Effect of Milk Protein and Whey Permeate in Large-Quantity Lipid-Based Nutrient Supplement on Early Child Development among Children with Stunting: A Randomized 2 × 2 Factorial Trial in Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Randomization, Allocation Concealment and Blinding
2.4. The Intervention
2.5. Study Visits
2.6. Sample Size Consideration
2.7. Outcomes
2.8. Additional Data
2.9. Statistical Analyses
2.10. Ethics
3. Results
3.1. Participant Characteristics
3.2. Development among the Unsupplemented Children
3.3. Main Effect of Milk Ingredients and/or LNS on Development
3.4. Subgroup Effect of Milk Ingredients, and LNS in Itself, on Development
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Children’s Fund (UNICEF); World Health Organization; International Bank for Reconstruction and Development/The World Bank. Levels and Trends in Child Malnutrition: Key Findings of the 2021 Edition of the Joint Child Malnutrition Estimates; United Nations Children’s Fund: New York, NY, USA, 2021.
- Prendergast, A.J.; Humphrey, J.H. The stunting syndrome in developing countries. Paediatr. Int. Child Health 2014, 34, 250–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, M.M.; Walker, S.P.; Fernald, L.C.H.; Andersen, C.T.; DiGirolamo, A.M.; Lu, C.; McCoy, D.C.; Fink, G.; Shawar, Y.R.; Shiffman, J.; et al. Early childhood development coming of age: Science through the life course. Lancet 2017, 389, 77–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dembélé, B.; Sanni, M.A. Stunting and developmental delay in children in sub-Saharan Africa. Enfance 2021, 2, 177–196. [Google Scholar] [CrossRef]
- Walker, S.P.; Wachs, T.D.; Gardner, J.M.; Lozoff, B.; Wasserman, G.A.; Pollitt, E.; Carter, J.A. Child development: Risk factors for adverse outcomes in developing countries. Lancet 2007, 369, 145–157. [Google Scholar] [CrossRef]
- WHO. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. 2006, 95, 76–85. [Google Scholar]
- Desa, U. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2016.
- WHO. Improving Early Childhood Development: WHO Guideline; World Health Organization: Geneva, Switzerland, 2020.
- Das, J.K.; Salam, R.A.; Hadi, Y.B.; Sheikh, S.S.; Bhutta, A.Z.; Prinzo, Z.W.; Bhutta, Z.A. Preventive lipid-based nutrient supplements given with complementary foods to infants and young children 6 to 23 months of age for health, nutrition, and developmental outcomes. Cochrane Database Syst. Rev. 2019, CD012611. [Google Scholar] [CrossRef]
- Prado, E.L.; Phuka, J.; Maleta, K.; Ashorn, P.; Ashorn, U.; Vosti, S.A.; Dewey, K.G. Provision of lipid-based nutrient supplements from age 6 to 18 months does not affect infant development scores in a randomized trial in Malawi. Matern. Child Health J. 2016, 20, 2199–2208. [Google Scholar] [CrossRef]
- Ocansey, M.E.; Adu-Afarwuah, S.; Kumordzie, S.M.; Okronipa, H.; Young, R.R.; Tamakloe, S.M.; Oaks, B.M.; Dewey, K.G.; Prado, E.L. Prenatal and postnatal lipid-based nutrient supplementation and cognitive, social-emotional, and motor function in preschool-aged children in Ghana: A follow-up of a randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 322–334. [Google Scholar] [CrossRef] [Green Version]
- Larson, L.M.; Yousafzai, A.K. A meta-analysis of nutrition interventions on mental development of children under-two in low-and middle-income countries. Matern. Child Nutr. 2017, 13, e12229. [Google Scholar] [CrossRef]
- Georgieff, M.K.; Ramel, S.E.; Cusick, S.E. Nutritional influences on brain development. Acta Paediatr. 2018, 107, 1310–1321. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.; Singh, L.; van Liefde, D.; Callaghan-Gillespie, M.; Steiner-Asiedu, M.; Saalia, K.; Edwards, C.; Serena, A.; Hershey, T.; Manary, M.J. Milk powder added to a school meal increases cognitive test scores in Ghanaian children. J. Nutr. 2018, 148, 1177–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesu, H.; Mutumba, R.; Mbabazi, J.; Olsen, M.F.; Mølgaard, C.; Michaelsen, K.F.; Ritz, C.; Filteau, S.; Briend, A.; Mupere, E.; et al. The Role of Milk Protein and Whey Permeate in Lipid-based Nutrient Supplements on the Growth and Development of Stunted Children in Uganda: A Randomized Trial Protocol (MAGNUS). Curr. Dev. Nutr. 2021, 5, nzab067. [Google Scholar] [CrossRef] [PubMed]
- Mbabazi, J.; Pesu, H.; Mutumba, R.; Filteau, S.; Lewis, J.I.; Wells, J.C.; Olsen, M.F.; Briend, A.; Michaelsen, K.F.; Grenov, B.; et al. Effect of milk protein and whey permeate in large-quantity lipid-based nutrient supplement on linear growth and body composition among children with stunting: A randomised 2 × 2 factorial trial in Uganda. PLoS Med. 2023, 20, e1004227. [Google Scholar] [CrossRef] [PubMed]
- MOH. Policy Guidelines on Infant and Young Child Feeding; Ministry of Health: Kampala, Uganda, 2009.
- Gladstone, M.; Lancaster, G.A.; Umar, E.; Nyirenda, M.; Kayira, E.; van den Broek, N.R.; Smyth, R.L. The Malawi Developmental Assessment Tool (MDAT): The creation, validation, and reliability of a tool to assess child development in rural African settings. PLoS Med. 2010, 7, e1000273. [Google Scholar] [CrossRef] [Green Version]
- ICMJE ICoMJE. Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals 2019. Available online: http://www.icmje.org/icmje-recommendations.pdf (accessed on 5 May 2021).
- Bayley, N. Bayley Scales of Infant and Toddler Development, 3rd ed.; Harcourt Assessment: San Antonio, TX, USA, 2006. [Google Scholar]
- Hamadani, J.D.; Tofail, F.; Hilaly, A.; Huda, S.N.; Engle, P.; Grantham-McGregor, S.M. Use of family care indicators and their relationship with child development in Bangladesh. J. Health Popul. Nutr. 2010, 28, 23. [Google Scholar] [CrossRef] [Green Version]
- Coates, J.; Swindale, A.; Bilinsky, P. Household Food Insecurity Access Scale (HFIAS) for Measurement of Household Food Access: Indicator Guide (v. 3); Food and Nutrition Technical Assistance Project, Academy for Educational Development: Washington, DC, USA, 2007; pp. 1–36. [Google Scholar]
- World Health Organization. Global Nutrition Monitoring Framework: Operational Guidance for Tracking Progress in Meeting Targets for 2025. 2017. Available online: https://www.who.int/publications/i/item/9789241513609 (accessed on 25 April 2023).
- van der Linden, W.J.; Hambleton, R.K. Handbook of Modern Item Response Theory; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Stasinopoulos, M.; Rigby, B.; Voudouris, V.; Akantziliotou, C.; Enea, M.; Kiose, D. Package ‘Gamlss’. 2022. Available online: http://www.gamlss.org (accessed on 16 July 2021).
- Chalmers, R.P. mirt: A multidimensional item response theory package for the R environment. J. Stat. Softw. 2012, 48, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Ottolini, K.M.; Andescavage, N.; Keller, S.; Limperopoulos, C. Nutrition and the developing brain: The road to optimizing early neurodevelopment: A systematic review. Pediatr. Res. 2020, 87, 194–201. [Google Scholar] [CrossRef]
- Coviello, C.; Keunen, K.; Kersbergen, K.J.; Groenendaal, F.; Leemans, A.; Peels, B.; Isgum, I.; Viergever, M.A.; De Vries, L.S.; Buonocore, G.; et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr. Res. 2018, 83, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, K.; Callaghan-Gillespie, M.; Maleta, K.; Nkhoma, M.; George, M.; Park, H.G.; Lee, R.; Humphries-Cuff, I.; Lacombe, R.J.S.; Wegner, D.R.; et al. Low linoleic acid foods with added DHA given to Malawian children with severe acute malnutrition improve cognition: A randomized, triple-blinded, controlled clinical trial. Am. J. Clin. Nutr. 2022, 115, 1322–1333. [Google Scholar]
- Brenna, J.T.; Akomo, P.; Bahwere, P.; Berkley, J.A.; Calder, P.C.; Jones, K.D.; Liu, L.; Manary, M.; Trehan, I.; Briend, A. Balancing omega-6 and omega-3 fatty acids in ready-to-use therapeutic foods (RUTF). BMC Med. 2015, 13, 117. [Google Scholar] [CrossRef] [Green Version]
- Olsen, M.F.; Iuel-Brockdorff, A.-S.; Yaméogo, C.W.; Cichon, B.; Fabiansen, C.; Filteau, S.; Phelan, K.; Ouédraogo, A.; Michaelsen, K.F.; Gladstone, M.; et al. Impact of food supplements on early child development in children with moderate acute malnutrition: A randomised 2 × 2 × 3 factorial trial in Burkina Faso. PLoS Med. 2020, 17, e1003442. [Google Scholar] [CrossRef] [PubMed]
- Shavit, Y.; Friedman, I.; Gal, J.; Vaknin, D. Emerging Early Childhood Inequality: On the Relationship between Poverty, Sensory Stimulation, Child Developement, and Achievement; Taub Center: Jerusalem, Israel, 2018. [Google Scholar]
- Cuartas, J.; Jeong, J.; Rey-Guerra, C.; McCoy, D.C.; Yoshikawa, H. Maternal, paternal, and other caregivers’ stimulation in low-and-middle-income countries. PLoS ONE 2020, 15, e0236107. [Google Scholar] [CrossRef] [PubMed]
- Seidler, A.L.; Ritchie, S.J. The association between socioeconomic status and cognitive development in children is partly mediated by a chaotic home atmosphere. J. Cogn. Dev. 2018, 19, 486–508. [Google Scholar] [CrossRef]
- Burns, H. The Impact of the Home Environment on Children’s Health and Cognitive and Social Development; The Home: Edward Elgar Publishing: Northampton, MA, USA, 2018; pp. 79–94. [Google Scholar]
- Nahar, B.; Hossain, M.; Mahfuz, M.; Islam, M.M.; Hossain, M.I.; Murray-Kolb, L.E.; Seidman, J.C.; Ahmed, T. Early childhood development and stunting: Findings from the MAL-ED birth cohort study in Bangladesh. Matern. Child Nutr. 2020, 16, e12864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krol, K.M.; Grossmann, T. Psychological effects of breastfeeding on children and mothers. Bundesgesundheitsblatt Gesundh. Gesundh. 2018, 61, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Baseline Characteristic | LNS with Milk Protein (n = 299) | LNS with Soy Protein (n = 301) | LNS with Whey Permeate (n = 301) | LNS with Maltodextrin (n = 299) | LNS (n = 600) | No Supplement (n = 150) |
---|---|---|---|---|---|---|
Sociodemographic data | ||||||
Age (months) | 31 [24; 41] | 29 [22; 40] | 31 [23; 42] | 28 [23; 39] | 30 [23; 41] | 32 [23; 41] |
Sex (male) | 52.2% (156) | 57.1% (172) | 52.8% (159) | 56.5% (169) | 54.7% (328) | 56.0% (84) |
Currently breastfed | 14.1% (42) | 12.7% (38) | 16.1% (48) | 10.7% (32) | 13.4% (80) | 10.1% (15) |
Residence (rural) | 55.0% (160) | 55.8% (163) | 56.5% (166) | 54.3% (157) | 55.4% (323) | 53.1% (78) |
Household size | 5 [4; 7] | 5 [4; 6] | 5 [4; 7] | 5 [4; 6] | 5 [4; 7] | 5 [4; 7] |
Socioeconomic status | ||||||
Single income earner | 69.9% (209) | 71.33 (214) | 69.8% (210) | 71.5% (213) | 70.6% (423) | 68.7% (103) |
Income spent on food (>50%) | 69.2% (207) | 67.1% (202) | 70.4% (212) | 65.9% (197) | 68.2% (409) | 69.3% (104) |
No maternal schooling | 48.4% (138) | 47.7% (137) | 50.2% (146) | 45.9% (129) | 48.1% (275) | 44.7% (63) |
Severe food insecurity 2 | 66.8% (189) | 65.5% (188) | 68.3% (198) | 63.9% (179) | 66.1% (377) | 68.7% (101) |
Diverse diet 3 | 26.8% (80) | 26.0% (78) | 26.1% (78) | 26.8% (80) | 26.4% (158) | 25.7% (38) |
Female-headed households | 23.0% (68) | 19.9% (59) | 19.9% (59) | 23.0% (68) | 21.5% (127) | 20.6% (30) |
Anthropometric data | ||||||
Weight (kg) | 10.7 ± 1.9 | 10.5 ± 2.0 | 10.6 ± 2.0 | 10.5 ± 1.9 | 10.6 ± 2.0 | 10.6 ± 2.1 |
Height [19] 4,5 | 81.9 ± 7.1 | 81.3 ± 7.5 | 81.9 ± 7.6 | 81.4 ± 7.1 | 81.6 ± 7.3 | 81.9 ± 7.5 |
Head circumference [19] 5 | 47.3 ± 1.8 | 47.1 ± 1.7 | 47.2 ± 1.7 | 47.2 ± 1.8 | 47.2 ± 1.8 | 47.3 ± 1.9 |
Height-for-age z-score | −3.02 ± 0.74 | −3.04 ± 0.73 | −3.06 ± 0.75 | −2.99 ± 0.72 | −3.03 ±0.73 | −2.99 ± 0.75 |
Weight-for-height z-score | −0.27 ± 1.03 | −0.42 ± 0.93 | −0.34 ± 0.95 | −0.35 ± 1.01 | −0.35 ± 0.98 | −0.43 ± 1.03 |
Weight-for-age z-score | −1.87 ± 0.91 | −1.97 ± 0.79 | −1.94 ± 0.84 | −1.90 ± 0.87 | −1.92 ± 0.86 | −1.97 ± 0.83 |
Micronutrient and clinical data | ||||||
Malaria (RDT positive) | 39.9% (117) | 36.6% (108) | 40.2% (119) | 36.3% (106) | 38.3% (225) | 44.9% (67) |
Haemoglobin < 110 g/L | 64.9% (192) | 64.6% (192) | 64.3% (191) | 65.2% (193) | 64.8% (384) | 63.3% (95) |
Serum CRP > 10 mg/L | 20.8% (61) | 24.6% (73) | 21.6% (64) | 23.7% (70) | 22.7% (134) | 19.3% (29) |
Serum AGP ≥ 1.2 g/L | 62.3% (185) | 63.6% (471) | 65.5% (194) | 63.4% (187) | 64.5% (381) | 60.0% (90) |
Family care indicators | ||||||
Any children’s book at home | 33.8% (101) | 33.2% (100) | 32.9% (99) | 34.1% (102) | 33.5% (201) | 32.0% (48) |
Sources of play materials (>2) 6 | 18.4% (55) | 19.3% (58) | 18.3% (55) | 19.4% (58) | 18.8% (113) | 19.3% (29) |
Variety of play materials (>3) 6 | 34.5% (103) | 29.9% (90) | 36.2% (109) | 28.1% (84) | 32.2% (193) | 28.0% (42) |
Family interaction (>3) 6 | 32.4% (97) | 36.2% (109) | 35.2% (106) | 33.4% (100) | 34.3% (206) | 30.7% (46) |
Outcome | Baseline (t = 0) | Endline (t = 12 Week) | Difference | |
---|---|---|---|---|
Mean ± SD | Mean ± SD | β (95% CI) | p Value | |
MDAT domains (Z-scores) | ||||
Gross motor | −0.21 ± 1.03 | 0.22 ± 1.01 | 0.43 (0.22; 0.63) | <0.001 |
Fine motor | −0.24 ± 1.05 | 0.17 ± 0.89 | 0.41 (0.19; 0.62) | <0.001 |
Language | −0.16 ± 1.10 | 0.22 ± 0.85 | 0.38 (0.18; 0.58) | <0.001 |
Social skills | −0.19 ± 0.96 | 0.16 ± 0.99 | 0.35 (0.16; 0.54) | <0.001 |
Total score | −0.23 ± 1.03 | 0.26 ± 0.92 | 0.49 (0.30; 0.68) | <0.001 |
Other outcomes | ||||
Head circumference [19] | 47.33 ± 1.95 | 47.61 ± 1.88 | 0.28 (0.21; 0.35) | <0.001 |
Outcomes | Milk vs. Soy Protein (n = 299 vs. n = 301) | Whey Permeate vs. Maltodextrin (n = 301 vs. n = 299) | LNS vs. No Supplement (n = 600 vs. n = 150) | ||||
---|---|---|---|---|---|---|---|
Interaction, p | B (95% CI) | p | B (95% CI) | p | B (95% CI) | p | |
MDAT domains (Z-scores) | |||||||
Gross motor | 0.20 | −0.05 (−0.19; 0.09) | 0.48 | 0.09 (−0.06; 0.23) | 0.23 | −0.05 (−0.22; 0.11) | 0.51 |
Fine motor | 0.95 | −0.04 (−0.19; 0.11) | 0.61 | −0.01 (−0.16; 0.14) | 0.86 | −0.07 (−0.24; 0.09) | 0.39 |
Language | 0.92 | −0.03 (−0.18; 0.11) | 0.64 | −0.06 (−0.21; 0.08) | 0.40 | −0.08 (−0.24; 0.08) | 0.31 |
Social skills | 0.42 | 0.04 (−0.11; 0.18) | 0.62 | 0.12 (−0.02; 0.27) | 0.09 | −0.05 (−0.21; 0.12) | 0.58 |
Total score | 0.95 | −0.03 (−0.17; 0.11) | 0.66 | 0.01 (−0.14; 0.15) | 0.92 | −0.09 (−0.25; 0.07) | 0.29 |
Other outcomes | |||||||
Head circumference [19] | 0.17 | 0.02 (−0.04; 0.08) | 0.59 | −0.04 (−0.10; 0.02) | 0.21 | 0.07 (0.004; 0.14) | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbabazi, J.; Pesu, H.; Mutumba, R.; McCray, G.; Michaelsen, K.F.; Ritz, C.; Filteau, S.; Briend, A.; Mupere, E.; Grenov, B.; et al. Effect of Milk Protein and Whey Permeate in Large-Quantity Lipid-Based Nutrient Supplement on Early Child Development among Children with Stunting: A Randomized 2 × 2 Factorial Trial in Uganda. Nutrients 2023, 15, 2659. https://doi.org/10.3390/nu15122659
Mbabazi J, Pesu H, Mutumba R, McCray G, Michaelsen KF, Ritz C, Filteau S, Briend A, Mupere E, Grenov B, et al. Effect of Milk Protein and Whey Permeate in Large-Quantity Lipid-Based Nutrient Supplement on Early Child Development among Children with Stunting: A Randomized 2 × 2 Factorial Trial in Uganda. Nutrients. 2023; 15(12):2659. https://doi.org/10.3390/nu15122659
Chicago/Turabian StyleMbabazi, Joseph, Hannah Pesu, Rolland Mutumba, Gareth McCray, Kim F. Michaelsen, Christian Ritz, Suzanne Filteau, André Briend, Ezekiel Mupere, Benedikte Grenov, and et al. 2023. "Effect of Milk Protein and Whey Permeate in Large-Quantity Lipid-Based Nutrient Supplement on Early Child Development among Children with Stunting: A Randomized 2 × 2 Factorial Trial in Uganda" Nutrients 15, no. 12: 2659. https://doi.org/10.3390/nu15122659
APA StyleMbabazi, J., Pesu, H., Mutumba, R., McCray, G., Michaelsen, K. F., Ritz, C., Filteau, S., Briend, A., Mupere, E., Grenov, B., Friis, H., & Olsen, M. F. (2023). Effect of Milk Protein and Whey Permeate in Large-Quantity Lipid-Based Nutrient Supplement on Early Child Development among Children with Stunting: A Randomized 2 × 2 Factorial Trial in Uganda. Nutrients, 15(12), 2659. https://doi.org/10.3390/nu15122659