Higher Overall Intakes Are the Defining Feature of Dietary Intakes in NAFLD and Compared to the General Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
- Secondary causes of NAFLD (e.g., medication induced);
- Unstable body weight (variation > 5% within the preceding 3-month period) or current use of weight loss medications;
- Current use of pioglitazone;
- Other liver diseases or unstable diabetes (HbA1c > 8.5%);
- Decompensated cirrhosis;
- Renal failure;
- Current malignancy (aside from skin cancer);
- Inability to provide informed consent or any condition prohibiting the completion of the required assessments;
- Current smoking.
2.3. Dietary Assessment
2.4. Confounding Factors
2.5. Statistical Analysis
2.5.1. Comparison to Australian Population Data
2.5.2. Relationship between Nutrients and Severity of Hepatic Steatosis
2.5.3. Relationship between Food Groups and Hepatic Steatosis
3. Results
3.1. Subjects
3.2. Comparison of the Nutritional Intake between NAFLD Subjects and the Australian Population
3.3. Predictive Value of Nutrients in Hepatic Steatosis
3.4. Predictive Value of Food Groups in Hepatic Steatosis
4. Discussion
4.1. Individual Foods, Nutrients and Prediction of Steatosis within Our NAFLD Cohort
4.2. Limitations of the Current Body of Evidence
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chalasani, N.; Younossi, Z.; LaVine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [Green Version]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef]
- Adams, L.A.; Roberts, S.K.; Strasser, S.I.; Mahady, S.E.; Powell, E.; Estes, C.; Razavi, H.; George, J. Nonalcoholic fatty liver disease burden: Australia, 2019–2030. J. Gastroenterol. Hepatol. 2020, 35, 1628–1635. [Google Scholar] [CrossRef] [Green Version]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Calzadilla-Bertot, L.; Jeffrey, G.P.; Jacques, B.; McCaughan, G.; Crawford, M.; Angus, P.; Jones, R.; Gane, E.; Munn, S.; Macdonald, G.; et al. Increasing Incidence of Nonalcoholic Steatohepatitis as an Indication for Liver Transplantation in Australia and New Zealand. Liver Transplant. 2019, 25, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, A.; Scorletti, E.; Mosca, A.; Alisi, A.; Byrne, C.D.; Targher, G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism 2020, 111, 154170. [Google Scholar] [CrossRef]
- Yuan, S.; Chen, J.; Li, X.; Fan, R.; Arsenault, B.; Gill, D.; Giovannucci, E.L.; Zheng, J.-S.; Larsson, S.C. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study. Eur. J. Epidemiol. 2022, 37, 723–733. [Google Scholar] [CrossRef]
- Ullah, R.; Rauf, N.; Nabi, G.; Ullah, H.; Shen, Y.; Zhou, Y.-D.; Fu, J. Role of Nutrition in the Pathogenesis and Prevention of Non-alcoholic Fatty Liver Disease: Recent Updates. Int. J. Biol. Sci. 2019, 15, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Kalafati, I.P.; Borsa, D.; Dimitriou, M.; Revenas, K.; Kokkinos, A.; Dedoussis, G.V. Dietary patterns and non-alcoholic fatty liver disease in a Greek case-control study. Nutrition 2019, 61, 105–110. [Google Scholar] [CrossRef]
- Chung, G.E.; Youn, J.; Kim, Y.S.; Lee, J.E.; Yang, S.Y.; Lim, J.H.; Song, J.H.; Doo, E.Y.; Kim, J.S. Dietary patterns are associated with the prevalence of nonalcoholic fatty liver disease in Korean adults. Nutrition 2018, 62, 32–38. [Google Scholar] [CrossRef]
- Yang, C.-Q.; Shu, L.; Wang, S.; Wang, J.-J.; Zhou, Y.; Xuan, Y.-J.; Wang, S.-F. Dietary Patterns Modulate the Risk of Non-Alcoholic Fatty Liver Disease in Chinese Adults. Nutrients 2015, 7, 4778–4791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Peng, Y.; Chen, S.; Sun, Q. An observational study on the association between major dietary patterns and non-alcoholic fatty liver disease in Chinese adolescents. Medicine 2018, 97, e0576. [Google Scholar] [CrossRef] [PubMed]
- Fakhoury-Sayegh, N.; Younes, H.; Heraoui, G.N.H.A.; Sayegh, R. Nutritional Profile and Dietary Patterns of Lebanese Non-Alcoholic Fatty Liver Disease Patients: A Case-Control Study. Nutrients 2017, 9, 1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rietman, A.; Sluik, D.; Feskens, E.J.M.; Kok, F.J.; Mensink, M. Associations between dietary factors and markers of NAFLD in a general Dutch adult population. Eur. J. Clin. Nutr. 2017, 72, 117–123. [Google Scholar] [CrossRef]
- He, K.; Li, Y.; Guo, X.; Zhong, L.; Tang, S. Food groups and the likelihood of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Br. J. Nutr. 2020, 124, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zelber-Sagi, S.; Nitzan-Kaluski, D.; Goldsmith, R.; Webb, M.; Blendis, L.; Halpern, Z.; Oren, R. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): A population based study. J. Hepatol. 2007, 47, 711–717. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Ivancovsky-Wajcman, D.; Isakov, N.F.; Webb, M.; Orenstein, D.; Shibolet, O.; Kariv, R. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J. Hepatol. 2018, 68, 1239–1246. [Google Scholar] [CrossRef]
- Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Webb, M.; Bentov, I.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Ultra-processed food is associated with features of metabolic syndrome and non-alcoholic fatty liver disease. Liver Int. 2021, 41, 2635–2645. [Google Scholar] [CrossRef]
- Eslamparast, T.; Tandon, P.; Raman, M. Dietary Composition Independent of Weight Loss in the Management of Non-Alcoholic Fatty Liver Disease. Nutrients 2017, 9, 800. [Google Scholar] [CrossRef] [Green Version]
- ABS. Key Findings [Webpage]. Australian Bureu of Statistics: Canberra, Australia. 2016. Available online: https://www.abs.gov.au/ausstats/[email protected]/Lookup/by%20Subject/4364.0.55.012~2011-12~Main%20Features~Key%20Findings~1 (accessed on 6 June 2018).
- AIHW. Australia’s Health-Diet [Webpage]. AIHW: Canberra, Australia. 2022. Available online: https://www.aihw.gov.au/reports/australias-health/diet (accessed on 5 July 2022).
- Properzi, C.; O’Sullivan, T.A.; Sherriff, J.L.; Ching, H.L.; Jeffrey, G.P.; Buckley, R.F.; Tibballs, J.; MacQuillan, G.C.; Garas, G.; Adams, L.A. Ad Libitum Mediterranean and Low-Fat Diets Both Significantly Reduce Hepatic Steatosis: A Randomized Controlled Trial. Hepatology 2018, 68, 1741–1754. [Google Scholar] [CrossRef] [Green Version]
- Giles, G.G.; Ireland, P.D. Dietary Questionnaire for Epidemiological Studies (Version 3.2); Cancer Council Victoria: Melbourne, Australia, 1996. [Google Scholar]
- Xyris Pty. Ltd. FoodWorks 9, 9th ed.; Xyris Pty. Ltd.: Brisbane, Australia, 2017. [Google Scholar]
- Zheng, M.; Wu, J.H.Y.; Louie, J.C.Y.; Flood, V.M.; Gill, T.; Thomas, B.; Cleanthous, X.; Neal, B.; Rangan, A. Typical food portion sizes consumed by Australian adults: Results from the 2011–12 Australian National Nutrition and Physical Activity Survey. Sci. Rep. 2016, 6, 19596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerterp, K.R. Control of energy expenditure in humans. Eur. J. Clin. Nutr. 2016, 71, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Gerber, L.; Otgonsuren, M.; Mishra, A.; Escheik, C.; Birerdinc, A.; Stepanova, M.; Younossi, Z.M. Non-alcoholic fatty liver disease (NAFLD) is associated with low level of physical activity: A population-based study. Aliment. Pharmacol. Ther. 2012, 36, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Vilar-Gomez, E.; Nephew, L.D.; Vuppalanchi, R.; Gawrieh, S.; Mladenovic, A.; Pike, F.; Samala, N.; Chalasani, N. High-quality diet, physical activity, and college education are associated with low risk of NAFLD among the US population. Hepatology 2021, 75, 1491–1506. [Google Scholar] [CrossRef]
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2007, 9, 755–762. [Google Scholar] [CrossRef]
- Fan, R.; Wang, J.; Du, J. Association between body mass index and fatty liver risk: A dose-response analysis. Sci. Rep. 2018, 8, 15273. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics. Australian Health Survey: Usual Nutrient Intakes. ABS. December 2011. Available online: https://www.abs.gov.au/AUSSTATS/[email protected]/DetailsPage/4364.0.55.0082011-12?OpenDocument (accessed on 22 March 2018).
- Microsoft Corporation. Microsoft Excel for Microsoft 365 MSO, 2022 ed. Microsoft. 2022. Available online: https://office.microsoft.com/excel(accessed on 21 November 2022).
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef] [Green Version]
- IBM. IBM SPSS Statistics for Windows, 28.0.1.0 ed.; IBM Corp: Armonk, NY, USA, 2021. [Google Scholar]
- Anderson, E.L.; Howe, L.D.; Fraser, A.; Macdonald-Wallis, C.; Callaway, M.P.; Sattar, N.; Day, C.; Tilling, K.; Lawlor, D.A. Childhood energy intake is associated with nonalcoholic fatty liver disease in adolescents. J. Nutr. 2015, 145, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Wehmeyer, M.H.; Zyriax, B.-C.; Jagemann, B.; Roth, E.; Windler, E.; Wiesch, J.S.Z.; Lohse, A.W.; Kluwe, J. Nonalcoholic fatty liver disease is associated with excessive calorie intake rather than a distinctive dietary pattern. Medicine 2016, 95, e3887. [Google Scholar] [CrossRef]
- de Castro, G.S.; Calder, P.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 2017, 37, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Musa-Veloso, K.; Venditti, C.; Lee, H.Y.; Darch, M.; Floyd, S.; West, S.; Simon, R. Systematic review and meta-analysis of controlled intervention studies on the effectiveness of long-chain omega-3 fatty acids in patients with nonalcoholic fatty liver disease. Nutr. Rev. 2018, 76, 581–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ABS. Unsaturated Spreads and Oils. Australian Bureau of Statistics: Canberra, Australia. 2016. Available online: https://www.abs.gov.au/ausstats/[email protected]/Lookup/by%20Subject/4364.0.55.012~2011-12~Main%20Features~Unsaturated%20spreads%20and%20oils~10002# (accessed on 8 September 2022).
- Torris, C.; Molin, M.; Smastuen, M.C. Lean Fish Consumption Is Associated with Beneficial Changes in the Metabolic Syndrome Components: A 13-Year Follow-Up Study from the Norwegian Tromso Study. Nutrients 2017, 9, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torris, C.; Molin, M.; Cvancarova, M.S. Lean fish consumption is associated with lower risk of metabolic syndrome: A Norwegian cross sectional study. BMC Public Health 2016, 16, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez, C.; Botella-Carretero, J.; Corella, D.; Fiol, M.; Lage, M.; Lurbe, E.; Richart, C.; Fernández-Real, J.; Fuentes, F.; Ordóñez, A.; et al. White fish reduces cardiovascular risk factors in patients with metabolic syndrome: The WISH-CARE study, a multicenter randomized clinical trial. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 328–335. [Google Scholar] [CrossRef]
- Yki-Jarvinen, H.; Luukkonen, P.K.; Hodson, L.; Moore, J.B. Dietary carbohydrates and fats in nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 770–786. [Google Scholar] [CrossRef]
- Adriano, L.S.; de Carvalho Sampaio, H.A.; Arruda, S.P.M.; de Melo Portela, C.L.; de Melo, M.L.P.; Carioca, A.A.F.; Soares, N.T. Healthy dietary pattern is inversely associated with non-alcoholic fatty liver disease in elderly. Br. J. Nutr. 2016, 115, 2189–2195. [Google Scholar] [CrossRef] [Green Version]
- Zaragoza-Marti, A.; Cabanero-Martinez, M.J.; Hurtado-Sanchez, J.A.; Laguna-Perez, A.; Ferrer-Cascales, R. Evaluation of Mediterranean diet adherence scores: A systematic review. BMJ Open 2018, 8, e019033. [Google Scholar] [CrossRef] [Green Version]
- ABS. Australian Health Survey: Users’ Guide, 2011–2013; Australian Bureau of Statistics: Canberra, Australia, 2013. Available online: https://www.abs.gov.au/ausstats/[email protected]/Lookup/D1A83EE0703D6E8FCA257BBB0014C443?opendocument (accessed on 11 March 2019).
- Burrows, T.L.; Ho, Y.Y.; Rollo, M.E.; Collins, C.E. Validity of Dietary Assessment Methods When Compared to the Method of Doubly Labeled Water: A Systematic Review in Adults. Front. Endocrinol. 2019, 10, 850. [Google Scholar] [CrossRef] [Green Version]
- Perdomo, C.M.; Fruhbeck, G.; Escalada, J. Impact of Nutritional Changes on Nonalcoholic Fatty Liver Disease. Nutrients 2019, 11, 677. [Google Scholar] [CrossRef] [Green Version]
N = 50 | Mean | SD | Correlation (Spearman’s Rho) | p |
---|---|---|---|---|
Sex | ||||
Females n (%) | 24 (48.0%) | 0.113 a | 0.436 a | |
Age (years) | 52.5 | 11.5 | 0.157 | 0.275 |
Ethnicity n (%) | 0.314 b | 0.815 | ||
Caucasian | 41 (82.0%) | |||
Asian | 7 (14.0%) | |||
Other | 2 (4.0%) | |||
Diabetes n (%) | 15 (30%) | 0.166 | 0.250 a | |
Anthropometry | ||||
Weight (kg) | 85.0 | 13.4 | −0.009 | 0.952 |
Waist (cm) | 101.6 | 11.7 | 0.179 | 0.218 |
BMI (kg/m2) | 30.9 | 4.9 | 0.109 | 0.453 |
Liver | ||||
Hepascore | 0.33 | 0.32 | 0.183 | 0.207 |
Liver Stiffness (kPa) | 9.6 | 11.2 | 0.324 | 0.028 |
Bilirubin (µmol/L) | 12.5 | 4.5 | −0.195 | 0.174 |
ALT (U/L) | 72.1 | 58.6 | 0.424 | 0.002 |
ALP (U/L) | 87.2 | 37.6 | 0.053 | 0.720 |
GGT (U/L) | 108.9 | 119.8 | 0.156 | 0.283 |
AST (U/L) | 49.9 | 41.6 | 0.369 | 0.009 |
Cardiovascular | ||||
Systolic BP (mm Hg) | 127.5 | 15.4 | 0.008 | 0.955 |
Diastolic BP (mm Hg) | 79.9 | 7.9 | 0.007 | 0.961 |
Total Cholesterol (mmol/L) | 5.0 | 1.1 | 0.004 | 0.977 |
Triglycerides (mmol/L) | 1.7 | 0.8 | 0.123 | 0.403 |
HDL cholesterol (mmol/L) | 1.2 | 0.3 | −0.173 | 0.239 |
LDL cholesterol (mmol/L) | 3.0 | 1.0 | −0.009 | 0.952 |
FRS | 4.3 | 5.0 | 0.144 | 0.345 |
Lifestyle | ||||
Glucose (mmol/L) | 5.6 | 1.1 | 0.411 | 0.003 |
Insulin (mU/L) | 14.8 | 9.5 | 0.486 | <0.001 |
HbA1c (%) | 6.0 | 1.0 | 0.261 | 0.067 |
HOMA2-IR | 1.8 | 0.8 | 0.472 | 0.001 |
Activity (MET-h/wk) | 55.8 | 59.6 | −0.052 | 0.721 |
QoL score (/100) | 79.4 | 10.3 | 0.021 | 0.889 |
Variable | NAFLD Cohort | Matched ABS Data | Percentage Difference (%) | Corrected p * | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
Energy (kJ/day) | 10,218 | 2183 | 8646 | 1312 | 15.4 | 17.9 | <0.001 |
Carbohydrate (g/day) | 242.9 | 64.8 | 221.3 | 35.7 | 7.15 | 24.0 | 0.054 |
Sugar (g/day) | 108.6 | 45.4 | 100.1 | 13.5 | 0.78 | 39.3 | 0.943 |
Protein (g/day) | 114.7 | 21.7 | 89.7 | 15.2 | 23.9 | 19.5 | <0.001 |
Total Fat (g/day) | 100.2 | 30.9 | 73.7 | 10.4 | 26.3 | 27.3 | <0.001 |
Saturated Fat (g/day) | 35.0 | 12.0 | 27.5 | 4.1 | 18.9 | 32.2 | <0.001 |
Monounsaturated Fat (g/day) | 40.0 | 14.2 | 28.3 | 4.1 | 28.2 | 31.9 | <0.001 |
Polyunsaturated Fat (g/day) | 17.6 | 6.5 | 11.3 | 1.3 | 37.2 | 33.6 | <0.001 |
Fibre (g/day) | 29.6 | 7.0 | 23.3 | 1.9 | 21.6 | 22.6 | <0.001 |
Caffeine (mg/day) α | 202.9 | 178.0 | 180.0 | 4.25 | 10.3 | 95.9 | 0.304 |
Sodium (mg/day) | 2793.4 | 662.8 | 2398.2 | 391.4 | 13.6 | 21.2 | <0.001 |
Daily Folate eq. ug/day | 655.2 | 264.0 | 612.4 | 72.1 | 0.04 | 39.3 | 0.994 |
Alcohol g/day α | 0.17 | 13.1 | 15.0 | 16.0 | 199.7 | 168.5 | 0.002 |
Iron mg/day | 13.8 | 2.9 | 11.2 | 1.5 | 19.9 | 22.3 | <0.001 |
% Energy from CHO | 38.9 | 6.6 | 42.4 | 0.6 | 0.10 | 0.17 | <0.001 |
% Energy from Fat | 35.8 | 5.6 | 30.8 | 0.4 | 0.14 | 0.16 | <0.001 |
% Energy from Protein α | 19.4 | 4.1 | 18.0 | 1.0 | 0.05 | 0.20 | 0.025 |
% Energy from Alcohol α | 0.005 | 3.94 | 5.0 | 0.5 | 1.99 | 1.63 | <0.001 |
Model | Factors | Factor Significance | Beta (Unstandardised) | Beta (Standardised) | 95% CI | Adjusted R2 | F | p |
---|---|---|---|---|---|---|---|---|
1 | (Constant) | <0.001 | −0.807 | −1.174–−0.439 | −0.032 | 0.519 | 0.671 | |
Age | 0.347 | 0.003 | 0.139 | −0.004–0.01 | ||||
Sex | 0.572 | 0.046 | 0.088 | −0.116–0.208 | ||||
Physical Activity (MET-h/wk) | 0.790 | 0.000 | −0.04 | −0.002–0.001 | ||||
2 | (Constant) | <0.001 | −0.753 | −1.112–−0.395 | 0.42 | 1.519 | 0.214 | |
Age | 0.522 | 0.002 | 0.097 | −0.005–0.009 | ||||
Sex | 0.610 | 0.040 | 0.077 | −0.116–0.196 | ||||
Physical Activity (MET-h/wk) | 0.738 | 0.000 | −0.049 | −0.002–0.001 | ||||
Polyunsaturated fat (g/kJ/day) | 0.042 | 0.016 | 0.303 | 0.001–0.032 | ||||
3 | (Constant) | 0.016 | −0.771 | −1.388–−0.154 | 0.02 | 1.188 | 0.331 | |
Age | 0.526 | 0.002 | 0.097 | −0.005–0.009 | ||||
Sex | 0.636 | 0.038 | 0.074 | −0.124–0.201 | ||||
Physical Activity (MET-h/wk) | 0.743 | 0.000 | −0.049 | −0.002–0.001 | ||||
BMI | 0.944 | 0.001 | 0.11 | −0.016–0.017 | ||||
Polyunsaturated fat (g/kJ/day) | 0.050 | 0.016 | 0.301 | 0.000–0.032 |
Model | Factors | Factor Significance | Beta (Unstandardised) | Beta (Standardised) | 95% CI | Adjusted R2 | F | p |
---|---|---|---|---|---|---|---|---|
1 | (Constant) | <0.001 | −0.807 | −1.174–−0.439 | −0.032 | 0.519 | 0.671 | |
Age | 0.374 | 0.003 | 0.139 | −0.004–0.010 | ||||
Sex | 0.572 | 0.046 | 0.088 | −0.116–0.208 | ||||
Physical Activity (MET-h/wk) | 0.790 | 0.000 | −0.040 | −0.002–0.001 | ||||
2 | (Constant) | <0.001 | −0.935 | −1.301–−0.569 | 0.069 | 1.871 | 0.133 | |
Age | 0.278 | 0.004 | 0.161 | −0.003–0.010 | ||||
Sex | 0.349 | 0.073 | 0.141 | −0.083–0.228 | ||||
Physical Activity (MET-h/wk) | 0.991 | −7.373 × 10−6 | −0.002 | −0.001–0.001 | ||||
Low omega 3 seafood (serves/MJ/day) | 0.021 | 4.854 | 0.345 | 0.775–8.934 | ||||
3 | (Constant) | 0.001 | −1.042 | −1.641–−0.443 | 0.052 | 1.512 | 0.207 | |
Age | 0.282 | 0.004 | 0.162 | −0.003–0.011 | ||||
Sex | 0.426 | 0.064 | 0.124 | −0.097–0.226 | ||||
Physical Activity (MET-h/wk) | 0.999 | 8.105 × 10−7 | 0.000 | −0.001–0.001 | ||||
BMI | 0.649 | 0.004 | 0.067 | −0.012–0.019 | ||||
Low omega 3 seafood (serves/MJ/day) | 0.022 | 4.851 | 0.345 | 0.730–8.971 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Properzi, C.; Adams, L.A.; Lo, J.; Sherriff, J.L.; Jeffrey, G.P.; O’Sullivan, T.A. Higher Overall Intakes Are the Defining Feature of Dietary Intakes in NAFLD and Compared to the General Population. Nutrients 2023, 15, 2669. https://doi.org/10.3390/nu15122669
Properzi C, Adams LA, Lo J, Sherriff JL, Jeffrey GP, O’Sullivan TA. Higher Overall Intakes Are the Defining Feature of Dietary Intakes in NAFLD and Compared to the General Population. Nutrients. 2023; 15(12):2669. https://doi.org/10.3390/nu15122669
Chicago/Turabian StyleProperzi, Catherine, Leon A. Adams, Johnny Lo, Jill L. Sherriff, Gary P. Jeffrey, and Therese A. O’Sullivan. 2023. "Higher Overall Intakes Are the Defining Feature of Dietary Intakes in NAFLD and Compared to the General Population" Nutrients 15, no. 12: 2669. https://doi.org/10.3390/nu15122669
APA StyleProperzi, C., Adams, L. A., Lo, J., Sherriff, J. L., Jeffrey, G. P., & O’Sullivan, T. A. (2023). Higher Overall Intakes Are the Defining Feature of Dietary Intakes in NAFLD and Compared to the General Population. Nutrients, 15(12), 2669. https://doi.org/10.3390/nu15122669