Influence of Sex Differences on Serum Lipid Profiles among Habitual Coffee Drinkers: Evidence from 23,072 Taiwan Biobank Participants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Habitual Coffee Drinking
2.3. Covariates
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Dam, R.M.; Hu, F.B.; Willett, W.C. Coffee, Caffeine, and Health. N. Engl. J. Med. 2020, 383, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Moeenfard, M.; Alves, A. New trends in coffee diterpenes research from technological to health aspects. Food Res. Int. 2020, 134, 109207. [Google Scholar] [CrossRef]
- Daneschvar, H.L.; Smetana, G.W.; Brindamour, L.; Bain, P.A.; Mukamal, K.J. Impact of Coffee Consumption on Physiological Markers of Cardiovascular Risk: A Systematic Review. Am. J. Med. 2021, 134, 626–636.e2. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Lv, Y.; Zha, W.; Hong, X.; Luo, Q. Effect of coffee consumption on dyslipidemia: A meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Gökcen, B.B.; Şanlier, N. Coffee consumption and disease correlations. Crit. Rev. Food Sci. Nutr. 2019, 59, 336–348. [Google Scholar] [CrossRef]
- Saeed, M.; Naveed, M.; BiBi, J.; Ali Kamboh, A.; Phil, L.; Chao, S. Potential nutraceutical and food additive properties and risks of coffee: A comprehensive overview. Crit. Rev. Food Sci. Nutr. 2019, 59, 3293–3319. [Google Scholar] [CrossRef]
- Huang, P.H.; Lu, Y.W.; Tsai, Y.L.; Wu, Y.W.; Li, H.Y.; Chang, H.Y.; Wu, C.H.; Yang, C.Y.; Tarng, D.C.; Huang, C.C.; et al. 2022 Taiwan lipid guidelines for primary prevention. J. Formos. Med. Assoc. 2022, 121, 2393–2407. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; Bhatti, S.K.; Patil, H.R.; DiNicolantonio, J.J.; Lucan, S.C.; Lavie, C.J. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J. Am. Coll. Cardiol. 2013, 62, 1043–1051. [Google Scholar] [CrossRef]
- Rebello, S.A.; van Dam, R.M. Coffee consumption and cardiovascular health: Getting to the heart of the matter. Curr. Cardiol. Rep. 2013, 15, 403. [Google Scholar] [CrossRef]
- Cai, L.; Ma, D.; Zhang, Y.; Liu, Z.; Wang, P. The effect of coffee consumption on serum lipids: A meta-analysis of randomized controlled trials. Eur. J. Clin. Nutr. 2012, 66, 872–877. [Google Scholar] [CrossRef]
- Gross, G.; Jaccaud, E.; Huggett, A.C. Analysis of the content of the diterpenes cafestol and kahweol in coffee brews. Food Chem. Toxicol. 1997, 35, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C. Coffee, tea, and cocoa and risk of stroke. Stroke 2014, 45, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Dang, H. An Empirical Analysis on Purchase Intention on Coffee Beverage in Taiwan. Eur. J. Bus. Manag. 2014, 6, 182–196. [Google Scholar]
- Ko, S.H.; Jung, Y. Energy Metabolism Changes and Dysregulated Lipid Metabolism in Postmenopausal Women. Nutrients 2021, 13, 4556. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Hsieh, C.F.; Tantoh, D.M.; Ko, P.C.; Kung, Y.Y.; Lin, M.C.; Liaw, Y.C.; Liaw, Y.P. HDL and associated factors stratified by sex and menopausal status: Results from a community-based survey in Taiwan. Oncotarget 2018, 9, 16354–16367. [Google Scholar] [CrossRef]
- Han, J.; Shon, J.; Hwang, J.Y.; Park, Y.J. Effects of Coffee Intake on Dyslipidemia Risk According to Genetic Variants in the ADORA Gene Family among Korean Adults. Nutrients 2020, 12, 493. [Google Scholar] [CrossRef] [PubMed]
- Sisti, J.S.; Hankinson, S.E.; Caporaso, N.E.; Gu, F.; Tamimi, R.M.; Rosner, B.; Xu, X.; Ziegler, R.; Eliassen, H.A. Caffeine, coffee, and tea intake and urinary estrogens and estrogen metabolites in premenopausal women. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1174–1183. [Google Scholar] [CrossRef]
- Butt, M.S.; Sultan, M.T. Coffee and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2011, 51, 363–373. [Google Scholar] [CrossRef]
- Fan, C.T.; Hung, T.H.; Yeh, C.K. Taiwan Regulation of Biobanks. J. Law Med. Ethics 2015, 43, 816–826. [Google Scholar] [CrossRef]
- Chen, C.H.; Yang, J.H.; Chiang, C.W.K.; Hsiung, C.N.; Wu, P.E.; Chang, L.C.; Chu, H.W.; Chang, J.; Song, I.W.; Yang, S.L.; et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum. Mol. Genet. 2016, 25, 5321–5331. [Google Scholar] [CrossRef]
- Pan, W.; Chang, Y.; Chen, J.; Wu, S.; Tzeng, M.S.; Kao, M. Nutrition and Health Survey in Taiwan (NAHSIT) 1993-1996: Dietary Nutrient Intakes Assessed by 24-Hour Recall. Nutr. Sci. J. 1999, 24, 11–39. [Google Scholar]
- Nerurkar, P.V.; Gandhi, K.; Chen, J.J. Correlations between Coffee Consumption and Metabolic Phenotypes, Plasma Folate, and Vitamin B12: NHANES 2003 to 2006. Nutrients 2021, 13, 1348. [Google Scholar] [CrossRef] [PubMed]
- Health Promotion Administration, Ministry of Health and Welfare (Ed.) Taiwan’s Obesity Prevention and Management Strategy; Health Promotion Administration, Ministry of Health and Welfare: Taipei, Taiwan, 2018; p. 55.
- Liu, C.; Hung, Y.; Chuang, Y.; Chen, Y.; Weng, W.; Liu, J.; Liang, K. Incorporating development stratification of Taiwan townships into sampling design of large scale health interview survey. J. Health Manag. 2006, 4, 1–22. [Google Scholar]
- Walli-Attaei, M.; Joseph, P.; Rosengren, A.; Chow, C.K.; Rangarajan, S.; Lear, S.A.; AlHabib, K.F.; Davletov, K.; Dans, A.; Lanas, F.; et al. Variations between women and men in risk factors, treatments, cardiovascular disease incidence, and death in 27 high-income, middle-income, and low-income countries (PURE): A prospective cohort study. Lancet 2020, 396, 97–109. [Google Scholar] [CrossRef]
- Chaput, J.P.; McNeil, J.; Després, J.P.; Bouchard, C.; Tremblay, A. Seven to eight hours of sleep a night is associated with a lower prevalence of the metabolic syndrome and reduced overall cardiometabolic risk in adults. PLoS ONE 2013, 8, e72832. [Google Scholar] [CrossRef]
- Oussalah, A.; Levy, J.; Berthezène, C.; Alpers, D.H.; Guéant, J.L. Health outcomes associated with vegetarian diets: An umbrella review of systematic reviews and meta-analyses. Clin. Nutr. 2020, 39, 3283–3307. [Google Scholar] [CrossRef] [PubMed]
- Muscella, A.; Stefàno, E.; Marsigliante, S. The effects of exercise training on lipid metabolism and coronary heart disease. Am. J. Physiol. Heart Circ. Physiol. 2020, 319, H76–H88. [Google Scholar] [CrossRef]
- Colberg, S.R.; Sigal, R.J.; Fernhall, B.; Regensteiner, J.G.; Blissmer, B.J.; Rubin, R.R.; Chasan-Taber, L.; Albright, A.L.; Braun, B. Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement. Diabetes Care 2010, 33, e147–e167. [Google Scholar] [CrossRef]
- Gastaldelli, A.; Folli, F.; Maffei, S. Impact of tobacco smoking on lipid metabolism, body weight and cardiometabolic risk. Curr. Pharm. Des. 2010, 16, 2526–2530. [Google Scholar] [CrossRef]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J.; Appt, S.E.; et al. Executive summary of the Stages of Reproductive Aging Workshop + 10: Addressing the unfinished agenda of staging reproductive aging. J. Clin. Endocrinol. Metab. 2012, 97, 1159–1168. [Google Scholar] [CrossRef]
- Johansson, T.; Fowler, P.; Ek, W.E.; Skalkidou, A.; Karlsson, T.; Johansson, Å. Oral Contraceptives, Hormone Replacement Therapy, and Stroke Risk. Stroke 2022, 53, 3107–3115. [Google Scholar] [CrossRef]
- Farias-Pereira, R.; Park, C.S.; Park, Y. Mechanisms of action of coffee bioactive components on lipid metabolism. Food Sci. Biotechnol. 2019, 28, 1287–1296. [Google Scholar] [CrossRef]
- Urgert, R.; Katan, M.B. The cholesterol-raising factor from coffee beans. Annu. Rev. Nutr. 1997, 17, 305–324. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Chang, C.Q.; Ma, F.Y.; Yu, C.L. Modulating effects of chlorogenic acid on lipids and glucose metabolism and expression of hepatic peroxisome proliferator-activated receptor-alpha in golden hamsters fed on high fat diet. Biomed. Environ. Sci. 2009, 22, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Liang, X.C.; Zhong, Y.L.; He, W.Y.; Wang, Z. 5-Caffeoylquinic acid decreases diet-induced obesity in rats by modulating PPARα and LXRα transcription. J. Sci. Food Agric. 2015, 95, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Li, Y.F.; Wang, G.E.; Tan, R.R.; Tsoi, B.; Mao, G.W.; Zhai, Y.J.; Cao, L.F.; Chen, M.; Kurihara, H.; et al. Caffeine ameliorates high energy diet-induced hepatic steatosis: Sirtuin 3 acts as a bridge in the lipid metabolism pathway. Food Funct. 2015, 6, 2578–2587. [Google Scholar] [CrossRef]
- Sharma, L.; Lone, N.A.; Knott, R.M.; Hassan, A.; Abdullah, T. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy. Food Chem. Toxicol. 2018, 121, 283–296. [Google Scholar] [CrossRef]
- Sudeep, H.V.; Patel, D. Biomechanism of chlorogenic acid complex mediated plasma free fatty acid metabolism in rat liver. BMC Complement Altern. Med. 2016, 16, 274. [Google Scholar]
- Schliep, K.C.; Schisterman, E.F.; Mumford, S.L.; Pollack, A.Z.; Zhang, C.; Ye, A.; Stanford, J.B.; Hammoud, A.O.; Porucznik, C.A.; Wactawski-Wende, J. Caffeinated beverage intake and reproductive hormones among premenopausal women in the BioCycle Study. Am. J. Clin. Nutr. 2012, 95, 488–497. [Google Scholar] [CrossRef]
- Bak, A.A.; Grobbee, D.E. The effect on serum cholesterol levels of coffee brewed by filtering or boiling. N. Engl. J. Med. 1989, 321, 1432–1437. [Google Scholar] [CrossRef]
- Corrêa, T.A.; Rogero, M.M.; Mioto, B.M.; Tarasoutchi, D.; Tuda, V.L.; César, L.A.; Torres, E.A. Paper-filtered coffee increases cholesterol and inflammation biomarkers independent of roasting degree: A clinical trial. Nutrition 2013, 29, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Fried, R.E.; Levine, D.M.; Kwiterovich, P.O.; Diamond, E.L.; Wilder, L.B.; Moy, T.F.; Pearson, T.A. The effect of filtered-coffee consumption on plasma lipid levels. Results of a randomized clinical trial. JAMA 1992, 267, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Urgert, R.; Meyboom, S.; Kuilman, M.; Rexwinkel, H.; Vissers, M.N.; Klerk, M.; Katan, M.B. Comparison of effect of cafetière and filtered coffee on serum concentrations of liver aminotransferases and lipids: Six month randomised controlled trial. BMJ 1996, 313, 1362–1366. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Hyppönen, E. Habitual coffee intake and plasma lipid profile: Evidence from UK Biobank. Clin. Nutr. 2021, 40, 4404–4413. [Google Scholar] [CrossRef]
- Cornelis, M.C.; van Dam, R.M. Habitual Coffee and Tea Consumption and Cardiometabolic Biomarkers in the UK Biobank: The Role of Beverage Types and Genetic Variation. J. Nutr. 2020, 150, 2772–2788. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Kim, K.H.; Koh, Y.J.; Lee, J.S.; Lee, D.R.; Park, S.M. Coffee consumption and bone mineral density in Korean premenopausal women. Korean J. Fam. Med. 2014, 35, 11–18. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.; Park, S.M. Association between the Prevalence of Metabolic Syndrome and the Level of Coffee Consumption among Korean Women. PLoS ONE 2016, 11, e0167007. [Google Scholar] [CrossRef]
- Kim, S.A.; Shin, S. The Association between Coffee Consumption Pattern and Prevalence of Metabolic Syndrome in Korean Adults. Nutrients 2019, 11, 2992. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; Galvano, F.; Pajak, A.; Mistretta, A. Factors associated with metabolic syndrome in a mediterranean population: Role of caffeinated beverages. J. Epidemiol. 2014, 24, 327–333. [Google Scholar] [CrossRef]
- Grosso, G.; Stepaniak, U.; Micek, A.; Topor-Mądry, R.; Pikhart, H.; Szafraniec, K.; Pająk, A. Association of daily coffee and tea consumption and metabolic syndrome: Results from the Polish arm of the HAPIEE study. Eur. J. Nutr. 2015, 54, 1129–1137. [Google Scholar] [CrossRef]
Number (%) (N = 23,628) | Male N = 4887 (59.5%) | N = 1558 (19.0%) | N = 1763 (21.5%) | Female N = 8971 (58.2%) | N = 3003 (19.5%) | N = 3446 (22.3%) | ||
---|---|---|---|---|---|---|---|---|
NCD | <1 Cup/Day | ≥1 Cup/Day | p-Value | NCD | <1 Cup/Day | ≥1 Cup/Day | p-Value | |
Lipid Profile (mg/dL) | ||||||||
Total Cholesterol | 188.05 (34.85) | 190.88 (34.25) | 193.52 (34.36) | <0.001 * | 197.97 (35.20) | 201.59 (34.63) | 200.98 (34.35) | <0.001 * |
LDL-C | 117.75 (31.04) | 120.65 (30.49) | 123.55 (31.22) | <0.001 * | 119.99 (30.90) | 123.00 (30.67) | 121.98 (30.57) | <0.001 * |
HDL-C | 48.11 (11.44) | 48.69 (11.30) | 48.86 (11.07) | 0.031 * | 57.73 (13.27) | 58.69 (13.31) | 59.87 (13.21) | <0.001 * |
Triglycerides | 133.02 (110.96) | 130.95 (95.30) | 128.16 (88.87) | 0.232 | 107.07 (70.73) | 104.03 (63.00) | 99.75 (59.88) | <0.001 * |
Age (Years) | 55.13 (11.04) | 54.65 (10.79) | 53.12 (10.71) | <0.001 | 54.81 (10.18) | 54.34 (9.72) | 51.80 (9.45) | <0.001 * |
Age | ||||||||
30–50 years | ||||||||
50–60 years | ||||||||
60–80 years | ||||||||
Age ≥ 65 years | 1192 (24.4) | 327 (21.0) | 317 (18.0) | <0.001 | 1679 (18.7) | 476 (15.9) | 347 (10.1) | <0.001 * |
BMI (Kg/m2) | 24.99 (3.42) | 25.20 (3.22) | 25.28 (3.28) | 0.002 * | 23.58 (3.71) | 23.74 (3.42) | 23.86 (3.59) | <0.001 * |
BMI | 0.005 * | 0.004 * | ||||||
BMI < 24 kg/m2 | 1982 (40.6) | 583 (37.4) | 632 (35.8) | 5477 (61.1) | 1763 (58.7) | 2000 (58.0) | ||
BMI 24–27 kg/m2 | 1733 (35.5) | 600 (38.5) | 677 (38.4) | 2081 (23.2) | 767 (25.5) | 842 (24.4) | ||
BMI > 27 kg/m2 | 1172 (24.0) | 375 (24.1) | 454 (25.8) | 1413 (15.8) | 473 (15.8) | 604 (17.5) | ||
Education Level (College or Above) | 2770 (56.7) | 1038 (66.6) | 1174 (66.6) | <0.001 * | 3681 (41.0) | 1398 (46.6) | 1738 (50.4) | <0.001 * |
Marriage Status (Married) | 4187 (85.7) | 1390 (89.2) | 1501 (85.1) | 0.001 * | 6622 (73.8) | 2216 (73.8) | 2507 (72.8) | 0.462 |
Occupational Status (Employed) | 3166 (64.8) | 1054 (67.7) | 1275 (72.3) | <0.001 * | 4647 (51.8) | 1663 (55.4) | 2155 (62.5) | <0.001 * |
Place of Residence | <0.001 * | 0.715 | ||||||
Urban area | 2581 (52.8) | 842 (54.0) | 1040 (59.0) | 5092 (56.8) | 1727 (57.5) | 1991 (57.8) | ||
Suburban area | 1933 (39.6) | 586 (37.6) | 619 (35.1) | 3337 (37.2) | 1085 (36.1) | 1244 (36.1) | ||
Rural area | 373 (7.6) | 130 (8.3) | 104 (5.9) | 542 (6.0) | 191 (6.4) | 211 (6.1) | ||
Monthly Personal Income | <0.001 * | <0.001 * | ||||||
0–30,000 NTD | 1181 (24.2) | 268 (17.2) | 306 (17.4) | 4369 (48.7) | 1291 (43.0) | 1382 (40.1) | ||
30,001–60,000 NTD | 1767 (36.2) | 585 (37.5) | 683 (38.7) | 2377 (26.5) | 904 (30.1) | 1134 (32.9) | ||
60,001 NTD or more | 1939 (39.7) | 705 (45.3) | 774 (43.9) | 2225 (24.8) | 808 (26.9) | 930 (27.0) | ||
Cigarette Smoking Status | <0.001 * | <0.001 * | ||||||
Non-smokers | 2825 (57.8) | 842 (54.0) | 848 (48.1) | 8705 (97.0) | 2881 (95.9) | 3219 (93.4) | ||
Former smokers | 1182 (24.2) | 459 (29.5) | 496 (28.1) | 135 (1.5) | 68 (2.3) | 108 (3.1) | ||
Current smokers | 880 (18.0) | 257 (16.5) | 419 (23.8) | 131 (1.5) | 54 (1.8) | 119 (3.5) | ||
Alcohol Drinking Status | <0.001 * | <0.001 * | ||||||
Non-drinkers | 3800 (77.8) | 1171 (75.2) | 1300 (73.7) | 8766 (97.7) | 2896 (96.4) | 3271 (94.9) | ||
Former drinkers | 383 (7.8) | 104 (6.7) | 155 (8.8) | 82 (0.9) | 32 (1.1) | 41 (1.2) | ||
Current Drinkers | 704 (14.4) | 283 (18.2) | 308 (17.5) | 123 (1.4) | 75 (2.5) | 134 (3.9) | ||
Habitual Tea Drinking | 1537 (31.5) | 557 (35.8) | 563 (31.9) | 0.006 * | 1414 (15.8) | 693 (23.1) | 826 (24.0) | <0.001 * |
Vegetarian | 196 (4.0) | 59 (3.8) | 59 (3.3) | 0.458 | 606 (6.8) | 138 (4.6) | 156 (4.5) | <0.001 * |
Regular Exercise | 2305 (47.2) | 811 (52.1) | 872 (49.5) | 0.002 * | 4255 (47.4) | 1470 (49.0) | 1483 (43.0) | <0.001 * |
Daily Sleeping Hours (Hour) | 6.74 (1.10) | 6.81 (0.97) | 6.74 (1.00) | 0.068 | 6.68 (1.14) | 6.73 (1.08) | 6.81 (1.07) | <0.001 * |
Menopause | 5924 (66.0) | 1905 (63.4) | 1800 (52.2) | <0.001 * | ||||
Exogenous Hormones | 1396 (15.6) | 450 (15.0) | 439 (12.7) | <0.001 * |
Index | Males | Females | ||||
---|---|---|---|---|---|---|
NCD | <1 Cup/Day | ≥1 Cup/Day | NCD | <1 Cup/Day | ≥1 Cup/Day | |
Number | 4875 | 1639 | 1821 | 8547 | 2872 | 3295 |
TC | ||||||
β-coefficient [95% CI] mg/dL | Ref. | 2.41 (0.45–4.38) | 4.52 (2.63–6.40) | Ref. | 3.53 (2.14–4.93) | 4.83 (3.49–6.17) |
p-value | 0.016 * | <0.001 * | <0.001 * | <0.001 * | ||
LDL-C | ||||||
β-coefficient [95% CI] mg/dL | Ref. | 2.75 (0.99–4.51) | 5.10 (3.42–6.79) | Ref. | 2.88 (1.64–4.12) | 2.90 (1.71–4.09) |
p-value | 0.002 * | <0.001 * | <0.001 * | <0.001 * | ||
HDL-C | ||||||
β-coefficient [95% CI] mg/dL | Ref. | 0.53 (−0.07–1.13) | 0.95 (0.37–1.53) | Ref. | 0.97 (0.45–1.48) | 2.39 (1.89–2.88) |
p-value | 0.085 | 0.001 * | <0.001 * | <0.001 * | ||
TG | ||||||
β-coefficient [95% CI] mg/dL | Ref. | 2.90 (−9.40–1.96) | −9.62 (−15.07–4.17) | Ref. | −3.12 (−5.75–0.49) | −6.18 (−8.72–3.65) |
p-value | 0.200 | 0.001 * | 0.020 * | <0.001 * |
Index | Postmenopausal Women | Premenopausal Women | ||||
---|---|---|---|---|---|---|
NCD | <1 Cup/Day | ≥1 Cup/Day | NCD | <1 Cup/Day | ≥1 Cup/Day | |
Number | 5742 | 1867 | 1776 | 2805 | 1005 | 1519 |
TC | ||||||
β-coefficient [95% CI] mg/dL | Ref. | 3.84 (2.05–5.63) | 4.80 (2.95–6.65) | Ref. | 1.95 (−0.21–4.11) | 3.45 (1.57–5.34) |
p-value | <0.001 * | <0.001 * | 0.076 | <0.001 * | ||
LDL-C | ||||||
β-coefficient [95% CI] mg/dL | 3.03 (1.43–4.64) | 2.46 (0.80–4.11) | Ref. | 1.81 (−0.10–372) | 2.46 (0.79–4.13) | |
p-value | <0.001 * | 0.004 * | 0.063 | 0.004 * | ||
HDL-C | ||||||
β-coefficient [95% CI] mg/dL | Ref. | 0.92 (0.26–1.57) | 2.87 (2.20–3.54) | Ref. | 1.00 (0.17–1.83) | 1.72 (1.00–2.45) |
p-value | 0.006 * | <0.001 * | 0.018 * | <0.001 * | ||
TG | ||||||
β-coefficient [95% CI] mg/dL | Ref. | −1.38 (−4.68–1.93) | −6.47 (−9.88–3.05) | Ref. | −6.85 (−11.20–2.50) | −7.38 (−11.19–3.58) |
p-value | 0.414 | <0.001 * | 0.002 * | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.-Y.; Lai, J.C.-Y.; Chen, S.-J. Influence of Sex Differences on Serum Lipid Profiles among Habitual Coffee Drinkers: Evidence from 23,072 Taiwan Biobank Participants. Nutrients 2023, 15, 2576. https://doi.org/10.3390/nu15112576
Lu M-Y, Lai JC-Y, Chen S-J. Influence of Sex Differences on Serum Lipid Profiles among Habitual Coffee Drinkers: Evidence from 23,072 Taiwan Biobank Participants. Nutrients. 2023; 15(11):2576. https://doi.org/10.3390/nu15112576
Chicago/Turabian StyleLu, Meng-Ying, Jerry Cheng-Yen Lai, and Shaw-Ji Chen. 2023. "Influence of Sex Differences on Serum Lipid Profiles among Habitual Coffee Drinkers: Evidence from 23,072 Taiwan Biobank Participants" Nutrients 15, no. 11: 2576. https://doi.org/10.3390/nu15112576
APA StyleLu, M. -Y., Lai, J. C. -Y., & Chen, S. -J. (2023). Influence of Sex Differences on Serum Lipid Profiles among Habitual Coffee Drinkers: Evidence from 23,072 Taiwan Biobank Participants. Nutrients, 15(11), 2576. https://doi.org/10.3390/nu15112576