The Severity of Obesity Promotes Greater Dehydration in Children: Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Anthropometric Parameters
2.3. Biochemical Assessment and Blood Pressure Examinations
2.4. Dehydration Assessment
2.5. Dietary Assessment
2.6. Statistics
3. Results
4. Discussion
4.1. Fluids Intake
4.2. Hydration Status and Obesity
4.3. Sodium Intake/Sodium Extraction and Obesity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Acuin, C.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fijałkowska, A.; Oblacińska, A.; Dzielska, A.; Nałęcz, H.; Korzycka, M.; Okulicz-Kozaryn, K.; Bójko, M.; Radiukiewicz, K. Zdrowie Dzieci w Pandemii COVID-19; Instytut Matki i Dziecka: Warszawa, Poland, 2022. (In Polish) [Google Scholar]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents? An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Calderón, J.M.; Álvarez-Pitti, J.; Cuenca, I.; Ponce, F.; Redon, P. Development of a Minimally Invasive Screening Tool to Identify Obese Pediatric Population at Risk of Obstructive Sleep Apnea/Hypopnea Syndrome. Bioengineering 2020, 7, 131. [Google Scholar] [CrossRef] [PubMed]
- Rumińska, M.; Majcher, A.; Pyrżak, B.; Czerwonogrodzka-Senczyna, A.; Brzewski, M.; Demkow, U. Cardiovascular Risk Factors in Obese Children and Adolescents. Adv. Exp. Med. Biol. 2016, 878, 39–47. [Google Scholar] [PubMed]
- Mazur, A.; Zachurzok, A.; Baran, J.; Dereń, K.; Łuszczki, E.; Weres, A.; Wyszyńska, J.; Dylczyk, J.; Szczudlik, E.; Drożdż, D.; et al. Childhood Obesity: Position Statement of Polish Society of Pediatrics, Polish Society for Pediatric Obesity, Polish Society of Pediatric Endocrinology and Diabetes, the College of Family Physicians in Poland and Polish Association for Study on Obesity. Nutrients 2022, 14, 3806. [Google Scholar] [CrossRef]
- Majcher, A.; Czerwonogrodzka-Senczyna, A.; Kądziela, K.; Rumińska, M.; Pyrżak, B. Development of obesity from childhood to adolescents. Pediatr. Endocrinol. Diabetes Metab. 2021, 27, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Stookey, J.D.; Brass, B.; Holliday, A.; Arieff, A. What is the cell hydration status of healthy children in the USA? Preliminary data on urine osmolality and water intake. Public Health Nutr. 2012, 15, 2148–2156. [Google Scholar] [CrossRef] [Green Version]
- Drozdowska, A.; Falkenstein, M.; Jendrusch, G.; Platen, P.; Luecke, T.; Kersting, M.; Jansen, K. Water Consumption during a School Day and Children’s Short-Term Cognitive Performance: The CogniDROP Randomized Intervention Trial. Nutrients 2020, 12, 1297. [Google Scholar] [CrossRef]
- D’Anci, K.E.; Constant, F.; Rosenberg, I.H. Hydration and cognitive function in children. Nutr. Rev. 2006, 64, 457–464. [Google Scholar] [CrossRef]
- Bucher Della Torre, S.; Keller, A.; Laure Depeyre, J.; Kruseman, M. Sugar-Sweetened Beverages and Obesity Risk in Children and Adolescents: A Systematic Analysis on How Methodological Quality May Influence Conclusions. J. Acad. Nutr. Diet. 2016, 116, 638–659. [Google Scholar] [CrossRef] [PubMed]
- European Food Standards Agency. Scientific opinion on dietary reference values for water. EFSA J. 2010, 8, 424. [Google Scholar]
- Bottin, J.H.; Morin, C.; Guelinckx, I.; Perrier, E.T. Hydration in Children: What Do We Know and Why Does it Matter? Ann. Nutr. Metab. 2019, 74 (Suppl. S3), 11–18. [Google Scholar] [CrossRef]
- Alexy, U.; Cheng, G.; Libuda, L.; Hilbig, A.; Kersting, M. 24 h-sodium excretion and hydration status in children and adolescents—Results of the DONALD study. Clin. Nutr. 2012, 31, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, F.; Lepicard, E.M.; Cathrin, L.; Letellier, C.; Constant, F.; Hawili, N.; Friedlander, G. French children start their school day with a hydration deficit. Ann. Nutr. Metab 2012, 60, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Bougatsas, D.; Arnaoutis, G.; Panagiotakos, D.B.; Seal, A.D.; Johnson, E.C.; Bottin, J.H.; Tsipouridi, S.; Kavouras, S.A. Fluid consumption pattern and hydration among 8–14 years-old children. Euro J. Clin. Nutr. 2017, 72, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Kavouras, S.; Johnson, E.; Bougatsas, D.; Arnaoutis, G.; Panagiotakos, D.; Perrier, E.; Klein, A. Validation of a urine color scale for assessment of urine osmolality in healthy children. Eur. J. Nutr. 2016, 55, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Kavouras S, Bougatsas D, Johnson E, Arnaoutis G, Tsipouridi S, Panagiotakos D Water intake and urinary hydration biomarkers in children. Eur. J. Clin. Nutr. 2017, 71, 530–535. [CrossRef] [PubMed]
- Kozioł-Kozakowska, A.; Piórecka, B.; Suder, A.; Jagielski, P. Body Composition and a School Day Hydration State among Polish Children—A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 7181. [Google Scholar] [CrossRef]
- Maffeis, C.; Tommasi, M.; Tomasselli, F.; Spinelli, J.; Fornari, E.; Scattolo, N.; Marigliano, M.; Morandi, A. Fluid intake and hydration status in obese vs normal weight children. Eur. J. Clin. Nutr. 2016, 70, 560–565. [Google Scholar] [CrossRef]
- Michels, N.; Van den Bussche, K.; Vande Walle, J.; De Henauw, S. Belgian primary school children’s hydration status at school and its personal determinants. Eur. J. Nutr. 2017, 56, 793–805. [Google Scholar] [CrossRef]
- Padrão, P.; Neto, M.; Pinto, M.; Oliveira, A.C.; Moreira, A.; Moreira, P. Urinary hydration biomarkers and dietary intake in children. Nutr. Hosp. 2016, 33, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Stahl, A.; Kroke, A.; Bolzenius, K.; Manz, F. Relation between hydration status in children and their dietary profile—Results from the DONALD study. Eur. J. Clin. Nutr. 2007, 61, 386–1392. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, M.; Kozioł-Kozakowska, A. Obesity, Sodium Homeostasis, and Arterial Hypertension in Children and Adolescents. Nutrients 2021, 13, 4032. [Google Scholar] [CrossRef]
- Ma, Y.; He, F.J.; MacGregor, G.A. High salt intake: Independent risk factor for obesity? Hypertension 2015, 66, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Brouillard, A.M.; Deych, E.; Canter, C.; Rich, M.W. MD Trends in Sodium Intake in Children and Adolescents in the US and the Impact of US Department of Agriculture Guidelines: NHANES 2003–2016. J. Pediatr. 2020, 225, 117–123. [Google Scholar] [CrossRef]
- Celik, A.; Cebeci, A.N. Evaluation of hydration status of children with obesity—A pilot study. J. Pediatr. Endocrinol. Metab. 2021, 34, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Kułaga, Z.; Litwin, M.; Tkaczyk, M.; Palczewska, I.; Zajączkowska, M.; Zwolińska, D.; Krynicki, T.; Wasilewska, A.; Moczulska, A.; Morawiec-Knysak, A.; et al. Polish 2010 growth references for school-aged children and adolescents. Eur. J. Pediatr. 2011, 170, 599–609. [Google Scholar] [CrossRef] [Green Version]
- National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004, 114, 555–576. [Google Scholar] [CrossRef]
- Kosiak, W.; Swieton, D.; Piskunowicz, M. Sonographic inferior vena cava/aorta diameter index, a new approach to the body fluid status assessment in children and young adults in emergency ultrasound—Preliminary study. Am. J. Emerg. Med. 2008, 26, 320–325. [Google Scholar] [CrossRef]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. (Eds.) Nutrition Standards for the Polish Population and Their Applied; PZH: Warszawa, Poland, 2020. (In Polish) [Google Scholar]
- Vieux, F.; Maillot, M.; Constant, F.; Drewnowski, A. Water and beverage consumption patterns among 4 to 13-year-old children in the United Kingdom. BMC Public Health 2017, 17, 479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, H.; Kavouras, S.A. Water intake and hydration state in children. Eur. J. Nutr. 2019, 58, 475–496. [Google Scholar] [CrossRef] [PubMed]
- Scientific opinion Dietary reference values for sodium. EFSA J. 2019, 17, 5778.
- Gonçalves, C.; Abreu, S.; Padrão, P.; Pinho, O.; Graça, P.; Breda, J.; Santos, R.; Moreira, P. Sodium and potassium urinary excretion and dietary intake: A cross-sectional analysis in adolescents. Food Nutr. Res. 2016, 60, 29442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneton, P.; Lafay, L.; Tard, A.; Dufour, A.; Ireland, J.; Menard, J.; Volatier, J.L. Dietary sources and correlates of sodium and potassium intakes in the French general population. Eur. J. Clin. Nutr. 2009, 63, 1169–1175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golpour-Hamedani, S.; Rafie, N.; Pourmasoumi, M.; Morteza Safavi, S.; Mohammadifard, N. Sodium and potassium intakes and adiposity among Iranian pre-adolescents and adolescents: A cross-sectional study. Nutr. J. 2022, 21, 23. [Google Scholar] [CrossRef]
- Campanozzi, A.; Avallone, S.; Barbato, A.; Iacone, R.; Russo, O.; De Filippo, G.; D’Angelo, G.; Pensabene, L.; Malamisura, B.; Cecere, G.; et al. High sodium and low potassium intake among Italian children: Relationship with age, body mass and blood pressure. PLoS ONE 2015, 10, e0121183. [Google Scholar] [CrossRef]
- Maldonado-Martin, A.; Garcia-Matarin, L.; Gil-Extremera, B.; Avivar-Oyonarte, C.; Garcia-Granados, M.E.; Gil-Garcia, F.; Latorre-Hernández, J.; Miró-Gutiérrez, J.; Soria-Bonilla, A.; Vergara-Martín, J.; et al. Blood pressure and urinary excretion of electrolytes in Spanish schoolchildren. J. Hum. Hypertens 2002, 1, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Marrero, N.M.; He, F.J.; Whincup, P.; Macgregor, G.A. Salt intake of children and adolescents in South London: Consumption levels and dietary sources. Hypertension 2014, 63, 1026–1032. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Krupp, D.; Remer, T. Salt, fruit and vegetable consumption and blood pressure development: A longitudinal investigation in healthy children. Br. J. Nutr. 2014, 111, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Cocores, J.A.; Gold, M.S. The salted food addiction hypothesis may explain overeating and the obesity epidemic. Med. Hypothesese 2009, 73, 892–899. [Google Scholar] [CrossRef]
- Mennella, J.A. Ontogeny of taste preferences: Basic biology and implications for health. Am. J. Clin. Nutr. 2014, 99, 704–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Min, J.; Khuri, J.; Li, M.A. Systematic Examination of the Association between Parental and Child Obesity across Countries. Adv. Nutr. 2017, 8, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Yoo, B.M.; Kim, M.; Kang, M.J. Association between childhood obesity and familial salt intake: Analysis of data from Korean National Health and Nutrition Examination Survey, 2014–2017. Endocr. J. 2021, 68, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ogden, C.L.; Yang, Q.; Jackson, S.L.; Loria, C.M.; Galuska, D.A.; Wiltz, J.L.; Merritt, R.; Cogswell, M.E. Association of Usual Sodium Intake with Obesity Among US Children and Adolescents, NHANES 2009–2016. Obesity (Silver Spring) 2021, 29, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Grimes, C.A.; Wright, J.D.; Liu, K.; Nowson, C.A.; Loria, C.M. Dietary sodium intake is associated with total fluid and sugar-sweetened beverage consumption in US children and adolescents aged 2–18 y: NHANES 2005–2008. Am. J. Clin. Nutr. 2013, 98, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonseca-Alaniz, M.H.; Brito, L.C.; Borges-Silva, C.N.; Takada, J.; Andreotti, S.; Lima, F.B. High dietary sodium intake increases white adipose tissue mass and plasma leptin in rats. Obesity 2007, 15, 2200–2208. [Google Scholar] [CrossRef]
- Filippini, T.; Naska, A.; Kasdagli, M.I.; Torres, D.; Lopes, C.; Carvalho, C.; Moreira, P.; Malavolti, M.; Orsini, N.; Whelton, P.K.; et al. Potassium Intake and Blood Pressure: A Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2020, 9, e015719. [Google Scholar] [CrossRef]
- Verduci, E.; Bronsky, J.; Embleton, N.; Gerasimidis, K.; Indrio, F.; Köglmeier, J.; de Koning, B.; Lapillonne, A.; Moltu, S.J.; Norsa, L.; et al. Role of Dietary Factors, Food Habits, and Lifestyle in Childhood Obesity Development: A Position Paper from the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2021, 72, 769–783. [Google Scholar] [CrossRef]
References | Studied Group | Country | Type of the Study and Year | Methods | Outcome | Results |
---|---|---|---|---|---|---|
Alexy et al. (2012) [14] | Children and adolescents (4–18 years old) | Germany | Cross-sectional study, 2003–2009 | Three-day nutrition diary of weighed foods and nutrients | Hydration state based on 24-hour sodium excretion | Salt excretion increased with age but remained constant during the study |
Bonnet et al. (2012) [15] | Children (9–11 years old) | France | Cross-sectional study, 2010 | Food diary of breakfast | Water intake and hydration status at breakfast | More than a third of the children had high urine osmolality (801 and 1000 mmol kg−1) and total water intake was inversely correlated with high urine osmolality |
Bougatsas et al. (2018) [16] | Children (8–14 years old) | Greece | Cross-sectional study 2013 | Fluid intake from two days | Assessment of fluid consumption and hydration level | Drinking water and milk was correlated with better hydration status, whereas drinking regular soda and other drinks was associated with worse hydration (p = 0.001) |
Kavouras et al. (2016) [17] | Children (8–14 years old) | Greece | Cross-sectional study, 2012–2013 | Color of urine | Assessment of urine color | The traditional urine color score scale is a good method for assessing children’s hydration; the average 24-hour urine color was 3 and the average 24-hour urine osmolality was 686 mmol kg−1 |
Kavouras et al. (2017) [18] | Children (9–13 years old) | Greece | Cross-sectional study, 2012–2013 | Food diary of fluid intake from 2 day | Assessment of daily water intake and biomarkers of hydration | Insufficient water intake from fluids was associated with lower levels of hydration in children |
Kozioł-Kozakowska at al. [19] | Children (7–15 years old) | Poland | Cross-sectional, 2018 | Urine osmolality during a school day | Hydration state | In all, 53% of the children were insufficiently hydrated, and 16.3% of them had urine osmolality > 1000 mOsm/kgH2O, which indicates severe dehydration |
Maffeis et al. (2016) [20] | Children (7–11 years old) | Italy | Cross-sectional study | Three-day nutrition diary of weighed foods and fluid | Assessment of fluid intake and level of hydration in obese children vs. normal weight | Obese children were less hydrated compared to normal-weight children and drink less when considering body mass index |
Michels et al. (2017) [21] | School children (7–13 years old) | Belgium | Cross-sectional study, 2014 | Food frequency questionnaire FFQ for children | Assessment of children’s hydration at school and its predictors | The children had a high risk of dehydration (school urine osmolality of 888 mmol kg−1); however, this was not due to the quality of the diet |
.Padrão et al. (2016) [22] | Children (7–11 years old) | Portugal | Cross-sectional study, 2014 | Twenty-four-hour dietary interview | Assessment of diet and biomarkers of hydration | More than half of the children had too low hydration levels; higher water intake was associated with better hydration levels |
Stahl et al. (2007) [23] | Children (4–11 years old) | Germany | Cross-sectional study, 2007 | Three-day nutrition diary of weighed foods | Assessment of the relationship between hydration and diet | Children who were properly hydrated had a higher total water intake with the diet and lower energy density of the diet, compared with children with lower hydration levels |
Stookey et al. (2012) [8] | Children (9–11 years old) | USA | Cross-sectional study, 2009 | Food diary for breakfasts | Assessment of hydration and intake of water | Elevated urinary os-molarity (>800 mmol kg−1) was associated with lower water intake in the morning |
Daily Intake g/day X (SD) | % of Energy X (SD) | % Norm Implementation X (SD) | Recommended Intake | |
---|---|---|---|---|
Energy | ||||
kcal/day | 2871.33 (676.35) | 62.42 (13.60) | 133 (21.11) % EER | 1800–2450 kcal/day depending on weight, age, and sex (7–15 years old) |
Protein | ||||
g/day | 86.6 (33.9) | 12.20 (4.7) | 102.1 (16.04) % RDA | 10–20% Energy |
Carbohydrates | ||||
g/day | 423.30 (127.8) | 59.1 (4.6) | 117.0 (45.29) % RI | 55–60% Energy |
Sugars | ||||
g/day | 100.46 (29.48) | 15.2 (3.1) | 275.1 (95.68) % RI | Less than 10% simple sugar for energy |
Fats | ||||
g/day | 111.6 (39.4) | 35.1 (14.1) | 112.6 (31.82) % RI | 25–30% Energy |
TWI | ||||
ml/day | 2127.31 (633.93) | - | 97% RI | 2–2.5 L |
Parameters | Total n = 27 | Proper Hydration n = 12 | Dehydration n = 15 | Student’s t-Test p-Value |
---|---|---|---|---|
Fasting glucose (mmol/L) | 4.81 (0.26) | 4.8 (0.30) | 4.8 (0.22) | 0.4050 |
Glucose 120′ (oral glucose tolerance test) (mmol/L) | 5.48 (0.66) | 5.4 (0.61) | 5.5 (0.71) | 0.2672 |
Triglycerides (mmol/L) | 1.30 (0.66) | 4.0 (0.91) | 4.5 (0.91) | 0.1571 |
Total cholesterol (mmol/L) | 4.26 (0.91) | 4.0 (0.92) | 4.5 (0.90) | 0.8460 |
HDL cholesterol (mmol/L) | 1.25 (0.22) | 1.27 (0.15) | 1.24 (0.27) | 0.1741 |
LDL cholesterol (mmol/L) | 2.51 (0.81) | 2.27 (0.85) | 2.69 (0.79) | 0.5982 |
Creatinine | 49.41 (11.95) | 45.6 (5.12) | 51.7 (14.90) | 0.8896 |
25(OH)D (ng/mL) | 21.67 (8.32) | 21.7 (9.50) | 22.2 (7.73) | 0.1266 |
Uric acid (µmol/L) | 334.24 (83.48) | 325.22 (95.12) | 336.99 (79.52) | 0.0792 |
Systolic blood pressure (mmHg) | 102.2 (8.32) | 101.8 (8.70) | 105.1 (10.21) | 0.0355 |
Diastolic blood pressure (mmHg) | 63.2 (4.61) | 61.1 (3.30) | 63.3 (5.10) | 0.9295 |
Parameters | Total n = 27 | Proper Hydration n = 12 | Dehydration n = 15 | Student’s t-Test p-Value |
---|---|---|---|---|
Age (years) | 12.89 (2.79) | 12.27 (2.58) | 13.32 (3.02) | 0.4706 |
Weight (kg) | 77.39 (25.44) | 69.39 (24.38) | 81.87 (26.36) | 0.2441 |
Height (cm) | 157.73 (17.81) | 156.70 (18.83) | 158.07 (18.33) | 0.7391 |
BMI (kg/m2) | 30.15 (5.08) | 27.32 (3.59) | 31.79 (5.30) | 0.0228 |
Fat mass (kg) | 26.63 (11.53) | 20.55 (6.58) | 30.89 (12.78) | 0.0158 |
Fat mass (% of weight) | 34.05 (6.59) | 30.07 (3.75) | 37.23 (6.49) | 0.0051 |
Fat-Free Mass (kg) | 49.67 (18.10) | 48.34 (18.32) | 49.42 (18.64) | 0.9116 |
Muscle Mass (kg) | 47.80 (16.17) | 45.91 (7.45) | 48.03 (15.86) | 0.8244 |
TBW (kg) | 36.84 (12.41) | 35.3 (13.38) | 37.03 (12.16) | 0.8028 |
TBW (% of body weight) | 48.33 (5.23) | 51.09 (4.20) | 46.12 (4.95) | 0.0265 |
Urine volume (mL/24 h) | 1444.1 (500.43) | 1472.9 (585.3) | 1339.0 (338.82) | 0.6353 |
24-hour sodium concentration (mmol/L) | 133.59 (49.62) | 109.47 (41.57) | 152.36 (48.48) | 0.0508 |
24-hour urinary sodium excretion (mmol/24 h) | 170.91 (85.16) | 156.11(44.30) | 178.47 (103.65) | 0.8973 |
24-hour urinary sodium excretion (mg/24 h) | 3730.99 (1958.57) | 3590.6 (1019.00) | 3804.7 (2384.01) | 0.8973 |
Sodium intake (mg/24) | 2823.67 (915.43) | 2921.0 (557.00) | 3390.0 (692.02) | 0.0230 |
Potassium intake (mg/24) | 1421.65 (1172.41) | 1438 (1637.01) | 1408.1 (741.00) | 0.1655 |
Sodium/potassium ratio | 1.98 (0.47) | 2.03 (0.30) | 2.40 (0.42) | 0.0043 |
24-hour Urinary Sodium Extraction (mg/24 h) | 24-hour Urine Osmolality (mOsm/kgH2O) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BMI | Fat Mass (%) | Fat Mass (kg) | TBW% | TWI % | Systolic BP | BMI | Fat Mass (%) | Fat Mass (kg) | TBW% | TWI | Systolic BP |
0.071 | 0.425 * | 0.431 * | 0.060 | −0.113 | 0.155* | 0.343 | 0.574 ** | 0.398 * | 0.442 * | 0.022 | 0.132 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozioł-Kozakowska, A.; Wójcik, M.; Stochel-Gaudyn, A.; Szczudlik, E.; Suder, A.; Piórecka, B. The Severity of Obesity Promotes Greater Dehydration in Children: Preliminary Results. Nutrients 2022, 14, 5150. https://doi.org/10.3390/nu14235150
Kozioł-Kozakowska A, Wójcik M, Stochel-Gaudyn A, Szczudlik E, Suder A, Piórecka B. The Severity of Obesity Promotes Greater Dehydration in Children: Preliminary Results. Nutrients. 2022; 14(23):5150. https://doi.org/10.3390/nu14235150
Chicago/Turabian StyleKozioł-Kozakowska, Agnieszka, Małgorzata Wójcik, Anna Stochel-Gaudyn, Ewa Szczudlik, Agnieszka Suder, and Beata Piórecka. 2022. "The Severity of Obesity Promotes Greater Dehydration in Children: Preliminary Results" Nutrients 14, no. 23: 5150. https://doi.org/10.3390/nu14235150
APA StyleKozioł-Kozakowska, A., Wójcik, M., Stochel-Gaudyn, A., Szczudlik, E., Suder, A., & Piórecka, B. (2022). The Severity of Obesity Promotes Greater Dehydration in Children: Preliminary Results. Nutrients, 14(23), 5150. https://doi.org/10.3390/nu14235150