Polysaccharides Extracted from Dendrobium officinale Grown in Different Environments Elicit Varying Health Benefits in Caenorhabditis elegans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. C. elegans Strains and Maintenance
2.3. Preparation and Purification of DOP
2.4. Lifespan Assay
2.5. Hydrogen Peroxide-Induced Stress Tolerance Assay
2.6. Thermal Stress Tolerance Assay
2.7. Endoplasmic Reticulum Stress Response Assay
2.8. Analysis of α-Synuclein Protein Aggregation
2.9. Amyloid-β-Induced Paralysis Assay
2.10. Statistical Analysis
3. Results
3.1. DOP from D. officinale Cultivated in Greenhouse Extends the Lifespan of C. elegans
3.2. DOP Enhanced Resistance to Oxidative and Thermal Stress in C. elegans
3.3. DOP Upregulates ER Unfolded Protein Response in C. elegans
3.4. DOP Reduced α-Synuclein Aggregation and Delayed Amyloid-β-Induced Paralysis in C. elegans
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, L.; Qi, J.; Du, D.; Liu, Y.; Jiang, X. Current Advances of Dendrobium officinale Polysaccharides in Dermatology: A Literature Review. Pharm. Biol. 2020, 58, 664. [Google Scholar] [CrossRef] [PubMed]
- Cakova, V.; Bonte, F.; Lobstein, A. Dendrobium: Sources of Active Ingredients to Treat Age-Related Pathologies. Aging Dis. 2017, 8, 827–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Lu, J.; Zhang, J.; Wu, J.; Yu, L.; Qin, L.; Zhu, B. Traditional Uses, Phytochemistry, Pharmacology, and Quality Control of Dendrobium officinale Kimura et. Migo. Front. Pharmacol. 2021, 12, 2026. [Google Scholar] [CrossRef] [PubMed]
- Pang, C.; Zhang, X.; Huang, M.; Xie, G.; Liu, S.; Ye, X.; Zhang, X. Dendrobium officinalis Inhibited Tumor Growth in Non-Small Cell Lung Cancer. Transl. Cancer Res. 2020, 9, 2683. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Liu, Y.; Qu, H.; Ding, K. Structure Analysis of a Novel Heteroxylan from the Stem of Dendrobium officinale and Anti-Angiogenesis Activities of Its Sulfated Derivative. Int. J. Biol. Macromol. 2017, 103, 533–542. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, J.; Han, J.; Shu, H.; Liu, K. Isolation of Polysaccharides from Dendrobium officinale Leaves and Anti-Inflammatory Activity in LPS-Stimulated THP-1 Cells. Chem. Cent. J. 2018, 12, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, L.; Liu, J.; Liang, J.; Si, J.; Wu, S. Dendrobium officinale Leaves as a New Antioxidant Source. J. Funct. Foods 2017, 37, 400–415. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Zhang, Y.; Liu, X.; Wu, Z.; Gilbert, R.G.; Deng, B.; Wang, K. Dendrobium officinale Polysaccharide Ameliorates Diabetic Hepatic Glucose Metabolism via Glucagon-Mediated Signaling Pathways and Modifying Liver-Glycogen Structure. J. Ethnopharmacol. 2020, 248, 112308. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, D.; Dou, M.; Li, Z.; Zhang, J.; Zhao, X. Dendrobium officinale Kimura et Migo Attenuates Diabetic Cardiomyopathy through Inhibiting Oxidative Stress, Inflammation and Fibrosis in Streptozotocin-Induced Mice. Biomed. Pharmacother. 2016, 84, 1350–1358. [Google Scholar] [CrossRef]
- He, T.B.; Huang, Y.P.; Yang, L.; Liu, T.T.; Gong, W.Y.; Wang, X.J.; Sheng, J.; Hu, J.M. Structural Characterization and Immunomodulating Activity of Polysaccharide from Dendrobium officinale. Int. J. Biol. Macromol. 2016, 83, 34–41. [Google Scholar] [CrossRef]
- Yang, K.; Zhan, L.; Lu, T.; Zhou, C.; Chen, X.; Dong, Y.; Lv, G.; Chen, S. Dendrobium officinale Polysaccharides Protected against Ethanol-Induced Acute Liver Injury in vivo and in vitro via the TLR4/NF-ΚB Signaling Pathway. Cytokine 2020, 130, 155058. [Google Scholar] [CrossRef]
- Lin, G.; Luo, D.; Liu, J.; Wu, X.; Chen, J.; Huang, Q.; Su, L.; Zeng, L.; Wang, H.; Su, Z. Hepatoprotective Effect of Polysaccharides Isolated from Dendrobium officinale against Acetaminophen-Induced Liver Injury in Mice via Regulation of the Nrf2-Keap1 Signaling Pathway. Oxid. Med. Cell. Longev. 2018, 2018, 6962439. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Wu, Q.; Zhao, Z.; Xiong, J.; Niu, J.; Liu, C.; Liu, T.; Chai, Y.; Qu, X.; Ma, Z.; et al. Mechanisms of Dendrobium officinale Polysaccharides in Repairing Gastric Mucosal Injuries Based on Mitogen-Activated Protein Kinases (MAPK) Signaling Pathway. Bioengineered 2022, 13, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wang, L.; Wang, D.; Wang, D.; Wen, C.; Han, B.; Ouyang, Z. Characterization and Anti-Tumor Activity of a Polysaccharide Isolated from Dendrobium officinale Grown in the Huoshan County. Chin. Med. 2018, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liang, J.; Zhong, Y.; Xiao, G.; Efferth, T.; Georgiev, M.I.; Vargas-De-La-Cruz, C.; Bajpai, V.K.; Caprioli, G.; Liu, J.; et al. Dendrobium officinale Polysaccharide Alleviates Intestinal Inflammation by Promoting Small Extracellular Vesicle Packaging of MiR-433-3p. J. Agric. Food Chem. 2021, 69, 13510–13523. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Tan, S.; Xie, X.; Wu, W.; Zhu, H.; Li, H.; Liao, X.; Wang, J.; Zhou, Z.A.; Huang, S.; et al. Dendrobium officinale Polysaccharide Attenuates Insulin Resistance and Abnormal Lipid Metabolism in Obese Mice. Front. Pharmacol. 2021, 12, 1490. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Yang, M.; Guo, Q.; Su, T.; Xiao, Y.; Xia, Z.Y. Dendrobium officinale Polysaccharides Regulate Age-Related Lineage Commitment between Osteogenic and Adipogenic Differentiation. Cell Prolif. 2019, 52, 12624. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; You, S.; Wang, D.; Zhao, D.; Zhang, J.; An, Q.; Li, M.; Wang, C. Fermented Dendrobium officinale Polysaccharides Protect UVA-Induced Photoaging of Human Skin Fibroblasts. Food Sci. Nutr. 2022, 10, 1275–1288. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Wang, G.; Ge, S.; Lan, X.; Xu, G.; Liu, H. Dendrobium officinale Polysaccharides Inhibit 1-Methyl-2-Nitro-1-Nitrosoguanidine Induced Precancerous Lesions of Gastric Cancer in Rats through Regulating Wnt/β-Catenin Pathway and Altering Serum Endogenous Metabolites. Molecules 2019, 24, 2660. [Google Scholar] [CrossRef] [Green Version]
- Zuo, S.M.; Yu, H.D.; Zhang, W.; Zhong, Q.; Chen, W.; Chen, W.; Yun, Y.H.; Chen, H. Comparative Metabolomic Analysis of Dendrobium officinale under Different Cultivation Substrates. Metabolites 2020, 10, 325. [Google Scholar] [CrossRef]
- Yang, Y.; She, X.; Cao, X.; Yang, L.; Huang, J.; Zhang, X.; Su, L.; Wu, M.; Tong, H.; Ji, X. Comprehensive Evaluation of Dendrobium officinale from Different Geographical Origins Using Near-Infrared Spectroscopy and Chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 277, 121249. [Google Scholar] [CrossRef]
- Lan, Q.; Liu, C.; Wu, Z.; Ni, C.; Li, J.; Huang, C.; Wang, H.; Wei, G. Does the Metabolome of Wild-like Dendrobium officinale of Different Origins Have Regional Differences? Molecules 2022, 27, 7024. [Google Scholar] [CrossRef] [PubMed]
- Okoro, N.O.; Odiba, A.S.; Osadebe, P.O.; Omeje, E.O.; Liao, G.; Fang, W.; Jin, C.; Wang, B. Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans. Molecules 2021, 26, 7323. [Google Scholar] [CrossRef]
- Bulterijs, S.; Braeckman, B.P. Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals 2020, 13, 164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, F.; Zhou, T.; Wang, G.; Li, Z. Caenorhabditis elegans as a Useful Model for Studying Aging Mutations. Front. Endocrinol. 2020, 11, 554994. [Google Scholar] [CrossRef]
- Singh, N.K.; Sonani, R.R.; Awasthi, A.; Prasad, B.; Patel, A.R.; Kumar, J.; Madamwar, D. Phycocyanin Moderates Aging and Proteotoxicity in Caenorhabditis elegans. J. Appl. Phycol. 2016, 28, 2407–2417. [Google Scholar] [CrossRef]
- Ezcurra, M.; Benedetto, A.; Sornda, T.; Gilliat, A.F.; Au, C.; Zhang, Q.; van Schelt, S.; Petrache, A.L.; Wang, H.; de la Guardia, Y.; et al. C. elegans Eats Its Own Intestine to Make Yolk Leading to Multiple Senescent Pathologies. Curr. Biol. 2018, 28, 2544–2556.e5. [Google Scholar] [CrossRef] [Green Version]
- Xing, S.; Zhang, X.; Ke, H.; Lin, J.; Huang, Y.; Wei, G. Correction to: Physicochemical Properties of Polysaccharides from Dendrobium officinale by Fractional Precipitation and Their Preliminary Antioxidant and Anti-HepG2 Cells Activities in vitro. Chem. Cent. J. 2018, 12, 1–10. [Google Scholar] [CrossRef]
- He, L.; Yan, X.; Liang, J.; Li, S.; He, H.; Xiong, Q.; Lai, X.; Hou, S.; Huang, S. Comparison of Different Extraction Methods for Polysaccharides from Dendrobium officinale Stem. Carbohydr. Polym. 2018, 198, 101–108. [Google Scholar] [CrossRef]
- Chalfie, M.; Hart, A.C.; Rankin, C.H.; Goodman, M.B. Assaying Mechanosensation; WormBase Consortium: California, CA, USA, 2014. [Google Scholar] [CrossRef]
- Possik, E.; Pause, A. Measuring Oxidative Stress Resistance of Caenorhabditis elegans in 96-Well Microtiter Plates. J. Vis. Exp. 2015, 2015, e52746. [Google Scholar] [CrossRef] [Green Version]
- Keith, S.A.; Amrit, F.R.G.; Ratnappan, R.; Ghazi, A. The C. elegans Healthspan and Stress-Resistance Assay Toolkit. Methods 2014, 68, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Bar-Ziv, R.; Frakes, A.E.; Higuchi-Sanabria, R.; Bolas, T.; Frankino, P.A.; Gildea, H.K.; Metcalf, M.G.; Dillin, A. Measurements of Physiological Stress Responses in C. elegans. J. Vis. Exp. 2020, 2020, 1–21. [Google Scholar] [CrossRef]
- Taylor, R.C.; Dillin, A. XXBP-1 Is a Cell-Nonautonomous Regulator of Stress Resistance and Longevity. Cell 2013, 153, 1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schroeder, A.B.; Dobson, E.T.A.; Rueden, C.T.; Tomancak, P.; Jug, F.; Eliceiri, K.W. The ImageJ Ecosystem: Open-Source Software for Image Visualization, Processing, and Analysis. Protein Sci. 2021, 30, 234–249. [Google Scholar] [CrossRef]
- Maulik, M.; Mitra, S.; Bult-Ito, A.; Taylor, B.E.; Vayndorf, E.M. Behavioral Phenotyping and Pathological Indicators of Parkinson’s Disease in C. elegans Models. Front. Genet. 2017, 8, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangrodchanapong, T.; Sobhon, P.; Meemon, K. Frondoside A Attenuates Amyloid-β Proteotoxicity in Transgenic Caenorhabditis elegans by Suppressing Its Formation. Front. Pharmacol. 2020, 11, 1437. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhang, X.; Lin, Y.; Sun, J.; Chen, S.; Wang, W.; Li, J. Insights into the Oxidative Stress Alleviation Potential of Enzymatically Prepared Dendrobium officinale Polysaccharides. Molecules 2023, 28, 3071. [Google Scholar] [CrossRef]
- Huang, S.; Chen, H.; Zhong, C.; Zhu, S.; Li, P.; Du, B. Anti-Aging Effect of Polysaccharide from Dendrobium officinale Leaves in Caenorhabditis elegans. Shipin Kexue/Food Sci. 2022, 43, 203–208. [Google Scholar] [CrossRef]
- Zhou, D.D.; Luo, M.; Huang, S.Y.; Saimaiti, A.; Shang, A.; Gan, R.Y.; Li, H. Bin Effects and Mechanisms of Resveratrol on Aging and Age-Related Diseases. Oxid. Med. Cell. Longev. 2021, 2021, 9932218. [Google Scholar] [CrossRef]
- Soo, S.K.; Rudich, P.D.; Traa, A.; Harris-Gauthier, N.; Shields, H.J.; Van Raamsdonk, J.M. Compounds That Extend Longevity Are Protective in Neurodegenerative Diseases and Provide a Novel Treatment Strategy for These Devastating Disorders. Mech. Ageing Dev. 2020, 190, 111297. [Google Scholar] [CrossRef]
- Pandey, T.; Sammi, S.R.; Nooreen, Z.; Mishra, A.; Ahmad, A.; Bhatta, R.S.; Pandey, R. Anti-Ageing and Anti-Parkinsonian Effects of Natural Flavonol, Tambulin from Zanthoxyllum Aramatum Promotes Longevity in Caenorhabditis elegans. Exp. Gerontol. 2019, 120, 50–61. [Google Scholar] [CrossRef]
- Nie, J.; Jiang, L.S.; Zhang, Y.; Tian, Y.; Li, L.S.; Lu, Y.L.; Yang, W.J.; Shi, J.S. Dendrobium nobile Lindl. Alkaloids Decreases the Level of Intracellular β-Amyloid by Improving Impaired Autolysosomal Proteolysis in APP/PS1 Mice. Front. Pharmacol. 2018, 9, 1479. [Google Scholar] [CrossRef] [Green Version]
- Li, D.D.; Zheng, C.Q.; Zhang, F.; Shi, J.S. Potential Neuroprotection by Dendrobium nobile Lindl Alkaloid in Alzheimer’s Disease Models. Neural Regen. Res. 2022, 17, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Shamsuzzama; Kumar, L.; Nazir, A. Modulation of Alpha-Synuclein Expression and Associated Effects by MicroRNA Let-7 in Transgenic C. elegans. Front. Mol. Neurosci. 2017, 10, 328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.A.; Snoek, B.L.; Sterken, M.G.; Riksen, J.A.G.; Stastna, J.J.; Kammenga, J.E.; Harvey, S.C. Genetic Background Modifies Phenotypic and Transcriptional Responses in a C. elegans Model of α-Synuclein Toxicity. BMC Genom. 2019, 20, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Li, J.; Cui, X.; Li, C.; Wang, Z. Dietary Supplementation with Peptides from Sesame Cake Alleviates Parkinson’s Associated Pathologies in Caenorhabditis elegans. J. Funct. Foods 2020, 65, 103737. [Google Scholar] [CrossRef]
- Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53, 4094–4125. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sienes Bailo, P.; Llorente Martín, E.; Calmarza, P.; Montolio Breva, S.; Bravo Gómez, A.; Pozo Giráldez, A.; Sánchez-Pascuala Callau, J.J.; Vaquer Santamaría, J.M.; Dayaldasani Khialani, A.; Cerdá Micó, C.; et al. The Role of Oxidative Stress in Neurodegenerative Diseases and Potential Antioxidant Therapies. Adv. Lab. Med. 2022, 3, 342–350. [Google Scholar] [CrossRef]
- Shi, J.; Sabbagh, M.N.; Vellas, B. Alzheimer’s Disease beyond Amyloid: Strategies for Future Therapeutic Interventions. BMJ 2020, 371, m3684. [Google Scholar] [CrossRef] [PubMed]
- Lei, P.; Ayton, S.; Bush, A.I. The Essential Elements of Alzheimer’s Disease. J. Biol. Chem. 2021, 296, 100105. [Google Scholar] [CrossRef]
- Gupta, A.; Uthayaseelan, K.; Uthayaseelan, K.; Kadari, M.; Subhan, M.; Saji Parel, N.; Krishna, P.V.; Sange, I. Alzheimer’s Disease and Stroke: A Tangled Neurological Conundrum. Cureus 2022, 14, e25005. [Google Scholar] [CrossRef]
- Amen, O.M.; Sarker, S.D.; Ghildyal, R.; Arya, A. Endoplasmic Reticulum Stress Activates Unfolded Protein Response Signaling and Mediates Inflammation, Obesity, and Cardiac Dysfunction: Therapeutic and Molecular Approach. Front. Pharmacol. 2019, 10, 977. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.L.; Li, S.; Zhang, R.; Le, W.D. Neuroprotective Effects of Naturally Sourced Bioactive Polysaccharides: An Update. Neural Regen. Res. 2022, 17, 1907–1912. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, R.; Yang, Z.; Wen, Q.; Cao, X.; Zhao, N.; Yan, J. Protective Effects of Polysaccharides in Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 917629. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xiu, M.; Yang, S.; Li, X.; Tuo, W.; Su, Y.; He, J.; Liu, Y. Extension of Drosophila Lifespan by Astragalus Polysaccharide through a Mechanism Dependent on Antioxidant and Insulin/IGF-1 Signaling. Evid.-Based Complement. Altern. Med. 2021, 2021, 6686748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.; Pan, Y.; Wang, Z.; Wen, Z.; Liu, F.; Mao, G. Pyropia Haitanensis Polysaccharide Extends Lifespan by Inhibiting Protein Aggregation in Caenorhabditis elegans. J. Oceanol. Limnol. 2021, 39, 705–713. [Google Scholar] [CrossRef]
- Bao, K.; Liu, W.; Song, Z.; Feng, J.; Mao, Z.; Bao, L.; Sun, T.; Hu, Z.; Li, J. Crotamiton Derivative JM03 Extends Lifespan and Improves Oxidative and Hypertonic Stress Resistance in Caenorhabditis elegans via Inhibiting OSM-9. elife 2022, 11, e72410. [Google Scholar] [CrossRef]
- Chen, W.; Rezaizadehnajafi, L.; Wink, M. Influence of Resveratrol on Oxidative Stress Resistance and Lifespan in Caenorhabditis elegans. J. Pharm. Pharmacol. 2013, 65, 682–688. [Google Scholar] [CrossRef]
- Duangjan, C.; Rangsinth, P.; Gu, X.; Wink, M.; Tencomnao, T. Lifespan Extending and Oxidative Stress Resistance Properties of a Leaf Extracts from Anacardium Occidentale L. in Caenorhabditis elegans. Oxid. Med. Cell. Longev. 2019, 2019, 9012396. [Google Scholar] [CrossRef] [Green Version]
- Kreko-Pierce, T.; Azpurua, J.; Mahoney, R.E.; Eaton, B.A. Extension of Health Span and Lifespan in Drosophila by S107 Requires the Calstabin Homologue FK506-BP2. J. Biol. Chem. 2016, 291, 26045–26055. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Dou, M.; Zhang, Z.; Zhang, D.; Huang, C. Protective Effect of Dendrobium officinale Polysaccharides on H2O2-Induced Injury in H9c2 Cardiomyocytes. Biomed. Pharmacother. 2017, 94, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Ghemrawi, R.; Battaglia-Hsu, S.F.; Arnold, C. Endoplasmic Reticulum Stress in Metabolic Disorders. Cells 2018, 7, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Huang, H.; Fu, X.; Chen, C.; Liu, H.; Wang, H.; Wu, D.; Lu, X.; Huang, H.; Fu, X.; et al. The Role of Endoplasmic Reticulum Stress and NLRP3 Inflammasome in Liver Disorders. Int. J. Mol. Sci. 2022, 23, 3528. [Google Scholar] [CrossRef] [PubMed]
- Koksal, A.R.; Verne, G.N.; Zhou, Q. Endoplasmic Reticulum Stress in Biological Processing and Disease. J. Investig. Med. 2021, 69, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.A.; Song, C.H. Insights Into the Role of Endoplasmic Reticulum Stress in Infectious Diseases. Front. Immunol. 2020, 10, 3147. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, S.R.; Lajoie, P. Endoplasmic Reticulum Stress Coping Mechanisms and Lifespan Regulation in Health and Diseases. Front. Cell Dev. Biol. 2019, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Chen, M.; Li, Z.; Zhang, J.; Hu, H.; Tong, X.; Dai, F. Astragalus Polysaccharide Extends Lifespan via Mitigating Endoplasmic Reticulum Stress in the Silkworm, Bombyx Mori. Aging Dis. 2019, 10, 1187–1198. [Google Scholar] [CrossRef] [Green Version]
- Keshavarz, M.; Xie, K.; Schaaf, K.; Bano, D.; Ehninger, D. Targeting the “Hallmarks of Aging” to Slow Aging and Treat Age-Related Disease: Fact or Fiction? Mol. Psychiatry 2023, 28, 242–255. [Google Scholar] [CrossRef]
- Liu, G.Y.; Tan, L.; Cheng, L.; Ding, L.S.; Zhou, Y.; Deng, Y.; He, Y.Q.; Guo, D.L.; Xiao, S.J. Dendrobine-Type Alkaloids and Bibenzyl Derivatives from Dendrobium Findlayanum. Fitoterapia 2020, 142, 104497. [Google Scholar] [CrossRef]
- Xu, M.; Yan, T.; Gong, G.; Wu, B.; He, B.; Du, Y.; Xiao, F.; Jia, Y. Purification, Structural Characterization, and Cognitive Improvement Activity of a Polysaccharides from Schisandra Chinensis. Int. J. Biol. Macromol. 2020, 163, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.Z.; Cao, L.; Luo, D.; Ju, L.S.; Yang, J.J.; Xu, X.Y.; Yu, Y.P. Dendrobium Polysaccharides Attenuate Cognitive Impairment in Senescence-Accelerated Mouse Prone 8 Mice via Modulation of Microglial Activation. Brain Res. 2019, 1704, 1–10. [Google Scholar] [CrossRef] [PubMed]
Source | DO/g † | DOP/mg † |
---|---|---|
TR | 0.50 ± 0.00 a | 193.63 ± 0.40 a |
GH | 0.50 ± 0.00 a | 183.57 ± 1.27 b |
RK | 0.50 ± 0.00 a | 142.73 ± 2.50 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoro, N.O.; Odiba, A.S.; Yu, Q.; He, B.; Liao, G.; Jin, C.; Fang, W.; Wang, B. Polysaccharides Extracted from Dendrobium officinale Grown in Different Environments Elicit Varying Health Benefits in Caenorhabditis elegans. Nutrients 2023, 15, 2641. https://doi.org/10.3390/nu15122641
Okoro NO, Odiba AS, Yu Q, He B, Liao G, Jin C, Fang W, Wang B. Polysaccharides Extracted from Dendrobium officinale Grown in Different Environments Elicit Varying Health Benefits in Caenorhabditis elegans. Nutrients. 2023; 15(12):2641. https://doi.org/10.3390/nu15122641
Chicago/Turabian StyleOkoro, Nkwachukwu Oziamara, Arome Solomon Odiba, Qi Yu, Bin He, Guiyan Liao, Cheng Jin, Wenxia Fang, and Bin Wang. 2023. "Polysaccharides Extracted from Dendrobium officinale Grown in Different Environments Elicit Varying Health Benefits in Caenorhabditis elegans" Nutrients 15, no. 12: 2641. https://doi.org/10.3390/nu15122641
APA StyleOkoro, N. O., Odiba, A. S., Yu, Q., He, B., Liao, G., Jin, C., Fang, W., & Wang, B. (2023). Polysaccharides Extracted from Dendrobium officinale Grown in Different Environments Elicit Varying Health Benefits in Caenorhabditis elegans. Nutrients, 15(12), 2641. https://doi.org/10.3390/nu15122641