Dietary Energy and Nutrient Intake of Healthy Pre-School Children in Hungary
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Energy and Macronutrient Intakes
3.2. Macroelements
3.3. Microelements
3.4. Fat Soluble Vitamins
3.5. Water Soluble Vitamins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nyaradi, A.; Li, J.; Foster, J.K.; Hickling, S.; Jacques, A.; O’Sullivan, T.A.; Oddy, W.H. Good-quality diet in the early years may have a positive effect on academic achievement. Acta Paediatr. 2016, 105, e209–e218. [Google Scholar] [CrossRef] [PubMed]
- Ailhaud, G.; Massiera, F.; Weill, P.; Legrand, P.; Alessandri, J.M.; Guesnet, P. Temporal changes in dietary fats: Role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog. Lipid Res. 2006, 45, 203–236. [Google Scholar] [CrossRef] [PubMed]
- Hagman, E.; Danielsson, P.; Brandt, L.; Ekbom, A.; Marcus, C. Association between impaired fasting glycaemia in pediatric obesity and type 2 diabetes in young adulthood. Nutr. Diabetes 2016, 6, e227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaikkonen, J.E.; Mikkilä, V.; Magnussen, C.G.; Juonala, M.; Viikari, J.S.; Raitakari, O.T. Does childhood nutrition influence adult cardiovascular disease risk?—Insights from the Young Finns Study. Ann. Med. 2013, 45, 120–128. [Google Scholar] [CrossRef]
- Lava, S.A.; Bianchetti, M.G.; Simonetti, G.D. Salt intake in children and its consequences on blood pressure. Pediatr. Nephrol. 2015, 30, 1389–1396. [Google Scholar] [CrossRef]
- Zalewski, B.M.; Patro, B.; Veldhorst, M.; Kouwenhoven, S.; Crespo Escobar, P.; Calvo Lerma, J.; Koletzko, B.; van Goudoever, J.B.; Szajewska, H. Nutrition of infants and young children (one to three years) and its effect on later health: A systematic review of current recommendations (EarlyNutrition project). Crit Rev. Food Sci. Nutr. 2017, 57, 489–500. [Google Scholar] [CrossRef]
- Mikkilä, V.; Räsänen, L.; Raitakari, O.T.; Pietinen, P.; Viikari, J. Consistent dietary patterns identified from childhood to adulthood: The cardiovascular risk in Young Finns Study. Br. J. Nutr. 2005, 93, 923–931. [Google Scholar] [CrossRef]
- Singer, M.R.; Moore, L.L.; Garrahie, E.J.; Ellison, R.C. The tracking of nutrient intake in young children: The Framingham Children’s Study. Am. J. Public Health 1995, 85, 1673–1677. [Google Scholar] [CrossRef] [Green Version]
- Biró, L.; Regöly-Mérei, A.; Nagy, K.; Péter, S.; Arató, G.; Szabó, C.; Martos, E.; Antal, M. Dietary habits of school children: Representative survey in metropolitan elementary schools. Part two. Ann. Nutr. Metab. 2007, 51, 454–460. [Google Scholar] [CrossRef]
- Erdélyi-Sipos, A.; Badacsonyiné Kassai, K.; Kubányi, J.; Szűcs, Z.; Biró, L.; Raposa, L.B. Nutrition assessment of 0-3-year-old infants and toddlers with particular focus on macro- and micronutrient intake. Orv. Hetil. 2019, 160, 1990–1998. [Google Scholar] [CrossRef]
- De Henauw, S.; Verbestel, V.; Mårild, S.; Barba, G.; Bammann, K.; Eiben, G.; Hebestreit, A.; Iacoviello, L.; Gallois, K.; Konstabel, K.; et al. The IDEFICS community-oriented intervention programme: A new model for childhood obesity prevention in Europe? Int. J. Obes. 2011, 35 (Suppl. S1), S16–S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.A.C.; Cheah, W.L.; Anchang, G.N.J.; Noor Hafizah, Y.; Abim, M.; Ruzita, A.T.; Koh, D.; Reeves, S.; Summerbell, C.; Essau, C.A.; et al. Teachers’ and Parents’ Perspectives on the Feasibility of a Preschool-Based Behavioral Intervention to Prevent Obesity: An Embedded Qualitative Study within ToyBox Study Malaysia. Early Child. Educ. J. 2023, 51, 149–164. [Google Scholar] [CrossRef]
- Ebbeling, C.B.; Pawlak, D.B.; Ludwig, D.S. Childhood obesity: Public-health crisis, common sense cure. Lancet 2002, 360, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Government, H. Policy—2011. évi CIII. Törvény a Népegészségügyi Termékadóról [Act CIII of 2011 on Public Health Product Tax]. 2011. Available online: https://extranet.who.int/nutrition/gina/en/node/26174 (accessed on 15 May 2023).
- Government, H. Section 27 of Act CXC of 2011 on National Public Education. 2011. Available online: https://www.ilo.org/dyn/natlex/docs/ELECTRONIC/106832/131356/F-1702001629/act_national_education.pdf (accessed on 15 May 2023).
- Government, H. 37/2014. (IV. 30.) EMMI Rendelet a Közétkeztetésre Vonatkozó Táplálkozás-Egészségügyi. Előírásokról-Regulation of Food-Health Requirements Applied in Public Catering. 2014. Available online: https://net.jogtar.hu/jogszabaly?docid=a1400037.emm (accessed on 15 May 2023).
- European Comission. EU Framework for National Salt Initiatives. Available online: https://ec.europa.eu/health/ph_determinants/life_style/nutrition/documents/national_salt_en.pdf (accessed on 15 May 2023).
- Magyar Dietetikusok Országos Szövetsége, Só. Táplálkozási Akadémia Hírlevél 2012. Volume 5, p. 4. Available online: https://docplayer.hu/3783611-Taplalkozasi-akademia-hirlevel.html (accessed on 15 May 2023).
- Korintus, M. Early Childhood Education and Care in Hungary: Challenges and Recent Developments. Int. J. Child Care Educ. Policy 2008, 2, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Lohner, S.; Jakobik, V.; Mihályi, K.; Soldi, S.; Vasileiadis, S.; Theis, S.; Sailer, M.; Sieland, C.; Berényi, K.; Boehm, G.; et al. Inulin-Type Fructan Supplementation of 3- to 6-Year-Old Children Is Associated with Higher Fecal Bifidobacterium Concentrations and Fewer Febrile Episodes Requiring Medical Attention. J. Nutr. 2018, 148, 1300–1308. [Google Scholar] [CrossRef] [Green Version]
- Biró, G.; Antal, M.; Zajkás, G. Nutrition survey of the Hungarian population in a randomized trial between 1992–1994. Eur. J. Clin. Nutr. 1996, 50, 201–208. [Google Scholar]
- Zajkás, G.; Bíró, L.; Greiner, E.; Szórád, I.; Agoston, H.; Balázs, A.; Vitrai, J.; Hermann, D.; Boros, J.; Németh, R.; et al. Dietary survey in Hungary, 2003-2004. Micronutrients: Vitamins. Orv. Hetil. 2007, 148, 1593–1600. [Google Scholar] [CrossRef]
- Bíró, G.; Lindner, K. Tápanyagtáblázat. Táplálkozástan és Tápanyag-összetétel; Medicina: Budapest, Hungary, 1988; p. 20. [Google Scholar]
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar]
- Rodler, I. Új Tápanyagtáblázat; Medicina Könyvkiadó Zrt.: Budapest, Hungary, 2005; pp. 52–53, 62–63, 149. [Google Scholar]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Scientific Opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. EFSA J. 2013, 11, 3408. [Google Scholar] [CrossRef] [Green Version]
- EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies). Dietary Reference Values for nutrients Summary report. EFSA J. 2017, 14, e15121E. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine, Panel on Micronutrients, Nutrition Board, Subcommittees on Upper Reference Levels of Nutrients, of Interpretation, Use of Dietary Reference Intakes, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Subcommittee of Interpretation, Uses of Dietary Reference Intakes and Subcommittee on Upper Reference Levels of Nutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Dietary Reference Intakes; National Academies Press (US): Washington, DC, USA, 2001.
- Lee, S.W. Methods for testing statistical differences between groups in medical research: Statistical standard and guideline of Life Cycle Committee. Life Cycle 2022, 2, e1. [Google Scholar] [CrossRef]
- UNICEF. Children, Food and Nutrition: Growing Well in a Changing World; UNICEF: New York, NY, USA, 2019. [Google Scholar]
- Koletzko, B.; Demmelmair, H.; Grote, V.; Prell, C.; Weber, M. High protein intake in young children and increased weight gain and obesity risk. Am. J. Clin. Nutr. 2016, 103, 303–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Closa-Monasterolo, R.; Zaragoza-Jordana, M.; Ferré, N.; Luque, V.; Grote, V.; Koletzko, B.; Verduci, E.; Vecchi, F.; Escribano, J. Adequate calcium intake during long periods improves bone mineral density in healthy children. Data from the Childhood Obesity Project. Clin. Nutr. 2018, 37, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Merkiel, S. Dietary intake in 6-year-old children from southern Poland: Part 1--energy and macronutrient intakes. BMC Pediatr. 2014, 14, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Hooven, E.H.; Heppe, D.H.; Kiefte-de Jong, J.C.; Medina-Gomez, C.; Moll, H.A.; Hofman, A.; Jaddoe, V.W.; Rivadeneira, F.; Franco, O.H. Infant dietary patterns and bone mass in childhood: The Generation R Study. Osteoporos Int. 2015, 26, 1595–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, L.J.; Cowart, B.J.; Beauchamp, G.K. The development of salty taste acceptance is related to dietary experience in human infants: A prospective study. Am. J. Clin. Nutr. 2012, 95, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimes, C.A.; Riddell, L.J.; Campbell, K.J.; Nowson, C.A. Dietary salt intake, sugar-sweetened beverage consumption, and obesity risk. Pediatrics 2013, 131, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Dennison, B.A.; Rockwell, H.L.; Baker, S.L. Excess fruit juice consumption by preschool-aged children is associated with short stature and obesity. Pediatrics 1997, 99, 15–22. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Peterson, K.E.; Gortmaker, S.L. Relation between consumption of sugar-sweetened drinks and childhood obesity: A prospective, observational analysis. Lancet 2001, 357, 505–508. [Google Scholar] [CrossRef]
- Linardakis, M.; Sarri, K.; Pateraki, M.S.; Sbokos, M.; Kafatos, A. Sugar-added beverages consumption among kindergarten children of Crete: Effects on nutritional status and risk of obesity. BMC Public Health 2008, 8, 279. [Google Scholar] [CrossRef] [Green Version]
- Kell, K.P.; Cardel, M.I.; Bohan Brown, M.M.; Fernández, J.R. Added sugars in the diet are positively associated with diastolic blood pressure and triglycerides in children. Am. J. Clin. Nutr. 2014, 100, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassareo, P.P.; Mercuro, G. Pediatric hypertension: An update on a burning problem. World J. Cardiol. 2014, 6, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.; Scholtens, P.A.; Lalanne, A.; Weenen, H.; Nicklaus, S. Development of healthy eating habits early in life. Review of recent evidence and selected guidelines. Appetite 2011, 57, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Kiss, A.; Popp, J.; Oláh, J. The Reform of School Catering in Hungary: Anatomy of a Health-Education Attempt. Nutrients 2019, 11, 716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Daily Energy/Nutrient Intake | Survey in 2013 2.5–4 Years (n = 51) Mean Age: 3.3 Years Min Age: 2.6 Years Max Age: 3.9 Years | Survey in 2016 2.5–4 Years (n = 148) Mean Age: 3.4 Years Min Age: 2.9 Years Max Age: 3.9 Years | Hungarian Recommendation 1–3 Years | EFSA Recommendation * 1–3 Years | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Energy (kcal) | 1435 | 237 | 1579 | 263 | 1350 | 4.75 MJ/day, at PAL = 1.4 |
Protein (g) | 52 | 10 | 58 | 12 | 43 | 0.9 g/kg bw/d |
Protein (E%) | 15 | 3 | 15 | 3 | 13 | - |
Fat (g) | 49 | 12 | 58 | 13 | 44 | - |
Fat (E%) | 32 | 8 | 34 | 8 | 30 | 35–40 |
Carbohydrate (g) | 194 | 35 | 202 | 40 | 188 | 121–161 |
Carbohydrate (E%) | 55 | 10 | 52 | 10 | 57 | 45–60 |
Cholesterol (mg) | 177 | 70 | 212 | 64 | 135 | no data |
Dietary fiber (g) | 19 | 28 | 16 | 5 | 15 | 10 |
Water (mL) | 1088 | 287 | 1034 | 719 | 1300 | 1300 |
Sugar (E%) | 11 | 5 | 11 | 4 | 10 | 10 |
Sodium (mg) | 2355 | 703 | 3162 | 767 | 500 | 400 |
Potassium (mg) | 1979 | 469 | 1946 | 436 | 1000 | 800 |
Calcium (mg) | 627 | 256 | 603 | 219 | 800 | 450 |
Phosphorus (mg) | 781 | 183 | 808 | 172 | 620 | 250 |
Iron (mg) | 11 | 33 | 7 | 2 | 8 | 7 |
Copper (mg) | 0.79 | 0.91 | 0.66 | 0.22 | 0.4 | 1 |
Zinc (mg) | 5 | 2 | 6 | 2 | 5 | 4.3 |
Magnesium (mg) | 253 | 74 | 244 | 53 | 150 | 230 |
Chromium (µg) | 43 | 17 | 50 | 23 | 60 | no data |
Manganase (mg) | 1.1 | 0.4 | 1.7 | 2.1 | 1.2 | 0.5 |
Retinol equivalent. (mg) | 0.65 | 0.83 | 0.46 | 0.29 | 0.4 | 0.25 |
D vitamin (µg) | 1.4 | 0.5 | 1.6 | 1.3 | 10 | 15 |
α-Tocopherol (mg) | 11 | 4 | 9 | 3 | 6 | 9 |
Thiamine (µg) | 777 | 222 | 749 | 212 | 500 | 100 µg/MJ |
Riboflavin (µg) | 1071 | 348 | 1052 | 316 | 800 | 600 |
Vitamin B6- Pyridoxine (µg) | 1284 | 829 | 1239 | 386 | 500 | 600 |
Cobalamin (µg) | 2.4 | 1.6 | 2.5 | 1.6 | 0.7 | 1.5 |
Vitamin C (mg) | 104 | 66 | 53 | 32 | 50 | 20 |
Niacin equivalent (mg) | 18 | 5 | 9 | 3 | 9 | 1.6 (mg NE/MJ) |
Folate (µg DFE) | 122 | 49 | 102 | 44 | 100 | 120 |
Pantothenic acid (mg) | 3 | 1 | 3 | 1 | 2 | 4 |
Daily Energy/Nutrient Intake | Survey in 2013 4–6 Years (n = 135) Mean Age: 5.27 Years Min Age: 4 Years Max Age: 6.62 Years | Survey in 2016 4–6 Years (n = 408) Mean Age: 5.3 Years Min Age: 4 Years Max Age: 6.9 Years | Hungarian Recommendation 4–6 Years | EFSA Recommandation * 4–6 Years | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Energy (kcal) | 1503 | 270 | 1689 | 305 | 1700 | 5.4 MJ/day day at PAL = 1.4 |
Protein (g) | 55 | 11 | 63 | 12 | 54 | 0.85 g/kg bw/d |
Protein (E%) | 16 | 7 | 16 | 3 | 13 | - |
Fat (g) | 49 | 10 | 63 | 15 | 55 | - |
Fat (E%) | 30 | 5 | 35 | 8 | 30 | 20–35 |
Carbohydrate (g) | 207 | 49 | 215 | 43 | 236 | 154–206 |
Carbohydrate (E%) | 55 | 6 | 52 | 11 | 57 | 45–60 |
Cholesterol (mg) | 192 | 79 | 232 | 75 | 170 | no data |
Dietary fiber (g) | 14 | 5 | 18 | 10 | 19 | 14 |
Water (mL) | 1092 | 298 | 1037 | 508 | 1600 | 1600 |
Sugar (E%) | 12 | 5 | 10 | 4 | 10 | 10 |
Sodium (mg) | 2497 | 730 | 3469 | 852 | 700 | 500 |
Potassium (mg) | 1997 | 567 | 2096 | 505 | 1400 | 1100 |
Calcium (mg) | 620 | 215 | 635 | 225 | 800 | 800 |
Phosphorus (mg) | 783 | 177 | 855 | 179 | 620 | 440 |
Iron (mg) | 14 | 39 | 8 | 2 | 8 | 7 |
Copper (mg) | 0.7 | 0.5 | 0.7 | 0.3 | 0.6 | 1 |
Zinc (mg) | 6 | 1 | 6 | 2 | 6 | 5.5 |
Magnesium (mg) | 253 | 61 | 262 | 59 | 200 | 230 |
Chromium (µg) | 46 | 22 | 53 | 22 | 80 | no data |
Manganase (mg) | 1.1 | 0.4 | 1.7 | 1.2 | 1.7 | 1 |
Retinol equivalent (mg) | 0.5 | 0.4 | 0.5 | 0.4 | 0.5 | 0.3 |
D vitamin (µg) | 1.4 | 0.9 | 1.5 | 0.7 | 10 | 15 |
α-Tocopherol (mg) | 17 | 46 | 9 | 3 | 7 | 9 |
Thiamine (µg) | 816 | 259 | 781 | 220 | 700 | 100 µg/MJ |
Riboflavin (µg) | 1077 | 350 | 1104 | 339 | 1000 | 700 |
Vitamin B6- Pyridoxine (µg) | 1210 | 376 | 1349 | 441 | 600 | 700 |
Cobalamin (µg) | 3.2 | 6.2 | 2.6 | 1.9 | 1 | 1.5 |
Vitamin C (mg) | 87 | 67 | 56 | 34 | 50 | 30 |
Niacin equivalent (mg) | 19 | 6 | 22 | 5 | 11 | 1.6 (mg NE/MJ) |
Folate (µg DFE) | 114 | 54 | 105 | 40 | 130 | 140 |
Pantothenic acid (mg) | 3 | 2 | 3 | 1 | 3 | 4 |
Daily Energy/Nutrient Intake | Survey in 2013 2.5–4 Years (n = 51) Mean Age: 3.3 Years Min Age: 2.6 Years Max Age: 3.9 Years | Survey in 2016 2.5–4 Years (n = 148) Mean Age: 3.4 Years Min Age: 2.9 Years Max Age: 3.9 Years | ||||
---|---|---|---|---|---|---|
Low | Normal | High | Low | Normal | High | |
Energy | 0 | 100 | 0 | 1 | 72 | 27 |
Protein | 0 | 61 | 39 | 0 | 46 | 54 |
Fat | 6 | 63 | 31 | 1 | 45 | 54 |
Carbohydrate | 0 | 94 | 6 | 1 | 88 | 11 |
Cholesterol | 8 | 47 | 45 | 1 | 30 | 69 |
Dietary fiber | 25 | 62 | 14 | 9 | 75 | 16 |
Daily fluid intake | 22 | 75 | 4 | 44 | 54 | 2 |
Sugar | 20 | 53 | 27 | 9 | 53 | 39 |
Sodium | 0 | 0 | 100 | 0 | 0 | 100 |
Potassium | 0 | 8 | 92 | 0 | 7 | 93 |
Calcium | 39 | 57 | 4 | 46 | 49 | 5 |
Phosphorus | 0 | 59 | 41 | 1 | 53 | 46 |
Iron | 25 | 73 | 2 | 16 | 78 | 6 |
Copper | 0 | 18 | 82 | 1 | 22 | 76 |
Zinc | 12 | 73 | 16 | 5 | 67 | 28 |
Magnesium | 2 | 18 | 80 | 0 | 18 | 82 |
Chromium | 55 | 43 | 2 | 49 | 35 | 16 |
Manganase | 24 | 65 | 12 | 14 | 51 | 35 |
Retinol equivalent | 22 | 33 | 45 | 21 | 56 | 23 |
Vitamin D | 100 | 0 | 0 | 99 | 1 | 1 |
Tocopherol | 4 | 18 | 78 | 1 | 41 | 58 |
Thiamine | 2 | 27 | 71 | 1 | 36 | 64 |
Riboflavin | 2 | 53 | 45 | 5 | 48 | 47 |
Pyridoxine | 0 | 0 | 100 | 0 | 5 | 95 |
Cobalamin | 0 | 6 | 94 | 0 | 4 | 96 |
Vitamin C | 8 | 24 | 69 | 32 | 39 | 28 |
Niacin equivalent | 0 | 8 | 92 | 0 | 3 | 97 |
Folate | 12 | 55 | 33 | 20 | 38 | 43 |
Pantothenic acid | 2 | 45 | 53 | 5 | 50 | 45 |
Daily Energy/Nutrient Intake | Survey in 2013 4–6 Years (n = 135) Mean Age: 5.27 Years Min Age: 4 Years Max Age: 6.62 Years | Survey in 2016 4–6 Years (n = 408) Mean Age: 5.3 Years Min Age: 4 Years Max Age: 6.9 Years | ||||
---|---|---|---|---|---|---|
Low | Normal | High | Low | Normal | High | |
Energy | 10 | 88 | 2 | 3 | 90 | 7 |
Protein | 4 | 89 | 7 | 0 | 74 | 26 |
Fat | 14 | 84 | 2 | 3 | 73 | 25 |
Carbohydrate | 20 | 75 | 5 | 12 | 86 | 2 |
Cholesterol | 16 | 58 | 27 | 3 | 50 | 47 |
Dietary fiber | 50 | 48 | 2 | 22 | 73 | 5 |
Daily fluid intake | 59 | 39 | 1 | 68 | 31 | 1 |
Sugar | 11 | 49 | 40 | 18 | 59 | 23 |
Sodium | 0 | 0 | 100 | 0 | 0 | 100 |
Potassium | 1 | 40 | 59 | 0 | 31 | 69 |
Calcium | 43 | 54 | 3 | 39 | 55 | 6 |
Phosphorus | 1 | 59 | 41 | 0 | 42 | 58 |
Iron | 21 | 71 | 8 | 8 | 81 | 11 |
Copper | 4 | 71 | 25 | 3 | 68 | 29 |
Zinc | 16 | 75 | 9 | 10 | 76 | 14 |
Magnesium | 1 | 59 | 41 | 0 | 51 | 48 |
Chromium | 70 | 27 | 2 | 60 | 36 | 4 |
Manganase | 65 | 34 | 1 | 29 | 58 | 13 |
Retinol equivalent | 36 | 42 | 22 | 32 | 53 | 16 |
Vitamin D | 100 | 0 | 0 | 100 | 0 | 0 |
Tocopherol | 3 | 41 | 56 | 4 | 46 | 50 |
Thiamine | 11 | 55 | 34 | 7 | 68 | 25 |
Riboflavin | 7 | 75 | 19 | 9 | 65 | 26 |
Pyridoxine | 1 | 7 | 92 | 0 | 6 | 94 |
Cobalamin | 1 | 12 | 87 | 1 | 10 | 89 |
Vitamin C | 23 | 30 | 47 | 28 | 41 | 31 |
Niacin equivalent | 2 | 16 | 82 | 0 | 4 | 96 |
Folate | 42 | 41 | 17 | 40 | 55 | 5 |
Pantothenic acid | 25 | 66 | 9 | 19 | 69 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csertő, M.; Mihályi, K.; Mendl, E.; Lőcsei, D.; Daum, V.; Szili, N.; Decsi, T.; Lohner, S. Dietary Energy and Nutrient Intake of Healthy Pre-School Children in Hungary. Nutrients 2023, 15, 2989. https://doi.org/10.3390/nu15132989
Csertő M, Mihályi K, Mendl E, Lőcsei D, Daum V, Szili N, Decsi T, Lohner S. Dietary Energy and Nutrient Intake of Healthy Pre-School Children in Hungary. Nutrients. 2023; 15(13):2989. https://doi.org/10.3390/nu15132989
Chicago/Turabian StyleCsertő, Mónika, Krisztina Mihályi, Edina Mendl, Dorottya Lőcsei, Vivien Daum, Nóra Szili, Tamás Decsi, and Szimonetta Lohner. 2023. "Dietary Energy and Nutrient Intake of Healthy Pre-School Children in Hungary" Nutrients 15, no. 13: 2989. https://doi.org/10.3390/nu15132989
APA StyleCsertő, M., Mihályi, K., Mendl, E., Lőcsei, D., Daum, V., Szili, N., Decsi, T., & Lohner, S. (2023). Dietary Energy and Nutrient Intake of Healthy Pre-School Children in Hungary. Nutrients, 15(13), 2989. https://doi.org/10.3390/nu15132989