M. Aluminium in parenteral nutrition: A systematic review. Eur. J. Clin. Nutr. 2013, 67, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Klein, G.L.; Heyman, M.B.; Lee, T.C.; Miller, N.L.; Marathe, G.; Gourley, W.K.; Alfrey, A.C. Aluminum-associated hepatobiliary dysfunction in rats: Relationships to dosage and duration of exposure. Pediatr. Res. 1988, 23, 275–278. [Google Scholar] [CrossRef] [Green Version]
- Llop, J.M.; Virgili, N.; Moreno-Villares, J.M.; García-Peris, P.; Serrano, T.; Forga, M.; Solanich, J.; Pita, A.M. Phytosterolemia in parenteral nutrition patients: Implications for liver disease development. Nutrition 2008, 24, 1145–1152. [Google Scholar] [CrossRef]
- Clayton, P.T.; Bowron, A.; Mills, K.A.; Massoud, A.; Casteels, M.; Milla, P.J. Phytosterolemia in children with parenteral nutrition—Associated cholestatic liver disease. Gastroenterology 1993, 105, 1806–1813. [Google Scholar] [CrossRef]
- Kurvinen, A.; Nissinen, M.J.; Andersson, S.; Korhonen, P.; Ruuska, T.; Taimisto, M.; Kalliomäki, M.; Lehtonen, L.; Sankilampi, U.; Arikoski, P.; et al. Parenteral plant sterols and intestinal failure-associated liver disease in neonates. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Rochling, F.A. Intravenous Lipid Emulsions in the Prevention and Treatment of Liver Disease in Intestinal Failure. Nutrients 2021, 13, 895. [Google Scholar] [CrossRef]
- Bond, A.; Huijbers, A.; Pironi, L.; Schneider, S.M.; Wanten, G.; Lal, S. Review article: Diagnosis and management of intestinal failure-associated liver disease in adults. Aliment. Pharmacol. Ther. 2019, 50, 640–653. [Google Scholar] [CrossRef]
- Clayton, P.T.; Whitfield, P.; Iyer, K. The Role of Phytosterols in the Pathogenesis of Liver Complications of Pediatric Parenteral Nutrition. Nutrition 1998, 14, 158–164. [Google Scholar] [CrossRef]
- Zaloga, G.P. Phytosterols, Lipid Administration, and Liver Disease During Parenteral Nutrition. JPEN J. Parenter. Enter. Nutr. 2015, 39, 39S–60S. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, G.; Burrin, D. Impact of Parenteral Lipid Emulsion Components on Cholestatic Liver Disease in Neonates. Nutrients 2021, 13, 508. [Google Scholar] [CrossRef] [PubMed]
- Anez-Bustillos, L.; Dao, D.T.; Baker, M.A.; Fell, G.L.; Puder, M.; Gura, K.M. Intravenous Fat Emulsion Formulations for the Adult and Pediatric Patient: Understanding the Differences. Nutr. Clin. Pract. 2016, 31, 596–609. [Google Scholar] [CrossRef] [Green Version]
- Gura, K.; Premkumar, M.H.; Calkins, K.L.; Puder, M. Intravenous Fish Oil Monotherapy as a Source of Calories and Fatty Acids Promotes Age-Appropriate Growth in Pediatric Patients with Intestinal Failure-Associated Liver Disease. J. Pediatr. 2020, 219, 98–105.e4. [Google Scholar] [CrossRef] [PubMed]
- Puder, M.; Valim, C.; Meisel, J.A.; Le, H.D.; de Meijer, V.E.; Robinson, E.M.; Zhou, J.; Duggan, C.; Gura, K.M. Parenteral fish oil improves outcomes in patients with parenteral nutrition-associated liver injury. Ann. Surg. 2009, 250, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madnawat, H.; Welu, A.L.; Gilbert, E.J.; Taylor, D.B.; Jain, S.; Manithody, C.; Blomenkamp, K.; Jain, A.K. Mechanisms of Parenteral Nutrition-Associated Liver and Gut Injury. Nutr. Clin. Pract. 2020, 35, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Silverman, J.A.; Turner, J.M.; Wales, P.W. Composite Lipid Emulsion for the Infant at Risk of Intestinal Failure-associated Liver Disease: The Canadian Perspective. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 283–287. [Google Scholar] [CrossRef]
- Hwang, T.L.; Lue, M.C.; Chen, L.L. Early use of cyclic TPN prevents further deterioration of liver functions for the TPN patients with impaired liver function. Hepatogastroenterology 2000, 47, 1347–1350. [Google Scholar]
- Canada, T.; Crill, C.M.; Guenter, P. Parenteral Nutrition Handbook; American Society for Parenteral & Enteral Nutrition: Silver Spring, MD, USA, 2009; ISBN 9781889622118. [Google Scholar]
- Gonzalez-Hernandez, J.; Prajapati, P.; Ogola, G.; Nguyen, V.; Channabasappa, N.; Piper, H.G. A comparison of lipid minimization strategies in children with intestinal failure. J. Pediatr. Surg. 2017, 53, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Raptis, D.A.; Limani, P.; Jang, J.H.; Ungethüm, U.; Tschuor, C.; Graf, R.; Humar, B.; Clavien, P.-A. GPR120 on Kupffer cells mediates hepatoprotective effects of ω3-fatty acids. J. Hepatol. 2014, 60, 625–632. [Google Scholar] [CrossRef]
- Khan, M.Z.; He, L. The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology 2017, 113, 639–651. [Google Scholar] [CrossRef]
- Mo, Y.; Hu, X.; Chang, L.; Ma, P. The effect of ω-3 fatty acid supplementation in parenteral nutrition on the outcome of patients with sepsis: A systematic review and meta-analysis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2014, 26, 142–147. [Google Scholar] [CrossRef]
- Calkins, K.L.; DeBarber, A.; Steiner, R.D.; Flores, M.J.; Grogan, T.R.; Henning, S.M.; Reyen, L.; Venick, R.S. Intravenous Fish Oil and Pediatric Intestinal Failure-Associated Liver Disease: Changes in Plasma Phytosterols, Cytokines, and Bile Acids and Erythrocyte Fatty Acids. J. Parenter. Enter. Nutr. 2018, 42, 633–641. [Google Scholar] [CrossRef]
- Calkins, K.L.; Dunn, J.C.Y.; Shew, S.B.; Reyen, L.; Farmer, D.G.; Devaskar, S.U.; Venick, R.S. Pediatric intestinal failure-associated liver disease is reversed with 6 months of intravenous fish oil. J. Parenter. Enter. Nutr. 2014, 38, 682–692. [Google Scholar] [CrossRef] [Green Version]
- Gura, K.M.; Duggan, C.P.; Collier, S.B.; Jennings, R.W.; Folkman, J.; Bistrian, B.R.; Puder, M. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: Implications for future management. Pediatrics 2006, 118, e197–e201. [Google Scholar] [CrossRef] [Green Version]
- Colomb, V.; Jobert-Giraud, A.; Lacaille, F.; Goulet, O.; Fournet, J.C.; Ricour, C. Role of lipid emulsions in cholestasis associated with long-term parenteral nutrition in children. J. Parenter. Enter. Nutr. 2000, 24, 345–350. [Google Scholar] [CrossRef]
- Goulet, O.; Lambe, C. Intravenous lipid emulsions in pediatric patients with intestinal failure. Curr. Opin. Organ Transplant. 2017, 22, 142–148. [Google Scholar] [CrossRef]
- Ulrich, H.; Pastores, S.M.; Katz, D.P.; Kvetan, V. Parenteral use of medium-chain triglycerides: A reappraisal. Nutrition 1996, 12, 231–238. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, X.; Chen, S.; Wang, S.; Tu, Z.; Zhang, G.; Zhu, H.; Li, X.; Xiong, J.; Liu, Y. Medium-Chain Triglycerides Attenuate Liver Injury in Lipopolysaccharide-Challenged Pigs by Inhibiting Necroptotic and Inflammatory Signaling Pathways. Int. J. Mol. Sci. 2018, 19, 3697. [Google Scholar] [CrossRef] [Green Version]
- Kono, H.; Fujii, H.; Asakawa, M.; Maki, A.; Amemiya, H.; Hirai, Y.; Matsuda, M.; Yamamoto, M. Medium-chain triglycerides enhance secretory IgA expression in rat intestine after administration of endotoxin. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G1081–G1089. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhong, W.; Qiu, Y.; Kang, X.; Sun, X.; Tan, X.; Zhao, Y.; Sun, X.; Jia, W.; Zhou, Z. Preservation of hepatocyte nuclear factor-4α contributes to the beneficial effect of dietary medium chain triglyceride on alcohol-induced hepatic lipid dyshomeostasis in rats. Alcohol. Clin. Exp. Res. 2013, 37, 587–598. [Google Scholar] [CrossRef] [Green Version]
- Ronis, M.J.J.; Baumgardner, J.N.; Sharma, N.; Vantrease, J.; Ferguson, M.; Tong, Y.; Wu, X.; Cleves, M.A.; Badger, T.M. Medium chain triglycerides dose-dependently prevent liver pathology in a rat model of non-alcoholic fatty liver disease. Exp. Biol. Med. 2013, 238, 151–162. [Google Scholar] [CrossRef]
- Pianese, P.; Salvia, G.; Campanozzi, A.; D’Apolito, O.; Dello Russo, A.; Pettoello-Mantovani, M.; Corso, G. Sterol profiling in red blood cell membranes and plasma of newborns receiving total parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 645–651. [Google Scholar] [CrossRef]
- El Kasmi, K.C.; Anderson, A.L.; Devereaux, M.W.; Vue, P.M.; Zhang, W.; Setchell, K.D.R.; Karpen, S.J.; Sokol, R.J. Phytosterols promote liver injury and Kupffer cell activation in parenteral nutrition-associated liver disease. Sci. Transl. Med. 2013, 5, 206ra137. [Google Scholar] [CrossRef] [Green Version]
- Carter, B.A.; Taylor, O.A.; Prendergast, D.R.; Zimmerman, T.L.; von Furstenberg, R.; Moore, D.D.; Karpen, S.J. Stigmasterol, a soy lipid-derived phytosterol, is an antagonist of the bile acid nuclear receptor FXR. Pediatr. Res. 2007, 62, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Guthrie, G.; Tackett, B.; Stoll, B.; Martin, C.; Olutoye, O.; Burrin, D.G. Phytosterols Synergize With Endotoxin to Augment Inflammation in Kupffer Cells but Alone Have Limited Direct Effect on Hepatocytes. J. Parenter. Enter. Nutr. 2018, 42, 37–48. [Google Scholar] [CrossRef]
- El Kasmi, K.C.; Vue, P.M.; Anderson, A.L.; Devereaux, M.W.; Ghosh, S.; Balasubramaniyan, N.; Fillon, S.A.; Dahrenmoeller, C.; Allawzi, A.; Woods, C.; et al. Macrophage-derived IL-1β/NF-κB signaling mediates parenteral nutrition-associated cholestasis. Nat. Commun. 2018, 9, 1393. [Google Scholar] [CrossRef] [Green Version]
- Mutanen, A.; Nissinen, M.J.; Lohi, J.; Heikkilä, P.; Gylling, H.; Pakarinen, M.P. Serum plant sterols, cholestanol, and cholesterol precursors associate with histological liver injury in pediatric onset intestinal failure. Am. J. Clin. Nutr. 2014, 100, 1085–1094. [Google Scholar] [CrossRef] [Green Version]
- Shike, M. Copper in parenteral nutrition. Gastroenterology 2009, 137, S13–S17. [Google Scholar] [CrossRef] [Green Version]
- Blaszyk, H.; Wild, P.J.; Oliveira, A.; Kelly, D.G.; Burgart, L.J. Hepatic copper in patients receiving long-term total parenteral nutrition. J. Clin. Gastroenterol. 2005, 39, 318–320. [Google Scholar] [CrossRef]
- Frem, J.; Sarson, Y.; Sternberg, T.; Cole, C.R. Copper supplementation in parenteral nutrition of cholestatic infants. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 650–654. [Google Scholar] [CrossRef] [Green Version]
- Pluhator-Murton, M.M.; Fedorak, R.N.; Audette, R.J.; Marriage, B.J.; Yatscoff, R.W.; Gramlich, L.M. Trace element contamination of total parenteral nutrition. 1. Contribution of component solutions. J. Parenter. Enter. Nutr. 1999, 23, 222–227. [Google Scholar] [CrossRef]
- Buchman, A.L.; Ament, M.E.; Sohel, M.; Dubin, M.; Jenden, D.J.; Roch, M.; Pownall, H.; Farley, W.; Awal, M.; Ahn, C. Choline deficiency causes reversible hepatic abnormalities in patients receiving parenteral nutrition: Proof of a human choline requirement: A placebo-controlled trial. J. Parenter. Enter. Nutr. 2001, 25, 260–268. [Google Scholar] [CrossRef]
- Sentongo, T.A.; Kumar, P.; Karza, K.; Keys, L.; Iyer, K.; Buchman, A.L. Whole-blood-free choline and choline metabolites in infants who require chronic parenteral nutrition therapy. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Wieser, P.B.; Buch, M.; Novak, M. 224 effect of carnitine on ketone body production in human newborns. Pediatr. Res. 1978, 12, 401. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.-S.; Choo, Y.K.; Lee, H.J.; Lee, H.-S. Transient carnitine transport defect with cholestatic jaundice: Report of one case in a premature baby. Korean J. Pediatr. 2012, 55, 58–62. [Google Scholar] [CrossRef]
- Viña, J.; Vento, M.; García-Sala, F.; Puertes, I.R.; Gascó, E.; Sastre, J.; Asensi, M.; Pallardó, F.V. L-cysteine and glutathione metabolism are impaired in premature infants due to cystathionase deficiency. Am. J. Clin. Nutr. 1995, 61, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Burdeos, G.C.; Itaya, M.; Nakagawa, K.; Miyazawa, T. Vitamin E: Regulatory Redox Interactions. IUBMB Life 2019, 71, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, G.; Stoll, B.; Chacko, S.; Lauridsen, C.; Plat, J.; Burrin, D. Rifampicin, not vitamin E, suppresses parenteral nutrition-associated liver disease development through the pregnane X receptor pathway in piglets. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G41–G52. [Google Scholar] [CrossRef] [PubMed]
- Fell, G.L.; Anez-Bustillos, L.; Dao, D.T.; Baker, M.A.; Nandivada, P.; Cho, B.S.; Pan, A.; O’Loughlin, A.A.; Nose, V.; Gura, K.M.; et al. Alpha-tocopherol in intravenous lipid emulsions imparts hepatic protection in a murine model of hepatosteatosis induced by the enteral administration of a parenteral nutrition solution. PLoS ONE 2019, 14, e0217155. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.A.; Cho, B.S.; Anez-Bustillos, L.; Dao, D.T.; Pan, A.; O’Loughlin, A.A.; Lans, Z.M.; Mitchell, P.D.; Nosé, V.; Gura, K.M.; et al. Fish oil-based injectable lipid emulsions containing medium-chain triglycerides or added α-tocopherol offer anti-inflammatory benefits in a murine model of parenteral nutrition-induced liver injury. Am. J. Clin. Nutr. 2019, 109, 1038–1050. [Google Scholar] [CrossRef]
- Ng, K.; Stoll, B.; Chacko, S.; Saenz de Pipaon, M.; Lauridsen, C.; Gray, M.; Squires, E.J.; Marini, J.; Zamora, I.J.; Olutoye, O.O.; et al. Vitamin E in New-Generation Lipid Emulsions Protects Against Parenteral Nutrition-Associated Liver Disease in Parenteral Nutrition-Fed Preterm Pigs. J. Parenter. Enter. Nutr. 2016, 40, 656–671. [Google Scholar] [CrossRef] [Green Version]
- Joly, F.; Mayeur, C.; Bruneau, A.; Noordine, M.-L.; Meylheuc, T.; Langella, P.; Messing, B.; Duée, P.-H.; Cherbuy, C.; Thomas, M. Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie 2010, 92, 753–761. [Google Scholar] [CrossRef]
- Hodin, C.M.; Visschers, R.G.J.; Rensen, S.S.; Boonen, B.; Olde Damink, S.W.M.; Lenaerts, K.; Buurman, W.A. Total parenteral nutrition induces a shift in the Firmicutes to Bacteroidetes ratio in association with Paneth cell activation in rats. J. Nutr. 2012, 142, 2141–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korpela, K.; Mutanen, A.; Salonen, A.; Savilahti, E.; de Vos, W.M.; Pakarinen, M.P. Intestinal Microbiota Signatures Associated With Histological Liver Steatosis in Pediatric-Onset Intestinal Failure. J. Parenter. Enter. Nutr. 2017, 41, 238–248. [Google Scholar] [CrossRef] [PubMed]
- El Kasmi, K.C.; Anderson, A.L.; Devereaux, M.W.; Fillon, S.A.; Harris, J.K.; Lovell, M.A.; Finegold, M.J.; Sokol, R.J. Toll-like receptor 4-dependent Kupffer cell activation and liver injury in a novel mouse model of parenteral nutrition and intestinal injury. Hepatology 2012, 55, 1518–1528. [Google Scholar] [CrossRef] [Green Version]
- Salzman, N.H. Paneth cell defensins and the regulation of the microbiome: Détente at mucosal surfaces. Gut Microbes 2010, 1, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Johansson, M.E.V.; Ambort, D.; Pelaseyed, T.; Schütte, A.; Gustafsson, J.K.; Ermund, A.; Subramani, D.B.; Holmén-Larsson, J.M.; Thomsson, K.A.; Bergström, J.H.; et al. Composition and functional role of the mucus layers in the intestine. Cell. Mol. Life Sci. 2011, 68, 3635–3641. [Google Scholar] [CrossRef] [PubMed]
- Bulik-Sullivan, E.C.; Roy, S.; Elliott, R.J.; Kassam, Z.; Lichtman, S.N.; Carroll, I.M.; Gulati, A.S. Intestinal Microbial and Metabolic Alterations Following Successful Fecal Microbiota Transplant for D-Lactic Acidosis. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 483–487. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Lu, L.; Yan, W.; Tao, Y.; Zhou, K.; Jia, J.; Cai, W. Alterations in intestinal microbiota relate to intestinal failure-associated liver disease and central line infections. J. Pediatr. Surg. 2017, 52, 1318–1326. [Google Scholar] [CrossRef]
- Basson, M.D.; Li, G.D.; Hong, F.; Han, O.; Sumpio, B.E. Amplitude-dependent modulation of brush border enzymes and proliferation by cyclic strain in human intestinal Caco-2 monolayers. J. Cell. Physiol. 1996, 168, 476–488. [Google Scholar] [CrossRef]
- Pironi, L.; Sasdelli, A.S. Intestinal Failure-Associated Liver Disease. Clin. Liver Dis. 2019, 23, 279–291. [Google Scholar] [CrossRef]
- Javid, P.J.; Collier, S.; Richardson, D.; Iglesias, J.; Gura, K.; Lo, C.; Kim, H.B.; Duggan, C.P.; Jaksic, T. The role of enteral nutrition in the reversal of parenteral nutrition-associated liver dysfunction in infants. J. Pediatr. Surg. 2005, 40, 1015–1018. [Google Scholar] [CrossRef]
- Al-Shahwani, N.H.; Sigalet, D.L. Pathophysiology, prevention, treatment, and outcomes of intestinal failure-associated liver disease. Pediatr. Surg. Int. 2017, 33, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Lundåsen, T.; Gälman, C.; Angelin, B.; Rudling, M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J. Intern. Med. 2006, 260, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Stoll, B.; Burrin, D.G.; Holst, J.J.; Moore, D.D. Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G218–G224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.; Ahn, S.-H.; Inagaki, T.; Choi, M.; Ito, S.; Guo, G.L.; Kliewer, S.A.; Gonzalez, F.J. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res. 2007, 48, 2664–2672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar, S.; Damron, H.A.; Hillgartner, F.B. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J. Biol. Chem. 2009, 284, 10023–10033. [Google Scholar] [CrossRef] [Green Version]
- Potthoff, M.J.; Potts, A.; He, T.; Duarte, J.A.G.; Taussig, R.; Mangelsdorf, D.J.; Kliewer, S.A.; Burgess, S.C. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G371–G380. [Google Scholar] [CrossRef] [Green Version]
- Valenti, L.; Rametta, R.; Dongiovanni, P.; Maggioni, M.; Fracanzani, A.L.; Zappa, M.; Lattuada, E.; Roviaro, G.; Fargion, S. Increased expression and activity of the transcription factor FOXO1 in nonalcoholic steatohepatitis. Diabetes 2008, 57, 1355–1362. [Google Scholar] [CrossRef] [Green Version]
- Lucchinetti, E.; Lou, P.-H.; Wawrzyniak, P.; Wawrzyniak, M.; Scharl, M.; Holtzhauer, G.A.; Krämer, S.D.; Hersberger, M.; Rogler, G.; Zaugg, M. Novel Strategies to Prevent Total Parenteral Nutrition-Induced Gut and Liver Inflammation, and Adverse Metabolic Outcomes. Mol. Nutr. Food Res. 2021, 65, e1901270. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Gao, B.; Yan, J.; Cai, W.; Jiang, L. Untargeted Metabolomics Reveal Parenteral Nutrition-Associated Alterations in Pediatric Patients with Short Bowel Syndrome. Metabolites 2022, 12, 600. [Google Scholar] [CrossRef]
- Teunis, C.; Nieuwdorp, M.; Hanssen, N. Interactions between Tryptophan Metabolism, the Gut Microbiome and the Immune System as Potential Drivers of Non-Alcoholic Fatty Liver Disease (NAFLD) and Metabolic Diseases. Metabolites 2022, 12, 514. [Google Scholar] [CrossRef]
- Beale, E.F.; Nelson, R.M.; Bucciarelli, R.L.; Donnelly, W.H.; Eitzman, D.V. Intrahepatic cholestasis associated with parenteral nutrition in premature infants. Pediatrics 1979, 64, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Diamond, I.R.; de Silva, N.T.; Tomlinson, G.A.; Pencharz, P.B.; Feldman, B.M.; Moore, A.M.; Ling, S.C.; Wales, P.W. The role of parenteral lipids in the development of advanced intestinal failure-associated liver disease in infants: A multiple-variable analysis. J. Parenter. Enter. Nutr. 2011, 35, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Ross, V.M.; Guenter, P.; Corrigan, M.L.; Kovacevich, D.; Winkler, M.F.; Resnick, H.E.; Norris, T.L.; Robinson, L.; Steiger, E. Central venous catheter infections in home parenteral nutrition patients: Outcomes from Sustain: American Society for Parenteral and Enteral Nutrition’s National Patient Registry for Nutrition Care. Am. J. Infect. Control 2016, 44, 1462–1468. [Google Scholar] [CrossRef]
- Woodward, J.M.; Massey, D.; Sharkey, L. The Long and Short of IT: Intestinal failure-associated liver disease (IFALD) in adults-recommendations for early diagnosis and intestinal transplantation. Frontline Gastroenterol. 2020, 11, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gura, K.M.; Mulberg, A.E.; Mitchell, P.D.; Yap, J.; Kim, C.Y.; Chen, M.; Potemkin, A.; Puder, M. Pediatric Intestinal Failure-Associated Liver Disease: Challenges in Identifying Clinically Relevant Biomarkers. J. Parenter. Enter. Nutr. 2018, 42, 455–462. [Google Scholar] [CrossRef]
- Mutanen, A.; Lohi, J.; Merras-Salmio, L.; Koivusalo, A.; Pakarinen, M.P. Prediction, identification and progression of histopathological liver disease activity in children with intestinal failure. J. Hepatol. 2021, 74, 593–602. [Google Scholar] [CrossRef]
- van Gossum, A.; Pironi, L.; Messing, B.; Moreno, C.; Colecchia, A.; D’Errico, A.; Demetter, P.; de Gos, F.; Cazals-Halem, D.; Joly, F. Transient Elastography (FibroScan) Is Not Correlated With Liver Fibrosis but With Cholestasis in Patients With Long-Term Home Parenteral Nutrition. J. Parenter. Enter. Nutr. 2015, 39, 719–724. [Google Scholar] [CrossRef]
- Lodwick, D.; Dienhart, M.; Cooper, J.N.; Fung, B.; Lopez, J.; Smith, S.; Warren, P.; Balint, J.; Minneci, P.C. A pilot study of ultrasound elastography as a non-invasive method to monitor liver disease in children with short bowel syndrome. J. Pediatr. Surg. 2017, 52, 962–965. [Google Scholar] [CrossRef]
- Woodward, J.M.; Priest, A.N.; Hollingsworth, K.G.; Lomas, D.J. Clinical application of magnetic resonance spectroscopy of the liver in patients receiving long-term parenteral nutrition. J. Parenter. Enter. Nutr. 2009, 33, 669–676. [Google Scholar] [CrossRef]
- Huijbers, A.; Wanten, G.; Dekker, H.M.; van der Graaf, M. Noninvasive Quantitative Assessment of Hepatic Steatosis by Proton Magnetic Resonance Spectroscopy Among Adult Patients Receiving Home Parenteral Nutrition. J. Parenter. Enter. Nutr. 2018, 42, 778–785. [Google Scholar] [CrossRef]
- Fullerton, B.S.; Sparks, E.A.; Hall, A.M.; Duggan, C.; Jaksic, T.; Modi, B.P. Enteral autonomy, cirrhosis, and long term transplant-free survival in pediatric intestinal failure patients. J. Pediatr. Surg. 2016, 51, 96–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyerson, C.; Naini, B.V. Something old, something new: Liver injury associated with total parenteral nutrition therapy and immune checkpoint inhibitors. Hum. Pathol. 2020, 96, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.; Olsen, M.M. Pediatric total parenteral nutrition. Liver histopathology. Arch. Pathol. Lab. Med. 1981, 105, 152–156. [Google Scholar] [PubMed]
- Zambrano, E.; El-Hennawy, M.; Ehrenkranz, R.A.; Zelterman, D.; Reyes-Múgica, M. Total parenteral nutrition induced liver pathology: An autopsy series of 24 newborn cases. Pediatr. Dev. Pathol. 2004, 7, 425–432. [Google Scholar] [CrossRef]
- Mullick, F.G.; Moran, C.A.; Ishak, K.G. Total parenteral nutrition: A histopathologic analysis of the liver changes in 20 children. Mod. Pathol. 1994, 7, 190–194. [Google Scholar]
- Jensen, A.R.; Goldin, A.B.; Koopmeiners, J.S.; Stevens, J.; Waldhausen, J.H.T.; Kim, S.S. The association of cyclic parenteral nutrition and decreased incidence of cholestatic liver disease in patients with gastroschisis. J. Pediatr. Surg. 2009, 44, 183–189. [Google Scholar] [CrossRef]
- Nghiem-Rao, T.H.; Cassidy, L.D.; Polzin, E.M.; Calkins, C.M.; Arca, M.J.; Goday, P.S. Risks and benefits of prophylactic cyclic parenteral nutrition in surgical neonates. Nutr. Clin. Pract. 2013, 28, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Stout, S.M.; Cober, M.P. Metabolic effects of cyclic parenteral nutrition infusion in adults and children. Nutr. Clin. Pract. 2010, 25, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Rollins, M.D.; Ward, R.M.; Jackson, W.D.; Mulroy, C.W.; Spencer, C.P.; Ying, J.; Greene, T.; Book, L.S. Effect of decreased parenteral soybean lipid emulsion on hepatic function in infants at risk for parenteral nutrition-associated liver disease: A pilot study. J. Pediatr. Surg. 2013, 48, 1348–1356. [Google Scholar] [CrossRef]
- Levit, O.L.; Calkins, K.L.; Gibson, L.C.; Kelley-Quon, L.; Robinson, D.T.; Elashoff, D.A.; Grogan, T.R.; Li, N.; Bizzarro, M.J.; Ehrenkranz, R.A. Low-Dose Intravenous Soybean Oil Emulsion for Prevention of Cholestasis in Preterm Neonates. J. Parenter. Enter. Nutr. 2014, 40, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Premkumar, M.H.; Carter, B.A.; Hawthorne, K.M.; King, K.; Abrams, S.A. High rates of resolution of cholestasis in parenteral nutrition-associated liver disease with fish oil-based lipid emulsion monotherapy. J. Pediatr. 2013, 162, 793–798.e1. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Venick, R.S.; Shew, S.B.; Dunn, J.C.Y.; Reyen, L.; Gou, R.; Calkins, K.L. Long-Term Outcomes in Children with Intestinal Failure-Associated Liver Disease Treated With 6 Months of Intravenous Fish Oil Followed by Resumption of Intravenous Soybean Oil. J. Parenter. Enter. Nutr. 2019, 43, 708–716. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.S.; Tam, Y.H.; Poon, T.C.W.; Cheung, H.M.; Yu, X.; Chan, B.P.L.; Lee, K.H.; Lee, B.S.C.; Ng, P.C. A double-blind randomised controlled trial of fish oil-based versus soy-based lipid preparations in the treatment of infants with parenteral nutrition-associated cholestasis. Neonatology 2014, 105, 290–296. [Google Scholar] [CrossRef]
- de Meijer, V.E.; Le, H.D.; Meisel, J.A.; Gura, K.M.; Puder, M. Parenteral fish oil as monotherapy prevents essential fatty acid deficiency in parenteral nutrition-dependent patients. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 212–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strijbosch, R.A.M.; Lee, S.; Arsenault, D.A.; Andersson, C.; Gura, K.M.; Bistrian, B.R.; Puder, M. Fish oil prevents essential fatty acid deficiency and enhances growth: Clinical and biochemical implications. Metabolism 2008, 57, 698–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandivada, P.; Anez-Bustillos, L.; O’Loughlin, A.A.; Mitchell, P.D.; Baker, M.A.; Dao, D.T.; Fell, G.L.; Potemkin, A.K.; Gura, K.M.; Neufeld, E.J.; et al. Risk of Post-Procedural Bleeding in Children on Intravenous Fish Oil. Am. J. Surg. 2016, 214, 733–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, A.N.; Hardy, P.; Peterkin, M.; Lee, O.; Shalley, H.; Croft, K.D.; Mori, T.A.; Heine, R.G.; Bines, J.E. Tolerability and safety of olive oil-based lipid emulsion in critically ill neonates: A blinded randomized trial. Nutrition 2008, 24, 1057–1064. [Google Scholar] [CrossRef]
- Angsten, G.; Finkel, Y.; Lucas, S.; Kassa, A.-M.; Paulsson, M.; Lilja, H.E. Improved outcome in neonatal short bowel syndrome using parenteral fish oil in combination with ω-6/9 lipid emulsions. J. Parenter. Enter. Nutr. 2012, 36, 587–595. [Google Scholar] [CrossRef]
- Lam, C.K.L.; Church, P.C.; Haliburton, B.; Chambers, K.; Martincevic, I.; Vresk, L.; Courtney-Martin, G.; Bandsma, R.; Avitzur, Y.; Wales, P.C.; et al. Long-term Exposure of Children to a Mixed Lipid Emulsion Is Less Hepatotoxic Than Soybean-based Lipid Emulsion. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 501–504. [Google Scholar] [CrossRef]
- Ferguson, C.L.; Perry, C.; Subramanian, M.; Gillette, C.; Ayers, K.; Welch, C. Mixed Oil-Based Lipid Emulsions vs Soybean Oil-Based Lipid Emulsions on Incidence and Severity of Intestinal Failure-Associated Liver Disease in a Neonatal Intensive Care Unit. J. Parenter. Enter. Nutr. 2021, 45, 303–308. [Google Scholar] [CrossRef]
- Shores, D.R.; Alaish, S.M.; Aucott, S.W.; Bullard, J.E.; Haney, C.; Tymann, H.; Nonyane, B.A.S.; Schwarz, K.B. Postoperative Enteral Nutrition Guidelines Reduce the Risk of Intestinal Failure-Associated Liver Disease in Surgical Infants. J. Pediatr. 2018, 195, 140–147.e1. [Google Scholar] [CrossRef] [PubMed]
- Dodge, M.E.; Bertolo, R.F.; Brunton, J.A. Enteral feeding induces early intestinal adaptation in a parenterally fed neonatal piglet model of short bowel syndrome. J. Parenter. Enter. Nutr. 2012, 36, 205–212. [Google Scholar] [CrossRef]
- Sharman-Koendjbiharie, M.; Piena-Spoel, M.; Hopman, W.; Albers, M.; Jansen, J.; Tibboel, D. Gastrointestinal hormone secretion after surgery in neonates with congenital intestinal anomalies during starvation and introduction of enteral nutrition. J. Pediatr. Surg. 2003, 38, 1602–1606. [Google Scholar] [CrossRef]
- Roma, M.G.; Toledo, F.D.; Boaglio, A.C.; Basiglio, C.L.; Crocenzi, F.A.; Sánchez Pozzi, E.J. Ursodeoxycholic acid in cholestasis: Linking action mechanisms to therapeutic applications. Clin. Sci. 2011, 121, 523–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spagnuolo, M.I.; Iorio, R.; Vegnente, A.; Guarino, A. Ursodeoxycholic acid for treatment of cholestasis in children on long-term total parenteral nutrition: A pilot study. Gastroenterology 1996, 111, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Beau, P.; Labat-Labourdette, J.; Ingrand, P.; Beauchant, M. Is ursodeoxycholic acid an effective therapy for total parenteral nutrition-related liver disease? J. Hepatol. 1994, 20, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Heemskerk, J.; Sie, G.H.; van den Neucker, A.M.; Forget, P.-P.; Heineman, E.; van Heurn, L. Extreme short bowel syndrome in a full-term neonate—A case report. J. Pediatr. Surg. 2003, 38, 1665–1666. [Google Scholar] [CrossRef]
- San Luis, V.A.; Btaiche, I.F. Ursodiol in patients with parenteral nutrition-associated cholestasis. Ann. Pharmacother. 2007, 41, 1867–1872. [Google Scholar] [CrossRef] [Green Version]
- Arslanoglu, S.; Moro, G.E.; Tauschel, H.-D.; Boehm, G. Ursodeoxycholic acid treatment in preterm infants: A pilot study for the prevention of cholestasis associated with total parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2008, 46, 228–231. [Google Scholar] [CrossRef]
- Gokmen, T.; Oguz, S.S.; Bozdag, S.; Erdeve, O.; Uras, N.; Dilmen, U. A controlled trial of erythromycin and UDCA in premature infants during parenteral nutrition in minimizing feeding intolerance and liver function abnormalities. J. Perinatol. 2012, 32, 123–128. [Google Scholar] [CrossRef]
- Teitelbaum, D.H.; Tracy, T.F.; Aouthmany, M.M.; Llanos, A.; Brown, M.B.; Yu, S.; Brown, M.R.; Shulman, R.J.; Hirschl, R.B.; Derusso, P.A.; et al. Use of cholecystokinin-octapeptide for the prevention of parenteral nutrition-associated cholestasis. Pediatrics 2005, 115, 1332–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeppesen, P.B.; Pertkiewicz, M.; Messing, B.; Iyer, K.; Seidner, D.L.; O’keefe, S.J.D.; Forbes, A.; Heinze, H.; Joelsson, B. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology 2012, 143, 1473–1481.e3. [Google Scholar] [CrossRef] [PubMed]
- Seidner, D.L.; Gabe, S.M.; Lee, H.-M.; Olivier, C.; Jeppesen, P.B. Enteral Autonomy and Days Off Parenteral Support With Teduglutide Treatment for Short Bowel Syndrome in the STEPS Trials. J. Parenter. Enter. Nutr. 2020, 44, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naberhuis, J.K.; Tappenden, K.A. Teduglutide for Safe Reduction of Parenteral Nutrient and/or Fluid Requirements in Adults: A Systematic Review. J. Parenter. Enter. Nutr. 2016, 40, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Iyer, K.R.; Kunecki, M.; Boullata, J.I.; Fujioka, K.; Joly, F.; Gabe, S.; Pape, U.-F.; Schneider, S.M.; Virgili Casas, M.N.; Ziegler, T.R.; et al. Independence From Parenteral Nutrition and Intravenous Fluid Support During Treatment With Teduglutide Among Patients With Intestinal Failure Associated With Short Bowel Syndrome. J. Parenter. Enter. Nutr. 2017, 41, 946–951. [Google Scholar] [CrossRef] [Green Version]
- Kochar, B.; Long, M.D.; Shelton, E.; Young, L.; Farraye, F.A.; Yajnik, V.; Herfarth, H. Safety and Efficacy of Teduglutide (Gattex) in Patients With Crohn’s Disease and Need for Parenteral Support Due to Short Bowel Syndrome-associated Intestinal Failure. J. Clin. Gastroenterol. 2017, 51, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Seidner, D.L.; Fujioka, K.; Boullata, J.I.; Iyer, K.; Lee, H.-M.; Ziegler, T.R. Reduction of Parenteral Nutrition and Hydration Support and Safety With Long-Term Teduglutide Treatment in Patients With Short Bowel Syndrome-Associated Intestinal Failure: STEPS-3 Study. Nutr. Clin. Pract. 2018, 33, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoeler, M.; Klag, T.; Wendler, J.; Bernhard, S.; Adolph, M.; Kirschniak, A.; Goetz, M.; Malek, N.; Wehkamp, J. GLP-2 analog teduglutide significantly reduces need for parenteral nutrition and stool frequency in a real-life setting. Therap. Adv. Gastroenterol. 2018, 11, 1756284818793343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pevny, S.; Maasberg, S.; Rieger, A.; Karber, M.; Blüthner, E.; Knappe-Drzikova, B.; Thurmann, D.; Büttner, J.; Weylandt, K.-H.; Wiedenmann, B.; et al. Experience with teduglutide treatment for short bowel syndrome in clinical practice. Clin. Nutr. 2019, 38, 1745–1755. [Google Scholar] [CrossRef]
- Kocoshis, S.A.; Merritt, R.J.; Hill, S.; Protheroe, S.; Carter, B.A.; Horslen, S.; Hu, S.; Kaufman, S.S.; Mercer, D.F.; Pakarinen, M.P.; et al. Safety and Efficacy of Teduglutide in Pediatric Patients With Intestinal Failure due to Short Bowel Syndrome: A 24-Week, Phase III Study. JPEN J. Parenter. Enter. Nutr. 2020, 44, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Diamanti, A.; Lezo, A.; D’Antiga, L.; Gandullia, P.; Spagnuolo, M.I.; Roggero, P.; Capriati, T.; Lionetti, P. Teduglutide in pediatric intestinal failure: A position statement of the Italian society of pediatric gastroenterology, hepatology and nutrition (SIGENP). Dig. Liver Dis. 2022, 54, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Naimi, R.M.; Hvistendahl, M.; Nerup, N.; Ambrus, R.; Achiam, M.P.; Svendsen, L.B.; Grønbæk, H.; Møller, H.J.; Vilstrup, H.; Steensberg, A.; et al. Effects of glepaglutide, a novel long-acting glucagon-like peptide-2 analogue, on markers of liver status in patients with short bowel syndrome: Findings from a randomised phase 2 trial. EBioMedicine 2019, 46, 444–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slim, G.M.; Lansing, M.; Wizzard, P.; Nation, P.N.; Wheeler, S.E.; Brubaker, P.L.; Jeppesen, P.B.; Wales, P.W.; Turner, J.M. Novel Long-Acting GLP-2 Analogue, FE 203799 (Apraglutide), Enhances Adaptation and Linear Intestinal Growth in a Neonatal Piglet Model of Short Bowel Syndrome with Total Resection of the Ileum. J. Parenter. Enter. Nutr. 2019, 43, 891–898. [Google Scholar] [CrossRef]
- Hvistendahl, M.; Brandt, C.F.; Tribler, S.; Naimi, R.M.; Hartmann, B.; Holst, J.J.; Rehfeld, J.F.; Hornum, M.; Andersen, J.R.; Henriksen, B.M.; et al. Effect of Liraglutide Treatment on Jejunostomy Output in Patients With Short Bowel Syndrome: An Open-Label Pilot Study. J. Parenter. Enter. Nutr. 2018, 42, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Wismann, P.; Pedersen, S.L.; Hansen, G.; Mannerstedt, K.; Pedersen, P.J.; Jeppesen, P.B.; Vrang, N.; Fosgerau, K.; Jelsing, J. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol. Behav. 2018, 192, 72–81. [Google Scholar] [CrossRef]
- South, M.; King, A. Parenteral nutrition-associated cholestasis: Recovery following phenobarbitone. J. Parenter. Enter. Nutr. 1987, 11, 208–209. [Google Scholar] [CrossRef]
- Gleghorn, E.E.; Merritt, R.J.; Subramanian, N.; Ramos, A. Phenobarbital does not prevent total parenteral nutrition-associated cholestasis in noninfected neonates. J. Parenter. Enter. Nutr. 1986, 10, 282–283. [Google Scholar] [CrossRef]
- Gutherz, S.B.; Kulick, C.V.; Soper, C.; Kondratyev, A.; Gale, K.; Forcelli, P.A. Brief postnatal exposure to phenobarbital impairs passive avoidance learning and sensorimotor gating in rats. Epilepsy Behav. 2014, 37, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.; Tamer, Z.; Opoku, F.; Forcelli, P.A. Anticonvulsant drug-induced cell death in the developing white matter of the rodent brain. Epilepsia 2016, 57, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Lambert, J.R.; Thomas, S.M. Metronidazole prevention of serum liver enzyme abnormalities during total parenteral nutrition. J. Parenter. Enter. Nutr. 1985, 9, 501–503. [Google Scholar] [CrossRef]
- Capron, J.-P.; Herve, M.-A.; Gineston, J.-L.; Braillon, A. Metronidazole in prevention of cholestasis associated with total parenteral nutrition. Lancet 1983, 321, 446–447. [Google Scholar] [CrossRef] [PubMed]
- Rangel, S.J.; Calkins, C.M.; Cowles, R.A.; Barnhart, D.C.; Huang, E.Y.; Abdullah, F.; Arca, M.J.; Teitelbaum, D.H. Parenteral nutrition-associated cholestasis: An American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J. Pediatr. Surg. 2012, 47, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Sekteera, W.; Nuntnarumit, P.; Supapannachart, S. Oral erythromycin for treatment of feeding intolerance in preterm infants: A preliminary report. J. Med. Assoc. Thai. 2002, 85 (Suppl. S4), S1177–S1182. [Google Scholar]
- Ng, P.C.; Lee, C.H.; Wong, S.P.S.; Lam, H.S.; Liu, F.Y.B.; So, K.W.; Lee, C.Y.; Fok, T.F. High-dose oral erythromycin decreased the incidence of parenteral nutrition-associated cholestasis in preterm infants. Gastroenterology 2007, 132, 1726–1739. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.-Y.; Su, P.-H.; Chen, J.-Y.; Quek, Y.-W.; Hu, J.-M.; Lee, I.-C.; Lee, H.-S.; Chang, H.-P. Efficacy of intermediate-dose oral erythromycin on very low birth weight infants with feeding intolerance. Pediatr. Neonatol. 2012, 53, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Uchida, H.; Yamamoto, H.; Kisaki, Y.; Fujino, J.; Ishimaru, Y.; Ikeda, H. D-lactic acidosis in short-bowel syndrome managed with antibiotics and probiotics. J. Pediatr. Surg. 2004, 39, 634–636. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Terashima, H.; Kohno, K.; Ohkohchi, N. A stand-alone synbiotic treatment for the prevention of D-lactic acidosis in short bowel syndrome. Int. Surg. 2013, 98, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Rupp, M.E.; Majorant, D. Prevention of Vascular Catheter-Related Bloodstream Infections. Infect. Dis. Clin. N. Am. 2016, 30, 853–868. [Google Scholar] [CrossRef]
- Lambe, C.; Poisson, C.; Talbotec, C.; Goulet, O. Strategies to Reduce Catheter-Related Bloodstream Infections in Pediatric Patients Receiving Home Parenteral Nutrition: The Efficacy of Taurolidine-Citrate Prophylactic-Locking. JPEN J. Parenter. Enter. Nutr. 2018, 42, 1017–1025. [Google Scholar] [CrossRef]
- Oliveira, C.; Nasr, A.; Brindle, M.; Wales, P.W. Ethanol locks to prevent catheter-related bloodstream infections in parenteral nutrition: A meta-analysis. Pediatrics 2012, 129, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Cantón-Bulnes, M.L.; Garnacho-Montero, J. Practical approach to the management of catheter-related bloodstream infection. Rev. Esp. Quimioter. 2019, 32 (Suppl. S2), 38–41. [Google Scholar] [PubMed]
- Quirós-Tejeira, R.E.; Ament, M.E.; Reyen, L.; Herzog, F.; Merjanian, M.; Olivares-Serrano, N.; Vargas, J.H. Long-term parenteral nutritional support and intestinal adaptation in children with short bowel syndrome: A 25-year experience. J. Pediatr. 2004, 145, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Yannam, G.R.; Sudan, D.L.; Grant, W.; Botha, J.; Langnas, A.; Thompson, J.S. Intestinal lengthening in adult patients with short bowel syndrome. J. Gastrointest. Surg. 2010, 14, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Reinshagen, K.; Zahn, K.; von Buch, C.; Zoeller, M.; Hagl, C.I.; Ali, M.; Waag, K.-L. The impact of longitudinal intestinal lengthening and tailoring on liver function in short bowel syndrome. Eur. J. Pediatr. Surg. 2008, 18, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Lee, P.W.; Garza, J.; Duggan, C.; Fauza, D.; Jaksic, T. Serial transverse enteroplasty for short bowel syndrome: A case report. J. Pediatr. Surg. 2003, 38, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, S.S.; Atkinson, J.B.; Bianchi, A.; Goulet, O.J.; Grant, D.; Langnas, A.N.; McDiarmid, S.V.; Mittal, N.; Reyes, J.; Tzakis, A.G. Indications for pediatric intestinal transplantation: A position paper of the American Society of Transplantation. Pediatr. Transplant. 2001, 5, 80–87. [Google Scholar] [CrossRef]
- Abu-Elmagd, K.M.; Armanyous, S.R.; Fujiki, M.; Parekh, N.R.; Osman, M.; Scalish, M.; Newhouse, E.; Fouda, Y.; Lennon, E.; Shatnawei, A.; et al. Management of Five Hundred Patients With Gut Failure at a Single Center: Surgical Innovation Versus Transplantation With a Novel Predictive Model. Ann. Surg. 2019, 270, 656–674. [Google Scholar] [CrossRef]
- Smith, J.M.; Weaver, T.; Skeans, M.A.; Horslen, S.P.; Noreen, S.M.; Snyder, J.J.; Israni, A.K.; Kasiske, B.L. OPTN/SRTR 2017 Annual Data Report: Intestine. Am. J. Transplant. 2019, 19 (Suppl. S2), 284–322. [Google Scholar] [CrossRef] [Green Version]
- Kesseli, S.; Sudan, D. Small Bowel Transplantation. Surg. Clin. N. Am. 2019, 99, 103–116. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Adult and pediatric patients Patients on PN Patients with IFALD English language | Reviews Letters to the editor Opinion pieces |
Risk Factor Category | Adult Population | Pediatric Population |
---|---|---|
PN related factors | Nutrient toxicity | |
|
| |
Nutrient deficiency | ||
|
| |
Patient related factors | IF-related | |
|
| |
Systemic-related | ||
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafirovska, M.; Zafirovski, A.; Rotovnik Kozjek, N. Current Insights Regarding Intestinal Failure-Associated Liver Disease (IFALD): A Narrative Review. Nutrients 2023, 15, 3169. https://doi.org/10.3390/nu15143169
Zafirovska M, Zafirovski A, Rotovnik Kozjek N. Current Insights Regarding Intestinal Failure-Associated Liver Disease (IFALD): A Narrative Review. Nutrients. 2023; 15(14):3169. https://doi.org/10.3390/nu15143169
Chicago/Turabian StyleZafirovska, Marija, Aleksandar Zafirovski, and Nada Rotovnik Kozjek. 2023. "Current Insights Regarding Intestinal Failure-Associated Liver Disease (IFALD): A Narrative Review" Nutrients 15, no. 14: 3169. https://doi.org/10.3390/nu15143169
APA StyleZafirovska, M., Zafirovski, A., & Rotovnik Kozjek, N. (2023). Current Insights Regarding Intestinal Failure-Associated Liver Disease (IFALD): A Narrative Review. Nutrients, 15(14), 3169. https://doi.org/10.3390/nu15143169