The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data
Abstract
:1. Introduction
2. Methodology
3. General Overview of Very-Long-Chain n-3 Polyunsaturated Fatty Acids
3.1. Structure, Health Effect, and Intake Recommendation for VLC n-3 PUFAs
3.2. Sources of VLC n-3 PUFAs
4. Effect of VLC n-3 PUFAs on the Central Nervous System (CNS)
4.1. Physiological Functions of VLC n-3 PUFAs on the CNS
4.2. Effect of VLC n-3 PUFAs on Neuroinflammation
4.3. Effect of VLC n-3 PUFAs on Cognitive and Behavioral Level
Author | Sample | Treatment | Main Outcomes |
---|---|---|---|
In vitro study | |||
(Rey et al., 2016) [51] | BV2 microglial cell | RVsE1 (10 nM) or RVsD1 (10 nM) for 30 min | |
(Titos et al., 2011) [52] | BV2 microglial cell | DHA (10, 50, and 100 mM) for 18 h or RVsD1 (1, 10, and 100 nM) for 5 h | |
(Xu et al., 2013) [53] | Microglial cell | RVsE1 pre-treatment (100 ng/mL) | |
(Fourrier et al., 2017) [54] | BV2 microglial cell | DHA-enriched phosphatidylcholine (30 µM) for 24 h | ↓ LPS-induced IL-6 production |
(De Smedt-Peyrusse et al., 2008) [55] | BV2 microglial cell | DHA (0.3, 3, 30, or 300 μmol/L) for 24 h | ↓ LPS-induced level of IL-1β, IL-6, and TNF-α, ↓ LPS-induced NFκB activation, and ↓ CD14 and TLR4 cell-surface expression |
(He et al., 2017) [56] | Primary bovine mammary epithelial cells | DHA (25, 50, and 100 μM) for 3 h | ↓ LPS-induced IL-1β, IL-6, and TNF-α mRNA expression |
(Zgórzyńska et al., 2021) [57] | Primary rat cortical astrocyte | DHA (10, 30, and 50 μM) for 24 h | ↓ Response to IL-1 β, ↓ release of TNFα and IL-6, and ↓ iNOS and COX-2 levels |
(Kawashima et al., 2008) [59] | C6 glioma cells | EPA (50 μM) for 24 h | ↓ IL-6 production, ↓ IL-6 mRNA expression, and PPAR gamma antagonist abolish the inhibitory effect of EPA |
(Inoue et al., 2017) [61] | MG6 and BV2 microglial cells | EPA (200 μM) or DHA (200 μM) for 30 min | ↓ LPS-induced IL-6 production |
EPA and DHA (200 μM) for 30 min | Activation of SIRT1 pathway | ||
(Ma et al., 2020) [62] | BV2 microglial cell | DPA (50 μM) for 24 h | ↓ mRNA expression of COX2 in amyloid-beta42 oligomer-challenged cells |
(Liu et al., 2021) [63] | BV2 microglial cell | DPA (50 μM) for 24 h | ↓ LPS-induced IL-1β, TNF-α, and NO mRNA expression |
(Tian et al., 2017) [64] | Macrophage-like RAW264.7 cell | DPA, EPA, or DHA (25–75 μM) for 72 h | DPA and DHA ↓ LPS-induced IL-1β, IL-6, iNOS, and COX-2 mRNA expression |
Pre-clinical studies | |||
(Fourrier et al., 2017) [54] | C57BL6/J mice | PC-DHA (4.33 µg/g, iv) | ↓ LPS-induced IL-6 mRNA expression in the hippocampus |
(Dong et al., 2018) [58] | Long–Evans rats | Diet supplemented with 0.8% EPA for 42 days | ↓ GFAP and TNF-α mRNA expression induced by IL-1β in the hippocampus and ↑ hippocampal BDNF mRNA expression |
(Ma et al., 2020) [62] | E3FAD and E4FAD mice | DPA (700 mg/kg, oral gavage) for 3 weeks | ↑ DPA level in the brain, ↓ brain pro-inflammatory cytokines IL-6 and TNF-α and ↓IL-10, and ↓ COX gene expression |
(Delpech et al., 2014) [66] | Fat-1 transgenic mice | -------- | ↑ DPA and EPA level in the hippocampus of KO mice, LPS Impairs spatial memory in WT but not in KO mice, and ↓ LPS-induced IL-1β mRNA expression compared with WT mice |
(Wang et al., 2021) [67] | ICR mice | Diet supplemented with 0.6% EPA for 4 weeks | ↓ IL-1β mRNA expression in the hippocampus, thalamus, and cortex, improve anxiety- and depression-like behavior induced by chronic stress, and attenuate reduction in DA, 5-HT, and NE induced by chronic stress |
(Patel et al., 2020) [68] | Pups Sprague–Dawley rats | Stearidonic-acid-enriched maternal diet (3%) 5 days prior to parturition and through the suckling period. | ↑ Proportion of EPA, DPA, and DHA in plasma phospholipid and ↓ LPS-induced IL-6 and TNF-α production |
(Labrousse et al., 2012) [69] | Aged C57Bl6/J mice (20 months) | Diet supplemented with 10% EPA and 7% DHA for 60 days | ↑ DHA and EPA levels in the brain, ↓ IL-6 and TNF-α mRNA expression in the hippocampus, ↓IL-1β expression in plasm, and restored spatial memory deficits associated with age |
(Kelly et al., 2011) [70] | Aged rats (20–22 months) | DPA (200 mg/kg) for 56 days | ↓ Escape latency and mean latency in an MWM compared with the aged control group and ↓ microglial activation, caspase-3n and oxidative stress |
(Jost et al., 2022) [79] | Rats | 10% PUFA-enriched diet for 5 weeks | ↓ Number of trials to reach the learning criterion in the T-maze |
(Lamontagne-Kam et al., 2023) [80] | Sprague–Dawley rats | 2.1% DHA-enriched diet for 47 days | DHA-fed females ↑ % time in the correct quadrant in MWM than control groups |
(Hauser et al., 2018) [91] | Wistar rats | Transgenerational exposure to n-3 PUFA-deficient diet | ↓ % of correct responses and ↑% omission on 3CSRTT, ↑ premature responses and more timeout responses on 3CSRTT, and impaired performances was partly corrected by n-3 PUFA-sufficient diet |
(Dervola et al., 2012) [92] | Spontaneously hypertensive rodents (SHR/NCrl) | EPA, 300 mg/g; DHA, 190 mg/g for 40 days | ↑ % responses on the reinforcer-producing level in males, ↓ premature responses and lever-directed hyperactivity in males, and ↑ DA and 5-HT turnover in males |
Randomized clinical trial | |||
(Bo et al., 2017) [73] | Elderly with MCI | 720 mg/day EPA and 480 mg/day DHA for 6 months | ↑ Total score of the Basic Cognitive Aptitude Tests, ↑ WM in men but not in women, and ↓ IL-6 and TNF-α levels in plasma |
(Kiecolt-Glaser et al., 2011) [74] | Healthy young adults | 348 mg/day DHA and 2085 mg/day EPA for 4 months | ↓ Anxiety symptoms, no significant effect in depressive symptoms, and ↓ LPS-stimulated IL-6 and TNF- α production |
(Kiecolt-Glaser et al., 2012) [75] | Healthy adults | 348 mg/day DHA and 2085 mg/day EPA for 4 months | ↓ Serum levels of IL-6 and TNF-α and no significant difference in depressive symptoms |
(Khalili et al., 2021) [76] | Patients with type-2 diabetes mellitus | 1000–2000 mg of n-3 PUFA for 3 months | ↓ TNF-α and c-reactive protein levels |
(Lee et al., 2013) [85] | Participants with MCI | 1290 mg/day DHA and 450 mg/day EPA for 12 months | ↑ Short-term and working memory |
(Nilsson et al., 2012) [86] | Healthy adults | 1050 mg/day DHA and 1500 mg/day EPA for 5 weeks | Better performance in WM test |
(Nolan et al., 2022) [87] | Patients with mild–moderate AD | 150 mg/day EPA and 500 mg/day DHA for 12 months | ↑ Mood and memory |
(Jackson et al., 2016) [88] | Healthy older adult | 128 mg/day EPA and 896 mg/day DHA for 6 months | No effect on performance of the CDB tasks |
(Phillips et al., 2015) [89] | Individuals with cognitive impairment, no dementia | 600 mg/day EPA and 625 mg/day DHA for 4 months) | No effect on MMSE and HVLT-R score |
(Anand and Sachdeva, 2016) [93] | ADHD children (4–8 years) | 180 mg/day EPA and 180 mg/day DHA for 4 months | ↓ Conners’ ADHD scores and ↓ hyperactive and impulsive symptoms |
(Bos et al., 2015) [94] | ADHD children (8–14 years) | 65 mg/day EPA and 650 mg/day DHA for 4 months | ↑ scores on CBCL attention problems subscale and no significant effects on the Rule Breaking and Aggressive Behavior subscales |
(San Mauro Martin et al., 2022) [95] | ADHD children (6–16 years) | 550 mg/day EPA and 225 mg/day DHA for 8 weeks | ↓ BIS-11c total score |
5. Role of VLC n-3 PUFAs on Alcohol Use Disorders
5.1. VLC n-3 PUFAs and Alcohol-Induced Brain Damage
5.2. VLC n-3 PUFAs and Cognitive and Behavioral Impairments Associated with Alcohol Consumption
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Status Report on Alcohol and Health 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- GBD 2019 Mental Disorders Collaborators Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [CrossRef] [PubMed]
- World Health Organization Alcohol. Available online: https://www.who.int/publications/i/item/9789241565639 (accessed on 6 June 2023).
- Kuntsche, E.; Kuntsche, S.; Thrul, J.; Gmel, G. Binge Drinking: Health Impact, Prevalence, Correlates and Interventions. Psychol. Health 2017, 32, 976–1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manthey, J.; Hassan, S.A.; Carr, S.; Kilian, C.; Kuitunen-Paul, S.; Rehm, J. What Are the Economic Costs to Society Attributable to Alcohol Use? A Systematic Review and Modelling Study. Pharmacoeconomics 2021, 39, 809. [Google Scholar] [CrossRef] [PubMed]
- Nieto, S.J.; Baskerville, W.; Donato, S.; Bujarski, S.; Ray, L. Lifetime Heavy Drinking Years Predict Alcohol Use Disorder Severity over and above Current Alcohol Use. Am. J. Drug Alcohol Abuse 2021, 47, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Crews, F.T.; Robinson, D.L.; Chandler, L.J.; Ehlers, C.L.; Mulholland, P.J.; Pandey, S.C.; Rodd, Z.A.; Spear, L.P.; Swartzwelder, H.S.; Vetreno, R.P. Mechanisms of Persistent Neurobiological Changes Following Adolescent Alcohol Exposure: NADIA Consortium Findings. Alcohol. Clin. Exp. Res. 2019, 43, 1806–1822. [Google Scholar] [CrossRef] [Green Version]
- Carvajal, F.; Lerma-Cabrera, J.M. Alcohol Consumption among Adolescents—Implications for Public Health. In Topics in Public Health, 1st ed.; Claborn, D., Ed.; Intech: Rijeka, Croatia, 2015; pp. 51–76. [Google Scholar] [CrossRef] [Green Version]
- Heilig, M.; Augier, E.; Pfarr, S.; Sommer, W.H. Developing Neuroscience-Based Treatments for Alcohol Addiction: A Matter of Choice? Transl. Psychiatry 2019, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Erickson, E.K.; Grantham, E.K.; Warden, A.S.; Harris, R.A. Neuroimmune Signaling in Alcohol Use Disorder. Pharmacol. Biochem. Behav. 2019, 177, 34–60. [Google Scholar] [CrossRef]
- Sarris, J.; Ravindran, A.; Yatham, L.N.; Marx, W.; Rucklidge, J.J.; McIntyre, R.S.; Akhondzadeh, S.; Benedetti, F.; Caneo, C.; Cramer, H.; et al. Clinician Guidelines for the Treatment of Psychiatric Disorders with Nutraceuticals and Phytoceuticals: The World Federation of Societies of Biological Psychiatry (WFSBP) and Canadian Network for Mood and Anxiety Treatments (CANMAT) Taskforce. World J. Biol. Psychiatry 2022, 23, 424–455. [Google Scholar] [CrossRef]
- Mishra, A.P.; Srivastav, N.; Singh, A.; Nigam, M.; Pezzani, R.; Egbuna, C.; Uche, C.Z.; Khan, J. The Role of Nutraceuticals as Food and Medicine, Types and Sources. In Food and Agricultural Byproducts as Important Source of Valuable Nutraceuticals; Springer: Cham, Switzerland, 2022; pp. 1–18. [Google Scholar] [CrossRef]
- Peng, S.; Peng, Z.; Qin, M.; Huang, L.; Zhao, B.; Wei, L.; Ning, J.; Tuo, Q.; Yuan, T.; Shi, Z.; et al. Targeting Neuroinflammation: The Therapeutic Potential of ω-3 PUFAs in Substance Abuse. Nutrition 2021, 83, 111058. [Google Scholar] [CrossRef]
- Punia, S.; Sandhu, K.S.; Siroha, A.K.; Dhull, S.B. Omega 3-Metabolism, Absorption, Bioavailability and Health Benefits–A Review. PharmaNutrition 2019, 10, 100162. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Liu, Y.; Wang, C.; Zhao, J.; Zhang, H.; Tian, F.; Lee, Y.K.; Chen, W. Increased Cadmium Excretion Due to Oral Administration of Lactobacillus Plantarum Strains by Regulating Enterohepatic Circulation in Mice. J. Agric. Food Chem. 2019, 67, 3956–3965. [Google Scholar] [CrossRef] [PubMed]
- Troesch, B.; Eggersdorfer, M.; Laviano, A.; Rolland, Y.; Smith, A.D.; Warnke, I.; Weimann, A.; Calder, P.C. Expert Opinion on Benefits of Long-Chain Omega-3 Fatty Acids (DHA and EPA) in Aging and Clinical Nutrition. Nutrients 2020, 12, 2555. [Google Scholar] [CrossRef]
- Valenzuela, R.; Ortiz, M.; Hernández-Rodas, M.C.; Echeverría, F.; Videla, L.A. Targeting N-3 Polyunsaturated Fatty Acids in Non-Alcoholic Fatty Liver Disease. Curr. Med. Chem. 2020, 27, 5250–5272. [Google Scholar] [CrossRef]
- Ferreira, I.; Falcato, F.; Bandarra, N.; Rauter, A.P. Resolvins, Protectins, and Maresins: DHA-Derived Specialized Pro-Resolving Mediators, Biosynthetic Pathways, Synthetic Approaches, and Their Role in Inflammation. Molecules 2022, 27, 1677. [Google Scholar] [CrossRef]
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.B.S.; Ciappolino, V.; Agostoni, C. DHA Effects in Brain Development and Function. Nutrients 2016, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Echeverría, F.; Valenzuela, R.; Catalina Hernandez-Rodas, M.; Valenzuela, A. Docosahexaenoic Acid (DHA), a Fundamental Fatty Acid for the Brain: New Dietary Sources. Prostaglandins Leukot. Essent. Fat. Acids 2017, 124, 1–10. [Google Scholar] [CrossRef]
- Tiberi, M.; Chiurchiù, V. Specialized Pro-Resolving Lipid Mediators and Glial Cells: Emerging Candidates for Brain Homeostasis and Repair. Front. Cell. Neurosci. 2021, 15, 673549. [Google Scholar] [CrossRef]
- Drouin, G.; Rioux, V.; Legrand, P. The N-3 Docosapentaenoic Acid (DPA): A New Player in the n-3 Long Chain Polyunsaturated Fatty Acid Family. Biochimie 2019, 159, 36–48. [Google Scholar] [CrossRef]
- Dyall, S.C.; Balas, L.; Bazan, N.G.; Brenna, J.T.; Chiang, N.; da Costa Souza, F.; Dalli, J.; Durand, T.; Galano, J.M.; Lein, P.J.; et al. Polyunsaturated Fatty Acids and Fatty Acid-Derived Lipid Mediators: Recent Advances in the Understanding of Their Biosynthesis, Structures, and Functions. Prog. Lipid Res. 2022, 86, 101165. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation: 10–14 November 2008, Geneva; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Fats, Including Saturated Fatty Acids, Polyunsaturated Fatty Acids, Monounsaturated Fatty Acids, Trans Fatty Acids, and Cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef] [Green Version]
- Best, K.P.; Gibson, R.A.; Makrides, M. ISSFAL Statement Number 7—Omega-3 Fatty Acids during Pregnancy to Reduce Preterm Birth. Prostaglandins Leukot. Essent. Fat. Acids 2022, 186, 102495. [Google Scholar] [CrossRef] [PubMed]
- Global Organization for EPA and DHA Omega-3 EPA & DHA Intake Recommendations | GOED Omega-3. Available online: https://goedomega3.com/intake-recommendations (accessed on 9 May 2023).
- Rincón-Cervera, M.Á.; Villarreal-Rubio, M.B.; Valenzuela, R.; Valenzuela, A. Comparison of Fatty Acid Profiles of Dried and Raw By-Products from Cultured and Wild Fishes. Eur. J. Lipid Sci. Technol. 2017, 119, 1600516. [Google Scholar] [CrossRef]
- Kothri, M.; Mavrommati, M.; Elazzazy, A.M.; Baeshen, M.N.; Moussa, T.A.A.; Aggelis, G. Microbial Sources of Polyunsaturated Fatty Acids (PUFAs) and the Prospect of Organic Residues and Wastes as Growth Media for PUFA-Producing Microorganisms. FEMS Microbiol. Lett. 2020, 367, fnaa028. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Naidu, K.A.; Shang, X.; Keum, Y.S. Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits-A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef]
- Suárez, M.D.; Sáez, M.I.; Rincón-Cervera, M.Á.; Hidalgo, L.; Guil-Guerrero, J.L. Discarded Fish on the Spanish Mediterranean Coast: Influence of Season on Fatty Acids Profiles. Mediterr. Mar. Sci. 2021, 22, 232–245. [Google Scholar] [CrossRef]
- Jensen, I.J.; Mæhre, H.K.; Tømmerås, S.; Eilertsen, K.E.; Olsen, R.L.; Elvevoll, E.O. Farmed Atlantic Salmon (Salmo salar L.) Is a Good Source of Long Chain Omega-3 Fatty Acids. Nutr. Bull. 2012, 37, 25–29. [Google Scholar] [CrossRef]
- Bandarra, N.M.; Marçalo, A.; Cordeiro, A.R.; Pousão-Ferreira, P. Sardine (Sardina Pilchardus) Lipid Composition: Does It Change after One Year in Captivity? Food Chem. 2018, 244, 408–413. [Google Scholar] [CrossRef]
- Linder, M.; Belhaj, N.; Sautot, P.; Tehrany, E.A. From Krill to Whale: An Overview of Marine Fatty Acids and Lipid Compositions. Oléagineux Corps Gras Lipides 2010, 17, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Chen, C.; Shi, Z.; Wang, L. Amino Acid and Fatty Acid Composition of the Muscle Tissue of Yellowfin Tuna (Thunnus Albacares) and Bigeye Tuna (Thunnus Obesus). J. Food Nutr. Res. 2013, 1, 42–45. [Google Scholar]
- Wanasundara, U.N.; Shahidi, F. Positional distribution of fatty acids in triacylglycerols of seal blubber oil. J. Food Lipids 1997, 4, 51–64. [Google Scholar] [CrossRef]
- Xie, D.; Jin, J.; Sun, J.; Liang, L.; Wang, X.; Zhang, W.; Wang, X.; Jin, Q. Comparison of Solvents for Extraction of Krill Oil from Krill Meal: Lipid Yield, Phospholipids Content, Fatty Acids Composition and Minor Components. Food Chem. 2017, 233, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Tsape, K.; Sinanoglou, V.J.; Miniadis-Meimaroglou, S. Comparative Analysis of the Fatty Acid and Sterol Profiles of Widely Consumed Mediterranean Crustacean Species. Food Chem. 2010, 122, 292–299. [Google Scholar] [CrossRef]
- Miliou, H.; Fintikaki, M.; Tzitzinakis, M.; Kountouris, T.; Verriopoulos, G. Fatty Acid Composition of the Common Octopus, Octopus Vulgaris, in Relation to Rearing Temperature and Body Weight. Aquaculture 2006, 256, 311–322. [Google Scholar] [CrossRef]
- De Mello, A.H.; Uberti, M.F.; De Farias, B.X.; De Souza, N.A.R.; Rezin, G.T. N-3 PUFA and Obesity: From Peripheral Tissues to the Central Nervous System. Br. J. Nutr. 2018, 119, 1312–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishnan, J.; Kannan, S.; Govindasamy, A. Structured Form of DHA Prevents Neurodegenerative Disorders: A Better Insight into the Pathophysiology and the Mechanism of DHA Transport to the Brain. Nutr. Res. 2021, 85, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Joffre, C.; Rey, C.; Layé, S. N-3 Polyunsaturated Fatty Acids and the Resolution of Neuroinflammation. Front. Pharmacol. 2019, 10, 1022. [Google Scholar] [CrossRef] [Green Version]
- Dyall, S.C. Long-Chain Omega-3 Fatty Acids and the Brain: A Review of the Independent and Shared Effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Van, A.L.; Hachem, M.; Lagarde, M.; Bernoud-Hubac, N. Omega-3 Docosahexaenoic Acid Is a Mediator of Fate-Decision of Adult Neural Stem Cells. Int. J. Mol. Sci. 2019, 20, 4240. [Google Scholar] [CrossRef] [Green Version]
- Borsini, A.; Alboni, S.; Horowitz, M.A.; Tojo, L.M.; Cannazza, G.; Su, K.P.; Pariante, C.M.; Zunszain, P.A. Rescue of IL-1β-Induced Reduction of Human Neurogenesis by Omega-3 Fatty Acids and Antidepressants. Brain. Behav. Immun. 2017, 65, 230. [Google Scholar] [CrossRef] [Green Version]
- Toda, T.; Parylak, S.L.; Linker, S.B.; Gage, F.H. The Role of Adult Hippocampal Neurogenesis in Brain Health and Disease. Mol. Psychiatry 2018, 24, 67–87. [Google Scholar] [CrossRef] [PubMed]
- Coniglio, S.; Shumskaya, M.; Vassiliou, E. Unsaturated Fatty Acids and Their Immunomodulatory Properties. Biology 2023, 12, 279. [Google Scholar] [CrossRef] [PubMed]
- Amanollahi, M.; Jameie, M.; Heidari, A.; Rezaei, N. The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol. Neurobiol. 2023, 60, 923–959. [Google Scholar] [CrossRef] [PubMed]
- Rey, C.; Nadjar, A.; Buaud, B.; Vaysse, C.; Aubert, A.; Pallet, V.; Layé, S.; Joffre, C. Resolvin D1 and E1 Promote Resolution of Inflammation in Microglial Cells in Vitro. Brain. Behav. Immun. 2016, 55, 249–259. [Google Scholar] [CrossRef]
- Titos, E.; Rius, B.; González-Périz, A.; López-Vicario, C.; Morán-Salvador, E.; Martínez-Clemente, M.; Arroyo, V.; Clària, J. Resolvin D1 and Its Precursor Docosahexaenoic Acid Promote Resolution of Adipose Tissue Inflammation by Eliciting Macrophage Polarization toward an M2-Like Phenotype. J. Immunol. 2011, 187, 5408–5418. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.Z.; Berta, T.; Ji, R.R. Resolvin E1 Inhibits Neuropathic Pain and Spinal Cord Microglial Activation Following Peripheral Nerve Injury. J. Neuroimmune Pharmacol. 2013, 8, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Fourrier, C.; Remus-Borel, J.; Greenhalgh, A.D.; Guichardant, M.; Bernoud-Hubac, N.; Lagarde, M.; Joffre, C.; Layé, S. Docosahexaenoic Acid-Containing Choline Phospholipid Modulates LPS-Induced Neuroinflammation in Vivo and in Microglia in Vitro. J. Neuroinflamm. 2017, 14, 170. [Google Scholar] [CrossRef] [Green Version]
- De Smedt-Peyrusse, V.; Sargueil, F.; Moranis, A.; Harizi, H.; Mongrand, S.; Layé, S. Docosahexaenoic Acid Prevents Lipopolysaccharide-Induced Cytokine Production in Microglial Cells by Inhibiting Lipopolysaccharide Receptor Presentation but Not Its Membrane Subdomain Localization. J. Neurochem. 2008, 105, 296–307. [Google Scholar] [CrossRef]
- He, X.; Liu, W.; Shi, M.; Yang, Z.; Zhang, X.; Gong, P. Docosahexaenoic Acid Attenuates LPS-Stimulated Inflammatory Response by Regulating the PPARγ/NF-ΚB Pathways in Primary Bovine Mammary Epithelial Cells. Res. Vet. Sci. 2017, 112, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Zgórzyńska, E.; Stulczewski, D.; Dziedzic, B.; Su, K.P.; Walczewska, A. Docosahexaenoic Fatty Acid Reduces the Pro-inflammatory Response Induced by IL-1β in Astrocytes through Inhibition of NF-ΚB and AP-1 Transcription Factor Activation. BMC Neurosci. 2021, 22, 4. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, M.; Kalueff, A.V.; Song, C. Dietary Eicosapentaenoic Acid Normalizes Hippocampal Omega-3 and 6 Polyunsaturated Fatty Acid Profile, Attenuates Glial Activation and Regulates BDNF Function in a Rodent Model of Neuroinflammation Induced by Central Interleukin-1β Administration. Eur. J. Nutr. 2018, 57, 1781–1791. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, A.; Harada, T.; Imada, K.; Yano, T.; Mizuguchi, K. Eicosapentaenoic Acid Inhibits Interleukin-6 Production in Interleukin-1β-Stimulated C6 Glioma Cells through Peroxisome Proliferator-Activated Receptor-Gamma. Prostaglandins Leukot. Essent. Fat. Acids 2008, 79, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Decara, J.; Rivera, P.; López-Gambero, A.J.; Serrano, A.; Pavón, F.J.; Baixeras, E.; Rodríguez de Fonseca, F.; Suárez, J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front. Pharmacol. 2020, 11, 730. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Tanaka, M.; Masuda, S.; Ohue-Kitano, R.; Yamakage, H.; Muranaka, K.; Wada, H.; Kusakabe, T.; Shimatsu, A.; Hasegawa, K.; et al. Omega-3 Polyunsaturated Fatty Acids Suppress the Inflammatory Responses of Lipopolysaccharide-Stimulated Mouse Microglia by Activating SIRT1 Pathways. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2017, 1862, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.L.; Zhu, C.; Morselli, M.; Su, T.; Pelligrini, M.; Lu, Z.; Jones, M.; Denver, P.; Castro, D.; Gu, X.; et al. The Novel Omega-6 Fatty Acid Docosapentaenoic Acid Positively Modulates Brain Innate Immune Response for Resolving Neuroinflammation at Early and Late Stages of Humanized APOE-Based Alzheimer’s Disease Models. Front. Immunol. 2020, 11, 558036. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Aiping; Zhang, Y.; Yang, Z.; Liu, M.; Zhang, C.; Zhao, Y.; Song, C. ω-3 DPA Protected Neurons from Neuroinflammation by Balancing Microglia M1/M2 Polarizations through Inhibiting NF-ΚB/MAPK P38 Signaling and Activating Neuron-BDNF-PI3K/AKT Pathways. Mar. Drugs 2021, 19, 587. [Google Scholar] [CrossRef]
- Tian, Y.; Katsuki, A.; Romanazzi, D.; Miller, M.R.; Adams, S.L.; Miyashita, K.; Hosokawa, M. Docosapentaenoic Acid (22:5 n-3) Downregulates MRNA Expression of Pro-Inflammatory Factors in LPS-Activated Murine Macrophage Like RAW264.7 Cells. J. Oleo Sci. 2017, 66, 1149–1156. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Rao, L.; Yu, G.; Cook, T.R.; Chen, X.; Huang, F. Supramolecular Cancer Nanotheranostics. Chem. Soc. Rev. 2021, 50, 2839–2891. [Google Scholar] [CrossRef]
- Delpech, J.C.; Madore, C.; Joffre, C.; Aubert, A.; Kang, J.X.; Nadjar, A.; Layé, S. Transgenic Increase in N-3/n-6 Fatty Acid Ratio Protects Against Cognitive Deficits Induced by an Immune Challenge through Decrease of Neuroinflammation. Neuropsychopharmacology 2015, 40, 525–536. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.C.; Du, L.; Shi, H.H.; Ding, L.; Yanagita, T.; Xue, C.H.; Wang, Y.M.; Zhang, T.T. Dietary EPA-Enriched Phospholipids Alleviate Chronic Stress and LPS-Induced Depression- and Anxiety-Like Behavior by Regulating Immunity and Neuroinflammation. Mol. Nutr. Food Res. 2021, 65, e2100009. [Google Scholar] [CrossRef]
- Patel, D.; Goruk, S.; Newell, M.; Chen, G.; Richard, C.; Field, C.J. Feeding a Bioactive Oil Enriched in Stearidonic Acid during Early Life Influences Immune System Maturation in Neonatal Sprague-Dawley Rats. J. Nutr. 2020, 150, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Labrousse, V.F.; Nadjar, A.; Joffre, C.; Costes, L.; Aubert, A.; Grégoire, S.; Bretillon, L.; Layé, S. Short-Term Long Chain Omega3 Diet Protects from Neuroinflammatory Processes and Memory Impairment in Aged Mice. PLoS ONE 2012, 7, e36861. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.; Grehan, B.; Della Chiesa, A.; O’Mara, S.M.; Downer, E.; Sahyoun, G.; Massey, K.A.; Nicolaou, A.; Lynch, M.A. The Polyunsaturated Fatty Acids, EPA and DPA Exert a Protective Effect in the Hippocampus of the Aged Rat. Neurobiol. Aging 2011, 32, 2318.e1–2318.e15. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, N.; Panagiotakos, D.B.; Pitsavos, C.; Chrysohoou, C.; Rousinou, G.; Toutouza, M.; Stefanadis, C. Unsaturated Fatty Acids Are Inversely Associated and N-6/n-3 Ratios Are Positively Related to Inflammation and Coagulation Markers in Plasma of Apparently Healthy Adults. Clin. Chim. Acta 2010, 411, 584–591. [Google Scholar] [CrossRef]
- Skulas-Ray, A.C.; Flock, M.R.; Richter, C.K.; Harris, W.S.; West, S.G.; Kris-Etherton, P.M. Red Blood Cell Docosapentaenoic Acid (DPA n-3) Is Inversely Associated with Triglycerides and C-Reactive Protein (CRP) in Healthy Adults and Dose-Dependently Increases Following n-3 Fatty Acid Supplementation. Nutrients 2015, 7, 6390–6404. [Google Scholar] [CrossRef] [Green Version]
- Bo, Y.; Zhang, X.; Wang, Y.; You, J.; Cui, H.; Zhu, Y.; Pang, W.; Liu, W.; Jiang, Y.; Lu, Q. The N-3 Polyunsaturated Fatty Acids Supplementation Improved the Cognitive Function in the Chinese Elderly with Mild Cognitive Impairment: A Double-Blind Randomized Controlled Trial. Nutrients 2017, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Kiecolt-Glaser, J.K.; Belury, M.A.; Andridge, R.; Malarkey, W.B.; Glaser, R. Omega-3 Supplementation Lowers Inflammation and Anxiety in Medical Students: A Randomized Controlled Trial. Brain. Behav. Immun. 2011, 25, 1725. [Google Scholar] [CrossRef] [Green Version]
- Kiecolt-Glaser, J.K.; Belury, M.A.; Andridge, R.; Malarkey, W.B.; Hwang, B.S.; Glaser, R. Omega-3 Supplementation Lowers Inflammation in Healthy Middle-Aged and Older Adults: A Randomized Controlled Trial. Brain. Behav. Immun. 2012, 26, 988. [Google Scholar] [CrossRef] [Green Version]
- Khalili, L.; Valdes-Ramos, R.; Harbige, L.S. Effect of N-3 (Omega-3) Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers and Body Weight in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of RCTs. Metabolites 2021, 11, 742. [Google Scholar] [CrossRef]
- Jašarević, E.; Hecht, P.M.; Fritsche, K.L.; Beversdorf, D.Q.; Geary, D.C. Dissociable Effects of Dorsal and Ventral Hippocampal DHA Content on Spatial Learning and Anxiety-like Behavior. Neurobiol. Learn. Mem. 2014, 116, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Lozada, L.E.; Desai, A.; Kevala, K.; Lee, J.W.; Kim, H.Y. Perinatal Brain Docosahexaenoic Acid Concentration Has a Lasting Impact on Cognition in Mice. J. Nutr. 2017, 147, 1624–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jost, T.; Nemeth, M.; Millesi, E.; Siutz, C. Effects of Dietary Polyunsaturated Fatty Acids on Corticosterone Concentrations and Spatial Learning in Rats. Behav. Process. 2022, 198, 104642. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne-Kam, D.M.; Davari, S.; Aristizabal-Henao, J.J.; Cho, S.; Chalil, D.; Mielke, J.G.; Stark, K.D. Sex Differences in Hippocampal-Dependent Memory and the Hippocampal Lipidome in Adolescent Rats Raised on Diets with or without DHA. Prostaglandins Leukot. Essent. Fat. Acids 2023, 192, 102569. [Google Scholar] [CrossRef]
- Wood, A.H.R.; Chappell, H.F.; Zulyniak, M.A. Dietary and Supplemental Long-Chain Omega-3 Fatty Acids as Moderators of Cognitive Impairment and Alzheimer’s Disease. Eur. J. Nutr. 2022, 61, 589. [Google Scholar] [CrossRef]
- Duchaine, C.S.; Fiocco, A.J.; Carmichael, P.H.; Cunnane, S.C.; Plourde, M.; Lampuré, A.; Allès, B.; Belleville, S.; Gaudreau, P.; Presse, N.; et al. Serum ω-3 Fatty Acids and Cognitive Domains in Community-Dwelling Older Adults from the NuAge Study: Exploring the Associations with Other Fatty Acids and Sex. J. Nutr. 2022, 152, 2117–2124. [Google Scholar] [CrossRef]
- Nozaki, S.; Sawada, N.; Matsuoka, Y.J.; Shikimoto, R.; Mimura, M.; Tsugane, S. Association Between Dietary Fish and PUFA Intake in Midlife and Dementia in Later Life: The JPHC Saku Mental Health Study. J. Alzheimers Dis. 2021, 79, 1091–1104. [Google Scholar] [CrossRef]
- Danthiir, V.; Hosking, D.; Burns, N.R.; Wilson, C.; Nettelbeck, T.; Calvaresi, E.; Clifton, P.; Wittert, G.A. Cognitive Performance in Older Adults Is Inversely Associatedwith Fish Consumption but Not Erythrocyte Membrane N-3 Fatty Acids. J. Nutr. 2014, 144, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.K.; Shahar, S.; Chin, A.V.; Yusoff, N.A.M. Docosahexaenoic Acid-Concentrated Fish Oil Supplementation in Subjects with Mild Cognitive Impairment (MCI): A 12-Month Randomised, Double-Blind, Placebo-Controlled Trial. Psychopharmacology 2013, 225, 605–612. [Google Scholar] [CrossRef]
- Nilsson, A.; Radeborg, K.; Salo, I.; Björck, I. Effects of Supplementation with N-3 Polyunsaturated Fatty Acids on Cognitive Performance and Cardiometabolic Risk Markers in Healthy 51 to 72 Years Old Subjects: A Randomized Controlled Cross-over Study. Nutr. J. 2012, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Nolan, J.M.; Power, R.; Howard, A.N.; Bergin, P.; Roche, W.; Prado-Cabrero, A.; Pope, G.; Cooke, J.; Power, T.; Mulcahy, R. Supplementation With Carotenoids, Omega-3 Fatty Acids, and Vitamin E Has a Positive Effect on the Symptoms and Progression of Alzheimer’s Disease. J. Alzheimers Dis. 2022, 90, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Jackson, P.A.; Forster, J.S.; Gordon Bell, J.; Dick, J.R.; Younger, I.; Kennedy, D.O. DHA Supplementation Alone or in Combination with Other Nutrients Does Not Modulate Cerebral Hemodynamics or Cognitive Function in Healthy Older Adults. Nutrients 2016, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.A.; Childs, C.E.; Calder, P.C.; Rogers, P.J. No Effect of Omega-3 Fatty Acid Supplementation on Cognition and Mood in Individuals with Cognitive Impairment and Probable Alzheimer’s Disease: A Randomised Controlled Trial. Int. J. Mol. Sci. 2015, 16, 24600–24613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosti, R.I.; Kasdagli, M.I.; Kyrozis, A.; Orsini, N.; Lagiou, P.; Taiganidou, F.; Naska, A. Fish Intake, n-3 Fatty Acid Body Status, and Risk of Cognitive Decline: A Systematic Review and a Dose-Response Meta-Analysis of Observational and Experimental Studies. Nutr. Rev. 2022, 80, 1445–1458. [Google Scholar] [CrossRef]
- Hauser, J.; Stollberg, E.; Reissmann, A.; Kaunzinger, I.; Lange, K.W. Alterations of Attention and Impulsivity in the Rat Following a Transgenerational Decrease in Dietary Omega-3 Fatty Acids. Food Sci. Hum. Wellness 2018, 7, 49–56. [Google Scholar] [CrossRef]
- Dervola, K.S.; Roberg, B.T.; Wøien, G.; Bogen, I.L.; Sandvik, T.H.; Sagvolden, T.; Drevon, C.A.; Johansen, E.B.; Walaas, S.I. Marine Omega-3 Polyunsaturated Fatty Acids Induce Sex-Specific Changes in Reinforcer-Controlled Behaviour and Neurotransmitter Metabolism in a Spontaneously Hypertensive Rat Model of ADHD. Behav. Brain Funct. 2012, 8, 56. [Google Scholar] [CrossRef] [Green Version]
- Anand, P.; Sachdeva, A. Effect of Poly Unsaturated Fatty Acids Administration on Children with Attention Deficit Hyperactivity Disorder: A Randomized Controlled Trial. J. Clin. Diagn. Res. 2016, 10, OC01–OC05. [Google Scholar] [CrossRef]
- Bos, D.J.; Oranje, B.; Veerhoek, E.S.; Van Diepen, R.M.; Weusten, J.M.H.; Demmelmair, H.; Koletzko, B.; De Sain-Van Der Velden, M.G.M.; Eilander, A.; Hoeksma, M.; et al. Reduced Symptoms of Inattention after Dietary Omega-3 Fatty Acid Supplementation in Boys with and without Attention Deficit/Hyperactivity Disorder. Neuropsychopharmacology 2015, 40, 2298–2306. [Google Scholar] [CrossRef] [Green Version]
- San Mauro Martin, I.; Sanz Rojo, S.; González Cosano, L.; Conty de la Campa, R.; Garicano Vilar, E.; Blumenfeld Olivares, J.A. Impulsiveness in Children with Attention-Deficit/Hyperactivity Disorder after an 8-Week Intervention with the Mediterranean Diet and/or Omega-3 Fatty Acids: A Randomised Clinical Trial. Neurologia 2022, 37, 513–523. [Google Scholar] [CrossRef]
- Muldoon, M.F.; Ryan, C.M.; Yao, J.K.; Conklin, S.M.; Manuck, S.B. Long-Chain Omega-3 Fatty Acids and Optimization of Cognitive Performance. Mil. Med. 2014, 179, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Ginty, A.T.; Muldoon, M.F.; Kuan, D.C.H.; Schirda, B.; Kamarck, T.W.; Richard Jennings, J.; Manuck, S.B.; Gianaros, P.J. Omega-3 Supplementation and the Neural Correlates of Negative affectand Impulsivity: A Double-Blind, Randomized, Placebo-Controlled Trial in Midlife. Psychosom. Med. 2017, 79, 549. [Google Scholar] [CrossRef] [PubMed]
- Larrieu, T.; Layé, S. Food for Mood: Relevance of Nutritional Omega-3 Fatty Acids for Depression and Anxiety. Front. Physiol. 2018, 9, 1047. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Zhang, C.; Yan, L.; Zhang, Y.; Yang, Z.; Wang, J.; Song, C. EPA Is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. Int. J. Mol. Sci. 2020, 21, 1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thesing, C.S.; Bot, M.; Milaneschi, Y.; Giltay, E.J.; Penninx, B.W.J.H. Bidirectional Longitudinal Associations of Omega-3 Polyunsaturated Fatty Acid Plasma Levels with Depressive Disorders. J. Psychiatr. Res. 2020, 124, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.L.; Bhat, S.A.; Ara, A. Omega-3 Fatty Acids and the Treatment of Depression: A Review of Scientific Evidence. Integr. Med. Res. 2015, 4, 132–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cussotto, S.; Delgado, I.; Oriolo, G.; Kemper, J.; Begarie, D.; Dexpert, S.; Sauvant, J.; Leboyer, M.; Aouizerate, B.; Martin-Santos, R.; et al. Low Omega-3 Polyunsaturated Fatty Acids Predict Reduced Response to Standard Antidepressants in Patients with Major Depressive Disorder. Depress. Anxiety 2022, 39, 407–418. [Google Scholar] [CrossRef]
- Le-Niculescu, H.; Case, N.J.; Hulvershorn, L.; Patel, S.D.; Bowker, D.; Gupta, J.; Bell, R.; Edenberg, H.J.; Tsuang, M.T.; Kuczenski, R.; et al. Convergent Functional Genomic Studies of ω-3 Fatty Acids in Stress Reactivity, Bipolar Disorder and Alcoholism. Transl. Psychiatry 2011, 1, e4. [Google Scholar] [CrossRef] [Green Version]
- Beydoun, M.A.; Fanelli Kuczmarski, M.T.; Beydoun, H.A.; Hibbeln, J.R.; Evans, M.K.; Zonderman, A.B. ω-3 Fatty Acid Intakes Are Inversely Related to Elevated Depressive Symptoms among United States Women. J. Nutr. 2013, 143, 1743–1752. [Google Scholar] [CrossRef] [Green Version]
- Horikawa, C.; Otsuka, R.; Kato, Y.; Nishita, Y.; Tange, C.; Rogi, T.; Kawashima, H.; Shibata, H.; Ando, F.; Shimokata, H. Longitudinal Association between N-3 Long-Chain Polyunsaturated Fatty Acid Intake and Depressive Symptoms: A Population-Based Cohort Study in Japan. Nutrients 2018, 10, 1655. [Google Scholar] [CrossRef] [Green Version]
- Rapaport, M.H.; Nierenberg, A.A.; Schettler, P.J.; Kinkead, B.; Cardoos, A.; Walker, R.; Mischoulon, D. Inflammation as a Predictive Biomarker for Response to Omega-3 Fatty Acids in Major Depressive Disorder: A Proof of Concept Study. Mol. Psychiatry 2016, 21, 71. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Zhang, M.Q.; Xue, Y.; Yang, R.; Tang, M.M. Dietary of N-3 Polyunsaturated Fatty Acids Influence Neurotransmitter Systems of Rats Exposed to Unpredictable Chronic Mild Stress. Behav. Brain Res. 2019, 376, 112172. [Google Scholar] [CrossRef] [PubMed]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.R.; Han, D.; Qiao, Z.X.; Tian, X.; Qi, D.; Qiu, X.H. Combined Application of Eicosapentaenoic Acid and Docosahexaenoic Acid on Depression in Women: A Meta-Analysis of Double-Blind Randomized Controlled Trials. Neuropsychiatr. Dis. Treat. 2015, 11, 2055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groen, R.N.; Ryan, O.; Wigman, J.T.W.; Riese, H.; Penninx, B.W.J.H.; Giltay, E.J.; Wichers, M.; Hartman, C.A. Comorbidity between Depression and Anxiety: Assessing the Role of Bridge Mental States in Dynamic Psychological Networks. BMC Med. 2020, 18, 308. [Google Scholar] [CrossRef]
- Liu, J.J.; Galfalvy, H.C.; Cooper, T.B.; Oquendo, M.A.; Grunebaum, M.F.; Mann, J.J.; Sublette, M.E. Omega-3 Polyunsaturated Fatty Acid Status in Major Depression with Comorbid Anxiety Disorders. J. Clin. Psychiatry 2013, 74, 732. [Google Scholar] [CrossRef] [Green Version]
- Green, P.; Hermesh, H.; Monselise, A.; Marom, S.; Presburger, G.; Weizman, A. Red Cell Membrane Omega-3 Fatty Acids Are Decreased in Nondepressed Patients with Social Anxiety Disorder. Eur. Neuropsychopharmacol. 2006, 16, 107–113. [Google Scholar] [CrossRef]
- Jacka, F.N.; Pasco, J.A.; Williams, L.J.; Meyer, B.J.; Digger, R.; Berk, M. Dietary Intake of Fish and PUFA, and Clinical Depressive and Anxiety Disorders in Women. Br. J. Nutr. 2013, 109, 2059–2066. [Google Scholar] [CrossRef] [Green Version]
- American Psychiatry Association. Diagnostic and Statistical Manual of Mental Disorders, DSM–5, 5th ed.; American Psychiatric Publishing: Arlington, TX, USA, 2013. [Google Scholar]
- Gowin, J.L.; Sloan, M.E.; Stangl, B.L.; Vatsalya, V.; Ramchandani, V.A. Vulnerability for Alcohol Use Disorder and Rate of Alcohol Consumption. Am. J. Psychiatry 2017, 174, 1094–1101. [Google Scholar] [CrossRef]
- King, J.A.; Nephew, B.C.; Choudhury, A.; Poirier, G.L.; Lim, A.; Mandrekar, P. Chronic Alcohol Induced Liver Injury Correlates with Memory Deficits: Role for Neuroinflammation. Alcohol 2020, 83, 75. [Google Scholar] [CrossRef]
- Xu, H.; Li, H.; Liu, D.; Wen, W.; Xu, M.; Frank, J.A.; Chen, J.; Zhu, H.; Grahame, N.J.; Luo, J. Chronic Voluntary Alcohol Drinking Causes Anxiety-like Behavior, Thiamine Deficiency, and Brain Damage of Female Crossed High Alcohol Preferring Mice. Front. Pharmacol. 2021, 12, 614396. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, Y.; Tang, X.; Jing, C.; Qiu, S.; Li, B.; Li, Y. IL-6 and IL-1β Upregulation and Tau Protein Phosphorylation in Response to Chronic Alcohol Exposure in the Mouse Hippocampus. Neuroreport 2021, 32, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Baxter-Potter, L.N.; Henricks, A.M.; Berger, A.L.; Bieniasz, K.V.; Lugo, J.M.; McLaughlin, R.J. Alcohol Vapor Exposure Differentially Impacts Mesocorticolimbic Cytokine Expression in a Sex-, Region-, and Duration-Specific Manner. Neuroscience 2017, 346, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Hillmer, A.T.; Nadim, H.; Devine, L.; Jatlow, P.; O’Malley, S.S. Acute Alcohol Consumption Alters the Peripheral Cytokines IL-8 and TNF-α. Alcohol 2020, 85, 95–99. [Google Scholar] [CrossRef]
- Bull, C.; Syed, W.A.; Minter, S.C.; Bowers, M.S. Differential Response of Glial Fibrillary Acidic Protein–Positive Astrocytes in the Rat Prefrontal Cortex Following Ethanol Self-Administration. Alcohol. Clin. Exp. Res. 2015, 39, 650–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grifasi, I.R.; McIntosh, S.E.; Thomas, R.D.; Lysle, D.T.; Thiele, T.E.; Marshall, S.A. Characterization of the Hippocampal Neuroimmune Response to Binge-Like Ethanol Consumption in the Drinking in the Dark Model. Neuroimmunomodulation 2019, 26, 19–32. [Google Scholar] [CrossRef]
- Marshall, S.A.; Casachahua, J.D.; Rinker, J.A.; Blose, A.K.; Lysle, D.T.; Thiele, T.E. IL-1 Receptor Signaling in the Basolateral Amygdala Modulates Binge-like Ethanol Consumption in Male C57BL/6J Mice. Brain. Behav. Immun. 2016, 51, 258. [Google Scholar] [CrossRef] [Green Version]
- Blednov, Y.A.; Benavidez, J.M.; Geil, C.; Perra, S.; Morikawa, H.; Harris, R.A. Activation of Inflammatory Signaling by Lipopolysaccharide Produces a Prolonged Increase of Voluntary Alcohol Intake in Mice. Brain. Behav. Immun. 2011, 25 (Suppl. S1), S92–S105. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, E.B.D.; Arnold, M.E.; McConnell, K.T.; Solomon, M.G.; Amico, K.N.; Schank, J.R. The Effects of Lipopolysaccharide Exposure on Social Interaction, Cytokine Expression, and Alcohol Consumption in Male and Female Mice. Physiol. Behav. 2023, 265, 114159. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Meza, M.; Muñoz, D.; Jerez, E.; Quintanilla, M.E.; Salinas-Luypaert, C.; Fernandez, K.; Karahanian, E. Fenofibrate Administration Reduces Alcohol and Saccharin Intake in Rats: Possible Effects at Peripheral and Central Levels. Front. Behav. Neurosci. 2017, 11, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domi, E.; Domi, A.; Ubaldi, M.; Somaini, L.; Demopulos, G.; Gaitanaris, G.; Ciccocioppo, R. Further Evidence for the Involvement of the PPARγ System on Alcohol Intake and Sensitivity in Rodents. Psychopharmacology 2020, 237, 2983–2992. [Google Scholar] [CrossRef]
- Blednov, Y.A.; Black, M.; Chernis, J.; Da Costa, A.; Mayfield, J.; Harris, R.A. Ethanol Consumption in Mice Lacking CD14, TLR2, TLR4, or MyD88. Alcohol. Clin. Exp. Res. 2017, 41, 516–530. [Google Scholar] [CrossRef] [Green Version]
- Wooden, J.I.; Thompson, K.R.; Guerin, S.P.; Nawarawong, N.N.; Nixon, K. Consequences of Adolescent Alcohol Use on Adult Hippocampal Neurogenesis and Hippocampal Integrity. Int. Rev. Neurobiol. 2021, 160, 281. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.A.; Eaves, D.W.; Smith, A.R.; Nixon, K. Alcohol Inhibition of Neurogenesis: A Mechanism of Hippocampal Neurodegeneration in an Adolescent Alcohol Abuse Model. Hippocampus 2010, 20, 596–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briones, T.L.; Woods, J. Chronic Binge-like Alcohol Consumption in Adolescence Causes Depression-like Symptoms Possibly Mediated by the Effects of BDNF on Neurogenesis. Neuroscience 2013, 254, 324–334. [Google Scholar] [CrossRef] [Green Version]
- Cortez, I.; Rodgers, S.P.; Kosten, T.A.; Leasure, J.L. Sex and Age Effects on Neurobehavioral Toxicity Induced by Binge Alcohol. Brain Plast. 2020, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Di Rocco, G.; Baldari, S.; Pani, G.; Toietta, G. Stem Cells under the Influence of Alcohol: Effects of Ethanol Consumption on Stem/Progenitor Cells. Cell. Mol. Life Sci. 2019, 76, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, J.C.; Stipcevic, T.; Flores, R.E.; Perry, C.; Kippin, T.E. Alcohol Exposure Inhibits Adult Neural Stem Cell Proliferation. Exp. Brain Res. 2014, 232, 2775–2784. [Google Scholar] [CrossRef] [Green Version]
- Speisman, R.B.; Kumar, A.; Rani, A.; Pastoriza, J.M.; Severance, J.E.; Foster, T.C.; Ormerod, B.K. Environmental Enrichment Restores Neurogenesis and Rapid Acquisition in Aged Rats. Neurobiol. Aging 2013, 34, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Fabel, K.; Wolf, S.A.; Ehninger, D.; Babu, H.; Leal-Galicia, P.; Kempermann, G. Additive Effects of Physical Exercise and Environmental Enrichment on Adult Hippocampal Neurogenesis in Mice. Front. Neurosci. 2009, 3, 50. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.Z.; Wang, J.; Sheridan, S.D.; Perlis, R.H.; Rasenick, M.M. N-3 Polyunsaturated Fatty Acids Promote Astrocyte Differentiation and Neurotrophin Production Independent of CAMP in Patient-Derived Neural Stem Cells. Mol. Psychiatry 2021, 26, 4605–4615. [Google Scholar] [CrossRef]
- Wen, Z.; Kim, H.Y. Inhibition of Phosphatidylserine Biosynthesis in Developing Rat Brain by Maternal Exposure to Ethanol. J. Neurosci. Res. 2007, 85, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Xie, Y.; Ren, H.; He, B.; Wang, M.; Wan, J.B.; Yuan, T.F.; Yao, X.; Su, H. Fish Oil Treatment Reduces Chronic Alcohol Exposure Induced Synaptic Changes. Addict. Biol. 2019, 24, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Patten, A.R.; Sickmann, H.M.; Dyer, R.A.; Innis, S.M.; Christie, B.R. Omega-3 Fatty Acids Can Reverse the Long-Term Deficits in Hippocampal Synaptic Plasticity Caused by Prenatal Ethanol Exposure. Neurosci. Lett. 2013, 551, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.A.; Kim, H.Y. N-Docosahexaenoylethanolamine Ameliorates Ethanol-Induced Impairment of Neural Stem Cell Neurogenic Differentiation. Neuropharmacology 2016, 102, 174–185. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.A.; Moon, K.H.; Tajuddin, N.; Neafsey, E.J.; Kim, H.Y. Docosahexaenoic Acid (DHA) Prevents Binge Ethanol-Dependent Aquaporin-4 Elevations While Inhibiting Neurodegeneration: Experiments in Rat Adult-Age Entorhino-Hippocampal Slice Cultures. Neurotox. Res. 2013, 23, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative Stress, Mitochondrial Dysfunction and Neurodegenerative Diseases; a Mechanistic Insight. Biomed. Pharmacother. 2015, 74, 101–110. [Google Scholar] [CrossRef]
- Das, S.K.; Vasudevan, D.M. Alcohol-Induced Oxidative Stress. Life Sci. 2007, 81, 177–187. [Google Scholar] [CrossRef]
- Uys, J.D.; Mulholland, P.J.; Townsend, D.M. Glutathione and Redox Signaling in Substance Abuse. Biomed. Pharmacother. 2014, 68, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.C.; Chen, C.C.C.H.; Peng, F.C.; Tang, S.H.; Chen, C.C.C.H. The Correlation between Early Alcohol Withdrawal Severity and Oxidative Stress in Patients with Alcohol Dependence. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 66–69. [Google Scholar] [CrossRef]
- Budzyński, J.; Ziółkowski, M.; Kłopocka, M.; Czarnecki, D. Oxidoreductive Homeostasis in Alcohol-Dependent Male Patients and the Risk of Alcohol Drinking Relapse in a 6-Month Follow-Up. Alcohol 2016, 50, 57–64. [Google Scholar] [CrossRef]
- Fan, C.; Zirpoli, H.; Qi, K. N-3 Fatty Acids Modulate Adipose Tissue Inflammation and Oxidative Stress. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Morgese, M.G.; Schiavone, S.; Bove, M.; Colia, A.L.; Dimonte, S.; Tucci, P.; Trabace, L. N-3 PUFA Prevent Oxidative Stress in a Rat Model of Beta-Amyloid-Induced Toxicity. Pharmaceuticals 2021, 14, 339. [Google Scholar] [CrossRef] [PubMed]
- Tajuddin, N.; Moon, K.H.; Marshall, S.A.; Nixon, K.; Neafsey, E.J.; Kim, H.Y.; Collins, M.A. Neuroinflammation and Neurodegeneration in Adult Rat Brain from Binge Ethanol Exposure: Abrogation by Docosahexaenoic Acid. PLoS ONE 2014, 9, e101223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Gubory, K.H. Mitochondria: Omega-3 in the Route of Mitochondrial Reactive Oxygen Species. Int. J. Biochem. Cell Biol. 2012, 44, 1569–1573. [Google Scholar] [CrossRef] [PubMed]
- Crnkovic, S.; Riederer, M.; Lechleitner, M.; Hallström, S.; Malli, R.; Graier, W.F.; Lindenmann, J.; Popper, H.; Olschewski, H.; Olschewski, A.; et al. Docosahexaenoic Acid-Induced Unfolded Protein Response, Cell Cycle Arrest, and Apoptosis in Vascular Smooth Muscle Cells Are Triggered by Ca2+-Dependent Induction of Oxidative Stress. Free Radic. Biol. Med. 2012, 52, 1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umhau, J.C.; Zhou, W.; Thada, S.; Demar, J.; Hussein, N.; Bhattacharjee, A.K.; Ma, K.; Majchrzak-Hong, S.; Herscovitch, P.; Salem, N.; et al. Brain Docosahexaenoic Acid [DHA] Incorporation and Blood Flow Are Increased in Chronic Alcoholics: A Positron Emission Tomography Study Corrected for Cerebral Atrophy. PLoS ONE 2013, 8, e75333. [Google Scholar] [CrossRef] [Green Version]
- Sowell, K.D.; Holt, R.R.; Uriu-Adams, J.Y.; Chambers, C.D.; Coles, C.D.; Kable, J.A.; Yevtushok, L.; Zymak-Zakutnya, N.; Wertelecki, W.; Keen, C.L. Altered Maternal Plasma Fatty Acid Composition by Alcohol Consumption and Smoking during Pregnancy and Associations with Fetal Alcohol Spectrum Disorders. J. Am. Coll. Nutr. 2020, 39, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Vatsalya, V.; Song, M.; Schwandt, M.L.; Cave, M.C.; Barve, S.S.; George, D.T.; Ramchandani, V.A.; McClain, C.J. Effects of Sex, Drinking History, and Omega-3 and Omega-6 Fatty Acids Dysregulation on the Onset of Liver Injury in Very Heavy Drinking Alcohol-Dependent Patients. Alcohol. Clin. Exp. Res. 2016, 40, 2085–2093. [Google Scholar] [CrossRef] [Green Version]
- Vatsalya, V.; Vatsalya, V.; Vatsalya, V.; Vatsalya, V.; Agrawal, R.; Frimodig, J.; Frimodig, J.; Srivastava, S.; Schwandt, M.L. Dysregulation in Plasma ω 3 Fatty Acids Concentration and Serum Zinc in Heavy Alcohol-Drinking HCV Patients. Adv. Virol. 2020, 2020, 7835875. [Google Scholar] [CrossRef]
- Leclercq, S.; De Timary, P.; Delzenne, N.M.; Stärkel, P. The Link between Inflammation, Bugs, the Intestine and the Brain in Alcohol Dependence. Transl. Psychiatry 2017, 7, e1048. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.O.; Park, J.H.; Radel, J.D.; Levant, B. Reduced Numbers of Dopamine Neurons in the Substantia Nigra Pars Compacta and Ventral Tegmental Area of Rats Fed and N-3 Polyunsaturated Fatty Acid-Deficient Diet: A Stereological Study. Neurosci. Lett. 2008, 438, 303. [Google Scholar] [CrossRef] [Green Version]
- Chalon, S. Omega-3 Fatty Acids and Monoamine Neurotransmission. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 259–269. [Google Scholar] [CrossRef]
- Woods, A.J.; Porges, E.C.; Bryant, V.E.; Seider, T.; Gongvatana, A.; Kahler, C.W.; de la Monte, S.; Monti, P.M.; Cohen, R.A. Current Heavy Alcohol Consumption Is Associated with Greater Cognitive Impairment in Older Adults. Alcohol. Clin. Exp. Res. 2016, 40, 2435–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariesen, A.M.D.; Neubert, J.H.; Gaastra, G.F.; Tucha, O.; Koerts, J. Risky Decision-Making in Adults with Alcohol Use Disorder—A Systematic and Meta-Analytic Review. J. Clin. Med. 2023, 12, 2943. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Schulkin, J. Addiction and Stress: An Allostatic View. Neurosci. Biobehav. Rev. 2019, 106, 245–262. [Google Scholar] [CrossRef]
- Kathryn Mchugh, R.; Weiss, R.D. Alcohol Use Disorder and Depressive Disorders. Alcohol Res. 2019, 40, e1–e8. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Coehlo, M.; McGregor, H.A.; Waltermire, R.S.; Szumlinski, K.K. Binge Alcohol Drinking Elicits Persistent Negative Affect in Mice. Behav. Brain Res. 2015, 291, 385–398. [Google Scholar] [CrossRef] [Green Version]
- Anker, J.J.; Kushner, M.G. Co-Occurring Alcohol Use Disorder and Anxiety: Bridging Psychiatric, Psychological, and Neurobiological Perspectives. Alcohol Res. 2019, 40, e1–e12. [Google Scholar] [CrossRef]
- Balaszczuk, V.; Salguero, J.A.; Villarreal, R.N.; Scaramuzza, R.G.; Mendez, S.; Abate, P. Hyperlocomotion and Anxiety- like Behavior Induced by Binge Ethanol Exposure in Rat Neonates. Possible Ameliorative Effects of Omega 3. Behav. Brain Res. 2019, 372, 112022. [Google Scholar] [CrossRef]
- Wellmann, K.A.; George, F.; Brnouti, F.; Mooney, S.M. Docosahexaenoic Acid Partially Ameliorates Deficits in Social Behavior and Ultrasonic Vocalizations Caused by Prenatal Ethanol Exposure. Behav. Brain Res. 2015, 286, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Buydens-Branchey, L.; Branchey, M.; Hibbeln, J.R. Associations between Increases in Plasma N-3 Polyunsaturated Fatty Acids Following Supplementation and Decreases in Anger and Anxiety in Substance Abusers. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 568–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marco, E.M.; Peñasco, S.; Hernández, M.D.; Gil, A.; Borcel, E.; Moya, M.; Giné, E.; López-Moreno, J.A.; Guerri, C.; López-Gallardo, M.; et al. Long-Term Effects of Intermittent Adolescent Alcohol Exposure in Male and Female Rats. Front. Behav. Neurosci. 2017, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Broadwater, M.; Spear, L.P. Consequences of Adolescent or Adult Ethanol Exposure on Tone and Context Fear Retention: Effects of an Acute Ethanol Challenge during Conditioning. Alcohol. Clin. Exp. Res. 2014, 38, 1454. [Google Scholar] [CrossRef] [Green Version]
- Parada, M.; Corral, M.; Mota, N.; Crego, A.; Rodríguez Holguín, S.; Cadaveira, F. Executive Functioning and Alcohol Binge Drinking in University Students. Addict. Behav. 2012, 37, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Squeglia, L.M.; Schweinsburg, A.D.; Pulido, C.; Tapert, S.F. Adolescent Binge Drinking Linked to Abnormal Spatial Working Memory Brain Activation: Differential Gender Effects. Alcohol. Clin. Exp. Res. 2011, 35, 1831–1841. [Google Scholar] [CrossRef]
- Buydens-Branchey, L.; Branchey, M.; Hibbeln, J.R. Low Plasma Levels of Docosahexaenoic Acid Are Associated with an Increased Relapse Vulnerability in Substance Abusers. Am. J. Addict. 2009, 18, 73–80. [Google Scholar] [CrossRef]
- Di Giuseppe, R.; De Lorgeril, M.; Salen, P.; Laporte, F.; Di Castelnuovo, A.; Krogh, V.; Siani, A.; Arnout, J.; Cappuccio, F.P.; Van Dongen, M.; et al. Alcohol Consumption and N-3 Polyunsaturated Fatty Acids in Healthy Men and Women from 3 European Populations. Am. J. Clin. Nutr. 2009, 89, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Edwards, A.C.; Heron, J.; Hibbeln, J.; Schuckit, M.A.; Webb, B.T.; Hickman, M.; Davies, A.G.; Bettinger, J.C. Long-Chain ω-3 Levels Are Associated With Increased Alcohol Sensitivity in a Population-Based Sample of Adolescents. Alcohol. Clin. Exp. Res. 2019, 43, 2620–2626. [Google Scholar] [CrossRef] [Green Version]
- Aliev, F.; Barr, P.B.; Davies, A.G.; Dick, D.M.; Bettinger, J.C. Genes Regulating Levels of ω-3 Long-Chain Polyunsaturated Fatty Acids Are Associated with Alcohol Use Disorder and Consumption, and Broader Externalizing Behavior in Humans. Alcohol. Clin. Exp. Res. 2022, 46, 1657–1664. [Google Scholar] [CrossRef]
- Wolstenholme, J.T.; Bowers, M.S.; Pais, A.B.C.; Pais, A.B.C.; Poland, R.S.; Poklis, J.L.; Davies, A.G.; Bettinger, J.C. Dietary Omega-3 Fatty Acids Differentially Impact Acute Ethanol-Responsive Behaviors and Ethanol Consumption in DBA/2J Versus C57BL/6J Mice. Alcohol. Clin. Exp. Res. 2018, 42, 1476–1485. [Google Scholar] [CrossRef]
- Barbadoro, P.; Annino, I.; Ponzio, E.; Romanelli, R.M.L.; D’Errico, M.M.; Prospero, E.; Minelli, A. Fish Oil Supplementation Reduces Cortisol Basal Levels and Perceived Stress: A Randomized, Placebo-Controlled Trial in Abstinent Alcoholics. Mol. Nutr. Food Res. 2013, 57, 1110–1114. [Google Scholar] [CrossRef] [PubMed]
Lipid Source | VLC n-3 PUFAs (% of Total FAs) | Reference | ||
---|---|---|---|---|
EPA | DPA | DHA | ||
Fishes | ||||
Cod flesh | 19 | 2 | 33 | [15] |
Cod liver | 12 | 2 | 13 | [15] |
Flounder | 15 | 3 | 19 | [15] |
Haddock | 15 | 2 | 25 | [15] |
Halibut | 10 | 3 | 31 | [15] |
Horse mackerel | 7–9 | 2–3 | 30–32 | [33] |
Menhaden | 18 | 2 | 10 | [15] |
Salmon (farmed) | 6 | 3 | 8 | [34] |
Salmon (wild) | 7 | 3 | 13 | [34] |
Sardine | 10–14 | 1–2 | 15–27 | [35,36] |
Seabream | 5–11 | 4 | 18–32 | [33] |
Tuna | 2–12 | 1–2 | 12–28 | [36,37] |
Marine mammals | ||||
Seal | 4–11 | 4–5 | 7–26 | [15,38] |
Crustaceans | ||||
Krill | 18 | <1 | 12 | [39] |
Lobster | 11–17 | 1 | 8–11 | [15,40] |
Red crab | 12 | 2 | 12 | [15] |
Rock crab | 21 | 2 | 10 | [15] |
Shrimp | 15–17 | 1 | 11–13 | [15,40] |
Bivalves | ||||
Blue mussel | 20 | - | 13 | [15] |
Icelandic scallop | 27 | - | 26 | [15] |
Surf clam | 23 | - | 14 | [15] |
Cephalopods | ||||
Common octopus | 16 | 1–2 | 21–28 | [15,41] |
Squid | 14–16 | 1 | 17–37 | [15,41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvajal, F.; Sánchez-Gil, A.; Cardona, D.; Rincón-Cervera, M.A.; Lerma-Cabrera, J.M. The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data. Nutrients 2023, 15, 2993. https://doi.org/10.3390/nu15132993
Carvajal F, Sánchez-Gil A, Cardona D, Rincón-Cervera MA, Lerma-Cabrera JM. The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data. Nutrients. 2023; 15(13):2993. https://doi.org/10.3390/nu15132993
Chicago/Turabian StyleCarvajal, Francisca, Ainhoa Sánchez-Gil, Diana Cardona, Miguel Angel Rincón-Cervera, and Jose Manuel Lerma-Cabrera. 2023. "The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data" Nutrients 15, no. 13: 2993. https://doi.org/10.3390/nu15132993
APA StyleCarvajal, F., Sánchez-Gil, A., Cardona, D., Rincón-Cervera, M. A., & Lerma-Cabrera, J. M. (2023). The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data. Nutrients, 15(13), 2993. https://doi.org/10.3390/nu15132993