The Potential of Food Fortification as an Enabler of More Environmentally Sustainable, Nutritionally Adequate Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet Optimization Approach
2.2. Baseline Diets
2.3. Food Fortification Scenarios
2.4. Nutritional Constraints
2.5. Environmental Impact Data and Food System GHGE Target
2.6. Food Product Constraints
2.7. Optimization Strategy
3. Results
3.1. Baseline Diets (before Optimization)
3.2. Nutritionally Optimized Diets
3.3. Diets Optimized for Nutrition and Meeting 2030 GHGE Targets
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ambikapathi, R.; Schneider, K.R.; Davis, B.; Herrero, M.; Winters, P.; Fanzo, J.C. Global food systems transitions have enabled affordable diets but had less favourable outcomes for nutrition, environmental health, inclusion and equity. Nat. Food 2022, 3, 764–779. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.S.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.M.; Beare, D.J.; Bennett, E.M.; Hall-Spencer, J.M.; Ingram, J.S.I.; Jaramillo, F.; Ortiz, R.; Ramankutty, N.; Sayer, J.A.; Shindell, D. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 2017, 22, 1–11. [Google Scholar] [CrossRef]
- Crenna, E.; Sinkko, T.; Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 2019, 227, 378–391. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). The State of Food and Agriculture 2022. Leveraging Automation in Agriculture for Transforming Agrifood Systems; FAO: Rome, Italy, 2022. [Google Scholar]
- World Health Organization (WHO). Obesity and Overweight Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 16 May 2023).
- Béné, C.; Oosterveer, P.; Lamotte, L.; Brouwer, I.D.; de Haan, S.; Prager, S.D.; Talsma, E.F.; Khoury, C.K. When food systems meet sustainability—Current narratives and implications for actions. World Dev. 2019, 113, 116–130. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; World Meteorological Organization: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- European Commission (EC). The European Green Deal; European Commission (EC): Brussels, Belgium, 2019. Available online: https://www.eea.europa.eu/policy-documents/com-2019-640-final (accessed on 16 May 2023).
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- FMCG Gurus. Meat & Plant-Based—Global Report. 2022. Available online: https://fmcggurus.com/reports/fmcg-gurus-meat-plant-based-global-report-2022/ (accessed on 16 May 2023).
- Food and Agriculture Organization of the United Nations (FAO). Contribution of Terrestrial Animal Source Food to Healthy Diets for Improved Nutrition and Health Outcomes; FAO: Rome, Italy, 2023. [Google Scholar]
- Heerschop, S.N.; Kanellopoulos, A.; Biesbroek, S.; van’t Veer, P. Shifting towards optimized healthy and sustainable Dutch diets: Impact on protein quality. Eur. J. Nutr. 2023, 1–14. [Google Scholar] [CrossRef]
- Alessandrini, R.; Brown, M.K.; Pombo-Rodrigues, S.; Bhageerutty, S.; He, F.J.; MacGregor, G.A. Nutritional Quality of Plant-Based Meat Products Available in the UK: A Cross-Sectional Survey. Nutrients 2021, 13, 4225. [Google Scholar] [CrossRef]
- Hunt, J.R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am. J. Clin. Nutr. 2003, 78, 633S–639S. [Google Scholar] [CrossRef]
- Mayer Labba, I.C.; Steinhausen, H.; Almius, L.; Bach Knudsen, K.E.; Sandberg, A.S. Nutritional composition and estimated iron and zinc bioavailability of meat substitutes available on the swedish market. Nutrients 2022, 14, 3903. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: A global modelling analysis with country-level detail. Lancet Planet Health 2018, 2, e451–e461. [Google Scholar] [CrossRef]
- Millward, D.J.; Garnett, T. Plenary Lecture 3: Food and the planet: Nutritional dilemmas of greenhouse gas emission reductions through reduced intakes of meat and dairy foods. Proc. Nutr. Soc. 2010, 69, 103–118. [Google Scholar] [CrossRef]
- Sioen, I.; van Lieshout, L.; Eilander, A.; Fleith, M.; Lohner, S.; Szommer, A.; Petisca, C.; Eussen, S.; Forsyth, S.; Calder, P.C.; et al. Systematic review on n-3 and n-6 polyunsaturated fatty acid intake in European countries in light of the current recommendations—focus on specific population groups. Ann. Nutr. Metab. 2017, 70, 39–50. [Google Scholar] [CrossRef]
- White, R.R.; Hall, M.B. Nutritional and greenhouse gas impacts of removing animals from US agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, E10301–E10308. [Google Scholar] [CrossRef]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: Results from the European Prospective Investigation into Cancer and Nutrition-Oxford study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef]
- Beal, T.; Ortenzi, F.; Fanzo, J. Estimated micronutrient shortfalls of the EAT-Lancet planetary health diet. Lancet Planet Health 2023, 7, e233–e237. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Regional Office for Europe. Plant-Based Diets and Their Impact on Health, Sustainability and the Environment: A Review of the Evidence; WHO European Office for the Prevention and Control of Noncommunicable Diseases; World Health Organization, Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- Schupbach, R.; Wegmuller, R.; Berguerand, C.; Bui, M.; Herter-Aeberli, I. Micronutrient status and intake in omnivores, vegetarians and vegans in Switzerland. Eur. J. Nutr. 2017, 56, 283–293. [Google Scholar] [CrossRef]
- Elorinne, A.L.; Alfthan, G.; Erlund, I.; Kivimaki, H.; Paju, A.; Salminen, I.; Turpeinen, U.; Voutilainen, S.; Laakso, J. Food and nutrient intake and nutritional status of finnish vegans and non-vegetarians. PLoS ONE 2016, 11, e0148235. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef]
- Obersby, D.; Chappell, D.C.; Dunnett, A.; Tsiami, A.A. Plasma total homocysteine status of vegetarians compared with omnivores: A systematic review and meta-analysis. Br. J. Nutr. 2013, 109, 785–794. [Google Scholar] [CrossRef]
- Selinger, E.; Kuhn, T.; Prochazkova, M.; Andel, M.; Gojda, J. Vitamin B12 Deficiency Is Prevalent among Czech Vegans Who Do Not Use Vitamin B12 Supplements. Nutrients 2019, 11, 3019. [Google Scholar] [CrossRef] [PubMed]
- Stark, K.D.; Van Elswyk, M.E.; Higgins, M.R.; Weatherford, C.A.; Salem, N., Jr. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016, 63, 132–152. [Google Scholar] [CrossRef] [PubMed]
- Sanders, T.A. DHA status of vegetarians. Prostaglandins Leukot Essent Fat. Acids 2009, 81, 137–141. [Google Scholar] [CrossRef]
- Tuso, P.J.; Ismail, M.H.; Ha, B.P.; Bartolotto, C. Nutritional update for physicians: Plant-based diets. Perm. J. 2013, 17, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Henry, C.J.; Dwyer, J.T. Proposed nutrient standards for plant-based beverages intended as milk alternatives. Front. Nutr. 2021, 8, 761442. [Google Scholar] [CrossRef]
- Craig, W.J. Nutrition concerns and health effects of vegetarian diets. Nutr. Clin. Pract. 2010, 25, 613–620. [Google Scholar] [CrossRef]
- Mertens, E.; Biesbroek, S.; Dofková, M.; Mistura, L.; D’Addezio, L.; Turrini, A.; Dubuisson, C.; Havard, S.; Trolle, E.; Geleijnse, J.M.; et al. Potential impact of meat replacers on nutrient quality and greenhouse gas emissions of diets in four European countries. Sustainability 2020, 12, 6838. [Google Scholar] [CrossRef]
- Tso, R.; Forde, C.G. Unintended consequences: Nutritional impact and potential pitfalls of switching from animal- to plant-based foods. Nutrients 2021, 13, 2527. [Google Scholar] [CrossRef]
- Bruins, M.J.; Letinois, U. Adequate vitamin d intake cannot be achieved within carbon emission limits unless food is fortified: A simulation study. Nutrients 2021, 13, 592. [Google Scholar] [CrossRef]
- Gazan, R.; Brouzes, C.M.C.; Vieux, F.; Maillot, M.; Lluch, A.; Darmon, N. Mathematical optimization to explore tomorrow’s sustainable diets: A narrative review. Adv. Nutr. 2018, 9, 602–616. [Google Scholar] [CrossRef]
- Blonk Sustainability Tools. Optimeal. Available online: https://blonksustainability.nl/tools/optimeal (accessed on 16 May 2023).
- Broekema, R.; Tyszler, M.; van’t Veer, P.; Kok, F.J.; Martin, A.; Lluch, A.; Blonk, H.T.J. Future-proof and sustainable healthy diets based on current eating patterns in the Netherlands. Am. J. Clin. Nutr. 2020, 112, 1338–1347. [Google Scholar] [CrossRef]
- van Rossum, C.; Fransen, H.; Verkaik-Kloosterman, J.; Buurma-Rethans, E.; Ocké, M. Dutch National Food Consumption Survey 2007–2010: Diet of Children and Adults Aged 7 to 69 Years; RIVM (National Institute for Public Health and the Environment): Bilthoven, The Netherlands, 2011.
- Kramer, G.F.; Tyszler, M.; Veer, P.V.; Blonk, H. Decreasing the overall environmental impact of the Dutch diet: How to find healthy and sustainable diets with limited changes. Public Health Nutr. 2017, 20, 1699–1709. [Google Scholar] [CrossRef]
- RIVM (National Institute for Public Health and the Environment). NEVO Online Version 2016/5.0. Available online: https://www.rivm.nl/documenten/nevo-online-versie-50-2016-dat (accessed on 16 May 2023).
- RIVM (National Institute for Public Health and the Environment). NEVO Online Version 2021/7.0. Available online: https://nevo-online.rivm.nl/Home/En (accessed on 16 May 2021).
- Health Council of the Netherlands (Gezondheidsraad). Guidelines for a Healthy Diet: 2006. (In Dutch). Available online: https://www.gezondheidsraad.nl/documenten/adviezen/2006/12/18/richtlijnen-goede-voeding-2006 (accessed on 16 May 2023).
- Health Council of the Netherlands (Gezondheidsraad). Dietary Reference Values for Vitamins and Minerals for Adults. 2018. Available online: https://www.healthcouncil.nl/documents/advisory-reports/2018/09/18/dietary-reference-values-for-vitamins-and-minerals-for-adults (accessed on 16 May 2023).
- Health Council of the Netherlands (Gezondheidsraad). Dietary Reference Intakes: Energy, Proteins, Fats and Digestible Carbohydrates. 2001. Available online: https://www.healthcouncil.nl/documents/advisory-reports/2001/07/18/dietary-reference-intakes-energy-proteins-fats-and-digestible-carbohydrates (accessed on 16 May 2023).
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012: Integrating Nutrition And Physical Activity. 2014. Available online: https://www.norden.org/en/publication/nordic-nutrition-recommendations-2012 (accessed on 16 May 2023).
- European Food Safety Authority (EFSA). Overview on Tolerable Upper Intake Levels as Derived by the Scientific Committee on Food (SCF) and the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2018. Available online: https://www.efsa.europa.eu/sites/default/files/assets/UL_Summary_tables.pdf (accessed on 16 May 2023).
- Institute of Medicine (IOM). Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe 2016: A harmonized life cycle impact assessment method at midpoint and endpoint level Report I: Characterization. Int. J. Life Cycle Assess. 2016, 22, 138–147. [Google Scholar] [CrossRef]
- RIVM (National Institute for Public Health and the Environment). Environmental Impact of Foods; Rijksinstituut voor Volksgezondheid en Milieu (RIVM): Bilthoven, The Netherlands, 2019. Available online: https://www.rivm.nl/voedsel-en-voeding/duurzaam-voedsel/database-milieubelasting-voedingsmiddelen (accessed on 16 May 2023). (In Dutch)
- Perignon, M.; Masset, G.; Ferrari, G.; Barre, T.; Vieux, F.; Maillot, M.; Amiot, M.J.; Darmon, N. How low can dietary greenhouse gas emissions be reduced without impairing nutritional adequacy, affordability and acceptability of the diet? A modelling study to guide sustainable food choices. Public Health Nutr. 2016, 19, 2662–2674. [Google Scholar] [CrossRef]
- de Jong, M.H.; Nawijn, E.L.; Verkaik-Kloosterman, J. Contribution of fortified margarines and other plant-based fats to micronutrient intake in the Netherlands. Eur. J. Nutr. 2022, 61, 1893–1904. [Google Scholar] [CrossRef]
- Seves, S.M.; Verkaik-Kloosterman, J.; Biesbroek, S.; Temme, E.H. Are more environmentally sustainable diets with less meat and dairy nutritionally adequate? Public Health Nutr. 2017, 20, 2050–2062. [Google Scholar] [CrossRef]
- Mertens, E.; Kuijsten, A.; Kanellopoulos, A.; Dofkova, M.; Mistura, L.; D’Addezio, L.; Turrini, A.; Dubuisson, C.; Havard, S.; Trolle, E.; et al. Improving health and carbon footprints of European diets using a benchmarking approach. Public Health Nutr. 2021, 24, 565–575. [Google Scholar] [CrossRef]
- Salome, M.; Mariotti, F.; Dussiot, A.; Kesse-Guyot, E.; Huneau, J.F.; Fouillet, H. Plant-based meat substitutes are useful for healthier dietary patterns when adequately formulated—An optimization study in French adults (INCA3). Eur. J. Nutr. 2023, 62, 1891–1901. [Google Scholar] [CrossRef]
- de Gavelle, E.; Huneau, J.F.; Bianchi, C.M.; Verger, E.O.; Mariotti, F. Protein Adequacy Is Primarily a Matter of Protein Quantity, Not Quality: Modeling an Increase in Plant:Animal Protein Ratio in French Adults. Nutrients 2017, 9, 1333. [Google Scholar] [CrossRef]
- Reluctant Gourmet: Bean Conversions. Available online: https://www.reluctantgourmet.com/bean-conversions/ (accessed on 16 May 2023).
- Eustachio Colombo, P.; Elinder, L.S.; Lindroos, A.K.; Parlesak, A. Designing nutritionally adequate and climate-friendly diets for omnivorous, pescatarian, vegetarian and vegan adolescents in sweden using linear optimization. Nutrients 2021, 13, 2507. [Google Scholar] [CrossRef] [PubMed]
- Klapp, A.L.; Feil, N.; Risius, A. A global analysis of national dietary guidelines on plant-based diets and substitutions for animal-based foods. Curr. Dev. Nutr. 2022, 6, nzac144. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO); World Health Organization (WHO). Codex Alimentarius: General Standard for the Labelling of Prepackaged Foods CXS 1-1985 and Its Subsequent Revisions. 1985. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 16 May 2023).
- Mintel: Global Market Research & Market Insight. Available online: www.mintel.com (accessed on 16 May 2023).
(a) WOMEN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline Diet | Optimized for Nutritional Adequacy | Optimized for Nutritional Adequacy + 2030 GHGE Targets | ||||||||
DRV | CUR | FORT-A | FORT-B | CUR | FORT-A | FORT-B | CUR | FORT-A | FORT-B | |
Energy (kcal) | 2220 | 2024 | 2024 | 2024 | 2216 | 2216 | 2214 | 2047 | 2071 | 1981 |
Protein total (g) | 52 | 81 | 81 | 81 | 96 | 92 | 88 | 75 | 69 | 68 |
Fat total (g) | 93 | 80 | 80 | 80 | 90 | 90 | 83 | 93 | 89 | 70 |
SAFA (g) | 23 | 28 | 28 | 28 | 23 | 23 | 23 | 23 | 20 | 15 |
PUFA (g) | 28 | 16 | 16 | 16 | 28 | 28 | 22 | 26 | 28 | 21 |
Linoleic acid (g) | 4.7 | 13.3 | 13.3 | 13.3 | 22.4 | 22.3 | 18.0 | 22.4 | 23.5 | 17.6 |
α-Linolenic acid (g) | 2.3 | 1.6 | 1.6 | 1.6 | 3.9 | 3.8 | 2.8 | 2.9 | 3.2 | 2.3 |
Trans fatty acids (g) | 2.3 | 1.0 | 1.0 | 1.0 | 1.1 | 1.1 | 1.0 | 0.6 | 0.5 | 0.3 |
Carbohydrates (g) | 210 | 231 | 231 | 231 | 236 | 240 | 260 | 210 | 228 | 249 |
Fiber (g) | 29 | 18 | 18 | 18 | 29 | 29 | 29 | 30 | 32 | 33 |
Water (g) | 2300 | 2953 | 2953 | 2953 | 3205 | 3143 | 3087 | 2754 | 2792 | 2782 |
Alcohol (g) | 10.0 | 1.7 | 1.7 | 1.7 | 1.7 | 1.6 | 1.7 | 0.9 | 1.3 | 1.4 |
Retinol act. eq. (μg) | 680 | 574 | 574 | 574 | 1571 | 1075 | 841 | 1395 | 844 | 680 |
Vitamin B1 (mg) | 0.88 | 0.72 | 0.72 | 0.72 | 0.91 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 |
Folate eq. (μg) | 300 | 218 | 218 | 218 | 332 | 316 | 300 | 325 | 300 | 300 |
Vitamin B2 (mg) | 1.60 | 1.27 | 1.30 | 1.63 | 1.6 | 1.8 | 2.0 | 1.6 | 1.6 | 1.8 |
Niacin (mg) | 14 | 16.0 | 16.1 | 16.4 | 22 | 20 | 19 | 19 | 19 | 19 |
Vitamin B6 (mg) | 1.5 | 1.3 | 1.4 | 1.7 | 1.8 | 1.9 | 2.1 | 1.5 | 1.5 | 2.0 |
Vitamin B12 (μg) | 2.8 | 4.08 | 4.10 | 4.71 | 8.6 | 7.3 | 5.4 | 6.3 | 5.5 | 4.7 |
Vitamin D (μg) | 10.0 | 2.5 | 2.6 | 5.8 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Iodine (μg) | 150 | 163 | 166 | 202 | 199 | 210 | 260 | 182 | 211 | 276 |
Calcium (mg) | 950 | 1021 | 1036 | 1226 | 1014 | 1061 | 1326 | 950 | 950 | 1069 |
Iron (mg) | 16.0 | 8.9 | 8.9 | 12.3 | 16.0 | 16.0 | 17.1 | 16.0 | 16.0 | 18.9 |
Selenium (μg) | 70 | 42 | 43 | 55 | 73 | 80 | 74 | 70 | 70 | 70 |
Zinc (mg) | 7.0 | 10.2 | 10.4 | 12.9 | 11.4 | 13.1 | 15.2 | 9.5 | 11.0 | 13.1 |
DHA + EPA (mg) | 200 | 141 | 141 | 205 | 1000 | 1000 | 593 | 1000 | 1000 | 974 |
Vitamin C (mg) | 75 | 75 | 75 | 75 | 114 | 101 | 100 | 109 | 85 | 85 |
Vitamin E (mg) | 11 | 13 | 13 | 13 | 19 | 19 | 16 | 19 | 18 | 13 |
Vitamin K (μg) | 90 | 113 | 113 | 113 | 283 | 225 | 191 | 393 | 138 | 126 |
Phosphorus (mg) | 550 | 1484 | 1484 | 1484 | 1726 | 1653 | 1627 | 1557 | 1365 | 1339 |
Sodium (mg) | 2400 | 2387 | 2387 | 2387 | 2400 | 2400 | 2400 | 1919 | 1910 | 1993 |
Potassium (mg) | 3500 | 2971 | 2971 | 2971 | 3954 | 3769 | 3531 | 3500 | 3500 | 3500 |
Magnesium (mg) | 300 | 299 | 299 | 299 | 396 | 396 | 381 | 479 | 476 | 449 |
Copper (mg) | 0.9 | 1.0 | 1.0 | 1.0 | 1.5 | 1.5 | 1.4 | 1.8 | 1.9 | 1.8 |
Cholesterol (mg) | 190 | 190 | 190 | 223 | 182 | 159 | 246 | 80 | 53 | |
Global warming (kg CO2eq) 1 | 4.24 | 4.27 | 4.27 | 4.7 | 4.4 | 4.1 | 2.0 | 2.0 | 2.0 | |
Land use (m2*y) 2 | 2.89 | 2.89 | 2.78 | 3.0 | 2.9 | 2.8 | 2.2 | 2.0 | 1.8 | |
Water consumption (m3) | 0.17 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.14 | 0.16 | 0.17 | |
Euclidean distance 3 | - | - | - | 75.2 | 66.5 | 42.1 | 194.9 | 141.6 | 114.3 | |
(b) MEN | ||||||||||
Baseline Diet | Optimized for Nutritional Adequacy | Optimized for Nutritional Adequacy + 2030 GHGE Target | ||||||||
DRV | CUR | FORT-A | FORT-B | CUR | FORT-A | FORT-B | CUR | FORT-A | FORT-B | |
Energy (kcal) | 2850 | 2832 | 2832 | 2832 | 2847 | 2847 | 2842 | 2550 | 2550 | 2550 |
Protein total (g) | 61 | 107 | 107 | 107 | 106 | 104 | 105 | 89 | 76 | 78 |
Fat total (g) | 120 | 109 | 109 | 109 | 113 | 112 | 97 | 103 | 98 | 80 |
SAFA (g) | 23 | 37 | 37 | 37 | 30 | 30 | 29 | 21 | 20 | 16 |
PUFA (g) | 36 | 22 | 22 | 22 | 35 | 34 | 25 | 32 | 32 | 28 |
Linoleic acid (g) | 6.0 | 18.9 | 18.9 | 18.9 | 27.9 | 27.6 | 21.0 | 27.3 | 27.1 | 25.1 |
α-Linolenic acid (g) | 3.0 | 2.5 | 2.5 | 2.5 | 4.5 | 4.4 | 3.0 | 3.8 | 3.5 | 3.0 |
Trans fatty acids (g) | 3.0 | 1.2 | 1.2 | 1.2 | 1.1 | 1.1 | 0.9 | 0.6 | 0.6 | 0.4 |
Carbohydrates (g) | 473 | 309 | 309 | 309 | 299 | 302 | 334 | 270 | 291 | 328 |
Fiber (g) | 36 | 23 | 23 | 23 | 36 | 36 | 36 | 40 | 39 | 42 |
Water (g) | 2500 | 3134 | 3134 | 3134 | 3301 | 3300 | 3235 | 2500 | 2500 | 2500 |
Alcohol (g) | 20.0 | 18.7 | 18.7 | 18.7 | 18.7 | 18.7 | 18.7 | 15.1 | 16.9 | 17.2 |
Retinol act. eq. (μg) | 800 | 723 | 723 | 723 | 1308 | 1277 | 890 | 800 | 800 | 800 |
Vitamin B1 (mg) | 1 | 0.98 | 0.98 | 0.98 | 1.13 | 1.13 | 1.13 | 1.13 | 1.13 | 1.13 |
Folate eq. (μg) | 300 | 275 | 275 | 275 | 384 | 379 | 368 | 378 | 321 | 342 |
Vitamin B2 (mg) | 1.60 | 1.67 | 1.68 | 2.15 | 1.7 | 1.9 | 2.3 | 1.6 | 1.7 | 2.0 |
Niacin (mg) | 18 | 26.4 | 26.4 | 27.0 | 28 | 27 | 27 | 25 | 24 | 24 |
Vitamin B6 (mg) | 1.5 | 1.8 | 1.8 | 2.3 | 2.0 | 2.1 | 2.6 | 1.5 | 1.5 | 2.1 |
Vitamin B12 (μg) | 2.8 | 5.3 | 5.2 | 6.1 | 6.1 | 5.7 | 5.2 | 5.9 | 4.6 | 3.1 |
Vitamin D (μg) | 10.0 | 3.5 | 3.5 | 8.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Iodine (μg) | 150 | 210 | 210 | 260 | 224 | 236 | 287 | 228 | 229 | 328 |
Calcium (mg) | 950 | 1180 | 1185 | 1450 | 1086 | 1170 | 1474 | 950 | 1010 | 1179 |
Iron (mg) | 11.0 | 11.16 | 11.18 | 15.95 | 13.7 | 14.0 | 20.0 | 14.2 | 12.2 | 19.8 |
Selenium (μg) | 70 | 57.1 | 57.5 | 73.9 | 70 | 70 | 75 | 70 | 70 | 70 |
Zinc (mg) | 9.0 | 13.3 | 13.4 | 16.8 | 12.4 | 13.3 | 17.7 | 10.3 | 12.6 | 15.7 |
DHA + EPA (mg) | 200 | 119 | 119 | 207 | 999 | 820 | 394 | 1000 | 924 | 487 |
Vitamin C (mg) | 75 | 84 | 84 | 84 | 127 | 124 | 113 | 90 | 75 | 75 |
Vitamin E (mg) | 13 | 16 | 16 | 16 | 22 | 22 | 17 | 18 | 19 | 16 |
Vitamin K (μg) | 120 | 133 | 133 | 133 | 279 | 270 | 235 | 165 | 120 | 133 |
Phosphorus (mg) | 550 | 1969 | 1969 | 1969 | 2006 | 1973 | 2028 | 1762 | 1568 | 1607 |
Sodium (mg) | 2400 | 3388 | 3388 | 3388 | 2400 | 2400 | 2400 | 2400 | 2020 | 2087 |
Potassium (mg) | 3500 | 3904 | 3904 | 3904 | 4509 | 4465 | 4474 | 3710 | 3500 | 3500 |
Magnesium (mg) | 350 | 394 | 394 | 394 | 475 | 476 | 503 | 600 | 523 | 518 |
Copper (mg) | 0.9 | 1.2 | 1.2 | 1.2 | 1.6 | 1.7 | 1.8 | 2.1 | 1.8 | 1.8 |
Cholesterol (mg) | 247 | 247 | 247 | 194 | 181 | 170 | 148 | 42 | 31 | |
Global warming (kg CO2eq) 1 | 5.73 | 5.74 | 5.74 | 5.06 | 4.97 | 4.94 | 2.04 | 2.04 | 2.04 | |
Land use (m2*y) 2 | 3.82 | 3.82 | 3.82 | 3.46 | 3.45 | 3.46 | 2.16 | 2.03 | 1.90 | |
Water consumption (m3) | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.21 | 0.16 | 0.11 | 0.12 | |
Euclidean distance 3 | - | - | - | 80.5 | 76.7 | 5.7 | 383.8 | 266.8 | 223.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grasso, A.C.; Besselink, J.J.F.; Tyszler, M.; Bruins, M.J. The Potential of Food Fortification as an Enabler of More Environmentally Sustainable, Nutritionally Adequate Diets. Nutrients 2023, 15, 2473. https://doi.org/10.3390/nu15112473
Grasso AC, Besselink JJF, Tyszler M, Bruins MJ. The Potential of Food Fortification as an Enabler of More Environmentally Sustainable, Nutritionally Adequate Diets. Nutrients. 2023; 15(11):2473. https://doi.org/10.3390/nu15112473
Chicago/Turabian StyleGrasso, Alessandra C., Julia J. F. Besselink, Marcelo Tyszler, and Maaike J. Bruins. 2023. "The Potential of Food Fortification as an Enabler of More Environmentally Sustainable, Nutritionally Adequate Diets" Nutrients 15, no. 11: 2473. https://doi.org/10.3390/nu15112473
APA StyleGrasso, A. C., Besselink, J. J. F., Tyszler, M., & Bruins, M. J. (2023). The Potential of Food Fortification as an Enabler of More Environmentally Sustainable, Nutritionally Adequate Diets. Nutrients, 15(11), 2473. https://doi.org/10.3390/nu15112473