A Methionine-Portioning-Based Medical Nutrition Therapy with Relaxed Fruit and Vegetable Consumption in Patients with Pyridoxine-Nonresponsive Cystathionine-β-Synthase Deficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Details of Dietary Interventions and Switching Process to Methionine Portioning
2.3. Assessment of Dietary Adherence
- Did the new Met exchange system provide ease of application according to the diet you applied before?
- Did it provide you convenience in terms of food variety?
- Has the frequency of consumption of prohibited foods decreased?
- Did the new exchange system cause more fruit and vegetable consumption?
- Did the new exchange system improve your dietary adherence at school/work?
- Would you like to continue with the new exchange system?
2.4. Statistical Analysis
3. Results
3.1. Comparison of Anthropometric Measurements and Components of Medical Nutrition Therapy
3.2. Assessment of Metabolic Outcome after Switching to the Met Portioning Exchange List
3.3. Efficacy of Met Portioning Exchange List on Dietary Adherence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sacharow, S.J.; Picker, J.D.; Levy, H.L. Homocystinuria Caused by Cystathionine Beta-Synthase Deficiency. In GeneReviews® [Internet]; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2004. [Google Scholar]
- Karaca, M.; Hismi, B.; Ozgul, R.K.; Karaca, S.; Yilmaz, D.Y.; Coskun, T.; Sivri, H.S.; Tokatli, A.; Dursun, A. High prevalence of cerebral venous sinus thrombosis (CVST) as presentation of cystathionine beta-synthase deficiency in childhood: Molecular and clinical findings of Turkish probands. Gene 2014, 534, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Skovby, F.; Gaustadnes, M.; Mudd, S.H. A revisit to the natural history of homocystinuria due to cystathionine beta-synthase deficiency. Mol. Genet. Metab. 2010, 99, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, A.A.; Kožich, V.; Santra, S.; Andria, G.; Ben-Omran, T.I.; Chakrapani, A.B.; Crushell, E.; Henderson, M.J.; Hochuli, M.; Huemer, M.; et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J. Inherit. Metab. Dis. 2017, 40, 49–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alcaide, P.; Krijt, J.; Ruiz-Sala, P.; Ješina, P.; Ugarte, M.; Kožich, V.; Merinero, B. Enzymatic diagnosis of homocystinuria by determination of cystathionine-ß-synthase activity in plasma using LC-MS/MS. Clin. Chim. Acta 2015, 438, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Bártl, J.; Chrastina, P.; Krijt, J.; Hodík, J.; Pešková, K.; Kožich, V. Simultaneous determination of cystathionine, total homocysteine, and methionine in dried blood spots by liquid chromatography/tandem mass spectrometry and its utility for the management of patients with homocystinuria. Clin. Chim. Acta 2014, 437, 211–217. [Google Scholar] [CrossRef]
- Jiang, Y.; Mistretta, B.; Elsea, S.; Sun, Q. Simultaneous determination of plasma total homocysteine and methionine by liquid chromatography-tandem mass spectrometry. Clin. Chim. Acta 2017, 464, 93–97. [Google Scholar] [CrossRef]
- Huemer, M.; Kožich, V.; Rinaldo, P.; Baumgartner, M.R.; Merinero, B.; Pasquini, E.; Ribes, A.; Blom, H.J. Newborn screening for homocystinurias and methylation disorders: Systematic review and proposed guidelines. J. Inherit. Metab. Dis. 2015, 38, 1007–10019. [Google Scholar] [CrossRef] [Green Version]
- Keller, R.; Chrastina, P.; Pavlíková, M.; Gouveia, S.; Ribes, A.; Kölker, S.; Blom, H.J.; Baumgartner, M.R.; Bártl, J.; Dionisi-Vici, C.; et al. Newborn screening for homocystinurias: Recent recommendations versus current practice. J. Inherit. Metab. Dis. 2019, 42, 128–139. [Google Scholar] [CrossRef]
- Lai, W.K.; Kan, M.Y. Homocysteine-Induced Endothelial Dysfunction. Ann. Nutr. Metab. 2015, 67, 1–12. [Google Scholar] [CrossRef]
- Perła-Kaján, J.; Twardowski, T.; Jakubowski, H. Mechanisms of homocysteine toxicity in humans. Amino Acids 2007, 32, 561–572. [Google Scholar] [CrossRef]
- Adam, S.; Almeida, M.F.; Carbasius Weber, E.; Champion, H.; Chan, H.; Daly, A.; Dixon, M.; Dokoupil, K.; Egli, D.; Evans, S.; et al. Dietary practices in pyridoxine non-responsive homocystinuria: A European survey. Mol. Genet. Metab. 2013, 110, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Morrison, T.; Bösch, F.; Landolt, M.A.; Kožich, V.; Huemer, M.; Morris, A.A.M. Homocystinuria patient and caregiver survey: Experiences of diagnosis and patient satisfaction. Orphanet J. Rare Dis. 2021, 16, 124. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.; Sharma, G.S.; Singh, L.R. Homocystinuria: Therapeutic approach. Clin. Chim. Acta 2016, 458, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.; Jacobs, P.; Fingerhut, R.; Torresani, T.; Thöny, B.; Blau, N.; Baumgartner, M.R.; Rohrbach, M. Positive effect of a simplified diet on blood phenylalanine control in different phenylketonuria variants, characterized by newborn BH4 loading test and PAH analysis. Mol. Genet. Metab. 2012, 106, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Gama, M.I.; Adam, S.; Adams, S.; Allen, H.; Ashmore, C.; Bailey, S.; Cochrane, B.; Dale, C.; Daly, A.; De Sousa, G.; et al. Suitability and Allocation of Protein-Containing Foods According to Protein Tolerance in PKU: A 2022 UK National Consensus. Nutrients 2022, 14, 4987. [Google Scholar] [CrossRef]
- Rohde, C.; Mütze, U.; Schulz, S.; Thiele, A.G.; Ceglarek, U.; Thiery, J.; Mueller, A.S.; Kiess, W.; Beblo, S. Unrestricted fruits and vegetables in the PKU diet: A 1-year follow-up. Eur. J. Clin. Nutr. 2014, 68, 401–403. [Google Scholar] [CrossRef]
- Rohde, C.; Mütze, U.; Weigel, J.F.; Ceglarek, U.; Thiery, J.; Kiess, W.; Beblo, S. Unrestricted consumption of fruits and vegetables in phenylketonuria: No major impact on metabolic control. Eur. J. Clin. Nutr. 2012, 66, 633–638. [Google Scholar] [CrossRef]
- MacDonald, A.; Rylance, G.; Davies, P.; Asplin, D.; Hall, S.K.; Booth, I.W. Free use of fruits and vegetables in phenylketonuria. J. Inherit. Metab. Dis. 2003, 26, 327–338. [Google Scholar] [CrossRef]
- USDA Food Data Central. Available online: https://fdc.nal.usda.gov/index.html (accessed on 1 July 2023).
- Mütze, U.; Gleich, F.; Garbade, S.F.; Plisson, C.; Aldámiz-Echevarría, L.; Arrieta, F.; Ballhausen, D.; Zielonka, M.; Petković Ramadža, D.; Baumgartner, M.R.; et al. Postauthorization safety study of betaine anhydrous. J. Inherit. Metab. Dis. 2022, 45, 719–733. [Google Scholar] [CrossRef]
- Valayannopoulos, V.; Schiff, M.; Guffon, N.; Nadjar, Y.; García-Cazorla, A.; Martinez-Pardo Casanova, M.; Cano, A.; Couce, M.L.; Dalmau, J.; Peña-Quintana, L.; et al. Betaine anhydrous in homocystinuria: Results from the RoCH registry. Orphanet J. Rare Dis. 2019, 14, 66. [Google Scholar] [CrossRef] [Green Version]
- Devlin, A.M.; Hajipour, L.; Gholkar, A.; Fernandes, H.; Ramesh, V.; Morris, A.A. Cerebral edema associated with betaine treatment in classical homocystinuria. J. Pediatr. 2004, 144, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Yaghmai, R.; Kashani, A.H.; Geraghty, M.T.; Okoh, J.; Pomper, M.; Tangerman, A.; Wagner, C.; Stabler, S.P.; Allen, R.H.; Mudd, S.H.; et al. Progressive cerebral edema associated with high methionine levels and betaine therapy in a patient with cystathionine beta-synthase (CBS) deficiency. Am. J. Med. Genet. 2002, 108, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Truitt, C.; Hoff, W.D.; Deole, R. Health Functionalities of Betaine in Patients With Homocystinuria. Front. Nutr. 2021, 8, 690359. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Wang, L.; Kruger, W.D. Betaine supplementation is less effective than methionine restriction in correcting phenotypes of CBS deficient mice. J. Inherit. Metab. Dis. 2016, 39, 39–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclean, K.N.; Jiang, H.; Greiner, L.S.; Allen, R.H.; Stabler, S.P. Long-term betaine therapy in a murine model of cystathionine beta-synthase deficient homocystinuria: Decreased efficacy over time reveals a significant threshold effect between elevated homocysteine and thrombotic risk. Mol. Genet. Metab. 2012, 105, 395–403. [Google Scholar] [CrossRef]
- Kožich, V.; Sokolová, J.; Morris, A.A.M.; Pavlíková, M.; Gleich, F.; Kölker, S.; Krijt, J.; Dionisi-Vici, C.; Baumgartner, M.R.; Blom, H.J.; et al. Cystathionine β-synthase deficiency in the E-HOD registry-part I: Pyridoxine responsiveness as a determinant of biochemical and clinical phenotype at diagnosis. J. Inherit. Metab. Dis. 2021, 44, 677–692. [Google Scholar] [CrossRef]
- Gerrard, A.; Dawson, C. Homocystinuria diagnosis and management: It is not all classical. J. Clin. Pathol. 2022, 75, 744–750. [Google Scholar] [CrossRef]
- MaCdonald, A.; van Rijn, M.; Feillet, F.; Lund, A.M.; Bernstein, L.; Bosch, A.M.; Gizewska, M.; van Spronsen, F.J. Adherence issues in inherited metabolic disorders treated by low natural protein diets. Ann. Nutr. Metab. 2012, 61, 289–295. [Google Scholar] [CrossRef] [PubMed]
Fruits and Vegetables | 1 Met Portion | 1 Protein Portion |
---|---|---|
Broccoli | 65 g | 35 g |
Avocado | 67 g | 51 g |
Potato | 78 g | 48 g |
Brussels Sprouts | 78 g | 29 g |
Mushrooms | 80 g | 32 g |
Kale | 86 g | 34 g |
Eggplant | 227 g | 102 g |
Banana | 312 g | 91 g |
Cucumber | 416 g | 153 g |
Tomato | 416 g | 102 g |
Watermelon | 416 g | 163 g |
Fruits and Vegetables | 1 Met Portion | 1 Protein Portion |
---|---|---|
Melon | 500 g | 185 g |
Celery | 500 g | 145 g |
Lettuce | 500 g | 111 g |
Grapefruit | 500 g | 181 g |
Nectarine | 500 g | 94 g |
Loquat | 625 g | 232 g |
Gourd | 625 g | 161 g |
Cranberry | 833 g | 217 g |
Pear | 1250 g | 277 g |
Strawberry | 1250 g | 149 g |
Lime | 1250 g | 142 g |
Tangerine | 1250 g | 123 g |
Papaya | 1250 g | 212 g |
Onion | 1250 g | 90 g |
Apple | 2500 g | 370 g |
Sex | Age at Diagnosis (months) | Current Age (years) | Consanguinity | Mutation | Protein Change | Clinical Phenotype | |
---|---|---|---|---|---|---|---|
P1 | Female | 60 | 20 | (+) | c.919G>A | p.G3075 | thromboembolic episodes mental retardation lens dislocation |
P2 | Female | 3 | 7 | (+) | c.919G>A | p.G3075 | asymptomatic |
P3 | Female | 76 | 10 | (+) | c.1240G>T | p.V414F | lens dislocation |
P4 | Male | 65 | 9 | (+) | c.1240G>T | p.V414F | thromboembolic episodes mental retardation lens dislocation |
P5 | Male | 65 | 9 | (+) | c.1240G>T | p.V414F | lens dislocation |
P6 | Male | 123 | 12 | Ø | c.752T>C c.1064 C>T | p.L251P p.A355V | thromboembolic episodes mental retardation lens dislocation skeletal abnormalities |
P7 | Female | 72 | 13 | (+) | c.775G>A | pG259S | lens dislocation |
P8 | Female | 90 | 16 | Ø | c.752T>C c.1152G>C | p.L251P p.K384N | thromboembolic episodes mental retardation lens dislocation |
P9 | Male | 156 | 37 | (+) | c.1152 G>C | p.K384N | mental retardation lens dislocation skeletal abnormalities |
P10 | Male | 84 | 25 | (+) | c.1058C>T | p.Thr353Met | mental retardation lens dislocation skeletal abnormalities |
Period 1 g Protein Exchange List | Period 2 Met Portioning Exchange List | p-Value | |
---|---|---|---|
Height z-score * | 0.58 ± 1.63 | 1.04 ± 1.99 | 0.087 |
Weight z-score | 0.00 ± 1.24 | 0.08 ± 1.39 | 0.522 |
BMI (kg/m2) | 17.67 ± 2.73 | 18 ± 2.71 | 0.242 |
Period 1 g Protein Exchange List | Period 2 Met Portioning Exchange List | p-Value | |
---|---|---|---|
Dietary natural protein (g) | 21.8 ± 10.46 | 25.15 ± 8.36 | 0.284 |
MFAAM (g/kg) | 1.14 ± 0.61 | 1.13 ± 0.54 | 0.873 |
Plasma tHcy (µmol/L) | 61.83 ± 17.21 | 52.62 ± 25.54 | 0.250 |
Betaine dose (g/day) | 4.5 ± 1.58 | 2.3 ± 2.35 | 0.017 |
Plasma Met (µmol/L) | 285.61 ± 272.604 | 203.54 ± 161.66 | 0.369 |
Period 1 g Protein Exchange List | Period 2 Met Portioning Exchange List | |||||
---|---|---|---|---|---|---|
Plasma Met (µmol/L) | Betaine Dose (g/day) | Plasma tHcy (µmol/L, mean ± SD) | Plasma Met (µmol/L) | Betaine Dose (g/day) | Plasma tHcy (µmol/L, mean ± SD) | |
P1 | 572 | 6 | 79.37 ± 21.64 | 96 | 3 | 52.02 ± 1.5 |
P2 | 576 | 6 | 43.24 ± 28.1 | 240 | Ø | 37.58 ± 15.15 |
P3 | 29 | 3 | 50.26 ± 14.11 | 71 | Ø | 59.53 ± 19.94 |
P4 | 32 | 3 | 47.23 ± 8.47 | 66 | Ø | 37.63 ± 15.78 |
P5 | 40 | 3 | 48.13 ± 10.41 | 79 | Ø | 32.03 ± 15.65 |
P6 | 84 | 3 | 75.62 ± 55.16 | 126 | 2 | 30.23 ± 28.07 |
P7 | 167 | 6 | 87.5 ± 16.2 | 420 | 6 | 72.21 ± 9.59 |
P8 | 109 | 3 | 69.25 ± 16.61 | 329 | 6 | 113.66 ± 23.15 |
P9 | 627 | 6 | 42.15 ± 1.20 | 102 | 3 | 34.64 ± 12.22 |
P10 | 618 | 6 | 75.55 ± 17.46 | 506 | 3 | 56.69 ± 24.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uygur, E.; Aktuglu-Zeybek, C.; Aghalarov, M.; Cansever, M.S.; Kıykım, E.; Zubarioglu, T. A Methionine-Portioning-Based Medical Nutrition Therapy with Relaxed Fruit and Vegetable Consumption in Patients with Pyridoxine-Nonresponsive Cystathionine-β-Synthase Deficiency. Nutrients 2023, 15, 3105. https://doi.org/10.3390/nu15143105
Uygur E, Aktuglu-Zeybek C, Aghalarov M, Cansever MS, Kıykım E, Zubarioglu T. A Methionine-Portioning-Based Medical Nutrition Therapy with Relaxed Fruit and Vegetable Consumption in Patients with Pyridoxine-Nonresponsive Cystathionine-β-Synthase Deficiency. Nutrients. 2023; 15(14):3105. https://doi.org/10.3390/nu15143105
Chicago/Turabian StyleUygur, Esma, Cigdem Aktuglu-Zeybek, Mirsaid Aghalarov, Mehmet Serif Cansever, Ertugrul Kıykım, and Tanyel Zubarioglu. 2023. "A Methionine-Portioning-Based Medical Nutrition Therapy with Relaxed Fruit and Vegetable Consumption in Patients with Pyridoxine-Nonresponsive Cystathionine-β-Synthase Deficiency" Nutrients 15, no. 14: 3105. https://doi.org/10.3390/nu15143105
APA StyleUygur, E., Aktuglu-Zeybek, C., Aghalarov, M., Cansever, M. S., Kıykım, E., & Zubarioglu, T. (2023). A Methionine-Portioning-Based Medical Nutrition Therapy with Relaxed Fruit and Vegetable Consumption in Patients with Pyridoxine-Nonresponsive Cystathionine-β-Synthase Deficiency. Nutrients, 15(14), 3105. https://doi.org/10.3390/nu15143105