Isochromosome 12p Formation Regulates Vitamin D Metabolism in Testicular Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Chemicals
2.2. Proliferation Assays
2.3. Data from GENIE and GTex Repositories
2.4. VDR Gene Signature, Clustering Analysis, and Idiogram
3. Results
3.1. Chromosome 12p Amplifications in TGCT
3.2. Vitamin D-Responsive Genes on Chromosome 12
3.3. Expression of Vitamin D-Responsive Genes in TGCT
3.4. Vitamin D Response of TGCT Cell Lines on Tumor Cell Viability
3.5. Expression of Regulators of Vitamin D Metabolism in TGCT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.S.; Kim, J.; Elghiaty, A.; Ham, W.S. Recent Global Trends in Testicular Cancer Incidence and Mortality. Medicine 2018, 97, e12390. [Google Scholar] [CrossRef] [PubMed]
- Del Giudice, F.; Kasman, A.M.; De Berardinis, E.; Busetto, G.M.; Belladelli, F.; Eisenberg, M.L. Association between Male Infertility and Male-Specific Malignancies: Systematic Review and Meta-Analysis of Population-Based Retrospective Cohort Studies. Fertil. Steril. 2020, 114, 984–996. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, N.; Rajpert-De Meyts, E.; Main, K.M.; Skakkebaek, N.E. Testicular Dysgenesis Syndrome Comprises Some but Not All Cases of Hypospadias and Impaired Spermatogenesis. Int. J. Androl. 2010, 33, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Kharazmi, E.; Hemminki, K.; Pukkala, E.; Sundquist, K.; Tryggvadottir, L.; Tretli, S.; Olsen, J.H.; Fallah, M. Cancer Risk in Relatives of Testicular Cancer Patients by Histology Type and Age at Diagnosis: A Joint Study from Five Nordic Countries. Eur. Urol. 2015, 68, 283–289. [Google Scholar] [CrossRef]
- Lip, S.Z.; Murchison, L.E.; Cullis, P.S.; Govan, L.; Carachi, R. A Meta-Analysis of the Risk of Boys with Isolated Cryptorchidism Developing Testicular Cancer in Later Life. Arch. Dis. Child. 2013, 98, 20–26. [Google Scholar] [CrossRef]
- Slowikowska-Hilczer, J.; Szarras-Czapnik, M.; Duranteau, L.; Rapp, M.; Walczak-Jedrzejowska, R.; Marchlewska, K.; Oszukowska, E.; Nordenstrom, A.; on behalf of the dsd-LIFE Group. Risk of Gonadal Neoplasia in Patients with Disorders/Differences of Sex Development. Cancer Epidemiol. 2020, 69, 101800. [Google Scholar] [CrossRef]
- Looijenga, L.H.J.; Van der Kwast, T.H.; Grignon, D.; Egevad, L.; Kristiansen, G.; Kao, C.S.; Idrees, M.T. Report from the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: IV: Current and Future Utilization of Molecular-Genetic Tests for Testicular Germ Cell Tumors. Am. J. Surg. Pathol. 2020, 44, e66–e79. [Google Scholar] [CrossRef]
- Mostert, M.M.; van de Pol, M.; Olde Weghuis, D.; Suijkerbuijk, R.F.; Geurts van Kessel, A.; van Echten, J.; Oosterhuis, J.W.; Looijenga, L.H. Comparative Genomic Hybridization of Germ Cell Tumors of the Adult Testis: Confirmation of Karyotypic Findings and Identification of a 12p-Amplicon. Cancer Genet. Cytogenet. 1996, 89, 146–152. [Google Scholar] [CrossRef]
- Oosterhuis, J.W.; Looijenga, L.H.J. Human Germ Cell Tumours from a Developmental Perspective. Nat. Rev. Cancer 2019, 19, 522–537. [Google Scholar] [CrossRef]
- Rosenberg, C.; Van Gurp, R.J.; Geelen, E.; Oosterhuis, J.W.; Looijenga, L.H. Overrepresentation of the Short Arm of Chromosome 12 Is Related to Invasive Growth of Human Testicular Seminomas and Nonseminomas. Oncogene 2000, 19, 5858–5862. [Google Scholar] [CrossRef]
- Nigam, M.; Aschebrook-Kilfoy, B.; Shikanov, S.; Eggener, S. Increasing Incidence of Testicular Cancer in the United States and Europe between 1992 and 2009. World J. Urol. 2015, 33, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Gurney, J.K.; Florio, A.A.; Znaor, A.; Ferlay, J.; Laversanne, M.; Sarfati, D.; Bray, F.; McGlynn, K.A. International Trends in the Incidence of Testicular Cancer: Lessons from 35 Years and 41 Countries. Eur. Urol. 2019, 76, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Lambe, M.; Blomqvist, P.; Bellocco, R. Seasonal Variation in the Diagnosis of Cancer: A Study Based on National Cancer Registration in Sweden. Br. J. Cancer 2003, 88, 1358–1360. [Google Scholar] [CrossRef] [PubMed]
- Tulchiner, G.; Staudacher, N.; Fritz, J.; Hackl, M.; Pichler, M.; Seles, M.; Shariat, S.F.; D’Andrea, D.; Gust, K.; Albrecht, W.; et al. Seasonal Variations in the Diagnosis of Testicular Germ Cell Tumors: A National Cancer Registry Study in Austria. Cancers 2021, 13, 5377. [Google Scholar] [CrossRef]
- Evans, R.M. The Steroid and Thyroid Hormone Receptor Superfamily. Science 1988, 240, 889–895. [Google Scholar] [CrossRef]
- Haussler, M.R.; Whitfield, G.K.; Haussler, C.A.; Hsieh, J.C.; Thompson, P.D.; Selznick, S.H.; Dominguez, C.E.; Jurutka, P.W. The Nuclear Vitamin D Receptor: Biological and Molecular Regulatory Properties Revealed. J. Bone Miner. Res. 1998, 13, 325–349. [Google Scholar] [CrossRef]
- de Angelis, C.; Galdiero, M.; Pivonello, C.; Garifalos, F.; Menafra, D.; Cariati, F.; Salzano, C.; Galdiero, G.; Piscopo, M.; Vece, A.; et al. The Role of Vitamin D in Male Fertility: A Focus on the Testis. Rev. Endocr. Metab. Disord. 2017, 18, 285–305. [Google Scholar] [CrossRef]
- Bikle, D.D. Vitamin D: Production, Metabolism and Mechanisms of Action. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; United States Environmental Protection Agency: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Blomberg Jensen, M.; Nielsen, J.E.; Jorgensen, A.; Rajpert-De Meyts, E.; Kristensen, D.M.; Jorgensen, N.; Skakkebaek, N.E.; Juul, A.; Leffers, H. Vitamin D Receptor and Vitamin D Metabolizing Enzymes Are Expressed in the Human Male Reproductive Tract. Hum. Reprod. 2010, 25, 1303–1311. [Google Scholar] [CrossRef]
- Bergwitz, C.; Juppner, H. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annu. Rev. Med. 2010, 61, 91–104. [Google Scholar] [CrossRef]
- Jeon, S.M.; Shin, E.A. Exploring Vitamin D Metabolism and Function in Cancer. Exp. Mol. Med. 2018, 50, 1–14. [Google Scholar] [CrossRef]
- Chanakul, A.; Zhang, M.Y.; Louw, A.; Armbrecht, H.J.; Miller, W.L.; Portale, A.A.; Perwad, F. FGF-23 Regulates CYP27B1 Transcription in the Kidney and in Extra-Renal Tissues. PLoS ONE 2013, 8, e72816. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D.; Pillai, S. Vitamin D, Calcium, and Epidermal Differentiation. Endocr. Rev. 1993, 14, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.F. Clinical Practice. Hypercalcemia Associated with Cancer. N. Engl. J. Med. 2005, 352, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Gensure, R.C.; Gardella, T.J.; Juppner, H. Parathyroid Hormone and Parathyroid Hormone-Related Peptide, and Their Receptors. Biochem. Biophys. Res. Commun. 2005, 328, 666–678. [Google Scholar] [CrossRef]
- Bhatia, V.; Mula, R.V.; Falzon, M. 1,25-Dihydroxyvitamin D(3) Regulates PTHrP Expression via Transcriptional, Post-Transcriptional and Post-Translational Pathways. Mol. Cell. Endocrinol. 2011, 342, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, L.; Lagrange, F.; Lecoanet, P.; Marcon, B.; Eschwege, P.; Hubert, J. Testicular Microlithiasis and Testicular Tumor: A Review of the Literature. Basic. Clin. Androl. 2018, 28, 8. [Google Scholar] [CrossRef] [PubMed]
- AACR Project Genie Consortium. AACR Project GENIE: Powering Precision Medicine through an International Consortium. Cancer Discov. 2017, 7, 818–831. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative Genomics Viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef]
- Bremmer, F.; Thelen, P.; Pottek, T.; Behnes, C.L.; Radzun, H.J.; Schweyer, S. Expression and Function of the Vitamin D Receptor in Malignant Germ Cell Tumour of the Testis. Anticancer Res. 2012, 32, 341–349. [Google Scholar]
- Cancer Genome Atlas Research, N.; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef]
- Kolde, R. Pheatmap: Pretty Heatmaps; R Package Version 1, No. 2; CRAN: Online, 2012; p. 726. [Google Scholar]
- Copynumberplots: Create Copy-Number Plots Using Karyoploter Functionality; R Package Version 1.14.0; GitHub: San Francisko, CA, USA, 2022.
- Looijenga, L.H.; Zafarana, G.; Grygalewicz, B.; Summersgill, B.; Debiec-Rychter, M.; Veltman, J.; Schoenmakers, E.F.; Rodriguez, S.; Jafer, O.; Clark, J.; et al. Role of Gain of 12p in Germ Cell Tumour Development. APMIS 2003, 111, 161–171; discussion 172–173. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Weiner, A.; Zack, T.; O’Donnell, E.; Guerriero, J.L.; Bernard, B.; Reddy, A.; Han, G.C.; AlDubayan, S.; Amin-Mansour, A.; Schumacher, S.E.; et al. Genomic Evolution and Chemoresistance in Germ-Cell Tumours. Nature 2016, 540, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Freitag, C.E.; Sukov, W.R.; Bryce, A.H.; Berg, J.V.; Vanderbilt, C.M.; Shen, W.; Smadbeck, J.B.; Greipp, P.T.; Ketterling, R.P.; Jenkins, R.B.; et al. Assessment of Isochromosome 12p and 12p Abnormalities in Germ Cell Tumors Using Fluorescence In Situ Hybridization, Single-Nucleotide Polymorphism Arrays, and Next-Generation Sequencing/Mate-Pair Sequencing. Hum. Pathol. 2021, 112, 20–34. [Google Scholar] [CrossRef] [PubMed]
- Szpirer, J.; Szpirer, C.; Riviere, M.; Levan, G.; Marynen, P.; Cassiman, J.J.; Wiese, R.; DeLuca, H.F. The Sp1 Transcription Factor Gene (SP1) and the 1,25-Dihydroxyvitamin D3 Receptor Gene (VDR) Are Colocalized on Human Chromosome arm 12q and Rat Chromosome 7. Genomics 1991, 11, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Swanson, C.M.; Nielson, C.M.; Shrestha, S.; Lee, C.G.; Barrett-Connor, E.; Jans, I.; Cauley, J.A.; Boonen, S.; Bouillon, R.; Vanderschueren, D.; et al. Higher 25(OH)D2 Is Associated with Lower 25(OH)D3 and 1,25(OH)2D3. J. Clin. Endocrinol. Metab. 2014, 99, 2736–2744. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Taylor, C.L.; Yaktine, A.L.; Del Valle, H.B. (Eds.) Dietary Reference Intakes for Calcium and Vitamin D; The National Aacademies Press: Washington, DC, USA, 2011. [Google Scholar]
- Vuolo, L.; Di Somma, C.; Faggiano, A.; Colao, A. Vitamin D and Cancer. Front. Endocrinol. 2012, 3, 58. [Google Scholar] [CrossRef]
- Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The Role of Vitamin D in Reducing Cancer Risk and Progression. Nat. Rev. Cancer 2014, 14, 342–357. [Google Scholar] [CrossRef]
- Pelczynska, M.; Wietrzyk, J.; Jaroszewicz, I.; Nevozhay, D.; Switalska, M.; Kutner, A.; Zabel, M.; Opolski, A. Correlation between VDR Expression and Antiproliferative Activity of Vitamin D3 Compounds in Combination with Cytostatics. Anticancer Res. 2005, 25, 2235–2240. [Google Scholar]
- Seubwai, W.; Wongkham, C.; Puapairoj, A.; Khuntikeo, N.; Wongkham, S. Overexpression of Vitamin D Receptor Indicates a Good Prognosis for Cholangiocarcinoma: Implications for Therapeutics. Cancer 2007, 109, 2497–2505. [Google Scholar] [CrossRef]
- Peila, R.; Xue, X.; Cauley, J.A.; Chlebowski, R.; Manson, J.E.; Nassir, R.; Saquib, N.; Shadyab, A.H.; Zhang, Z.; Wassertheil-Smoller, S.; et al. A Randomized Trial of Calcium Plus Vitamin D Supplementation and Risk of Ductal Carcinoma In Situ of the Breast. JNCI Cancer Spectr. 2021, 5, pkab072. [Google Scholar] [CrossRef] [PubMed]
- Nair-Shalliker, V.; Bang, A.; Egger, S.; Clements, M.; Gardiner, R.A.; Kricker, A.; Seibel, M.J.; Chambers, S.K.; Kimlin, M.G.; Armstrong, B.K.; et al. Post-Treatment Levels of Plasma 25- and 1,25-Dihydroxy Vitamin D and Mortality in Men with Aggressive Prostate Cancer. Sci. Rep. 2020, 10, 7736. [Google Scholar] [CrossRef] [PubMed]
- Stroomberg, H.V.; Vojdeman, F.J.; Madsen, C.M.; Helgstrand, J.T.; Schwarz, P.; Heegaard, A.M.; Olsen, A.; Tjonneland, A.; Struer Lind, B.; Brasso, K.; et al. Vitamin D Levels and the Risk of Prostate Cancer and Prostate Cancer Mortality. Acta Oncol. 2021, 60, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Kotlarz, A.; Przybyszewska, M.; Swoboda, P.; Neska, J.; Miloszewska, J.; Grygorowicz, M.A.; Kutner, A.; Markowicz, S. Imatinib Inhibits the Regrowth of Human Colon Cancer Cells after Treatment with 5-FU and Cooperates with Vitamin D Analogue PRI-2191 in the Downregulation of Expression of Stemness-Related Genes in 5-FU Refractory Cells. J. Steroid Biochem. Mol. Biol. 2019, 189, 48–62. [Google Scholar] [CrossRef]
- Chandler, P.D.; Chen, W.Y.; Ajala, O.N.; Hazra, A.; Cook, N.; Bubes, V.; Lee, I.M.; Giovannucci, E.L.; Willett, W.; Buring, J.E.; et al. Effect of Vitamin D3 Supplements on Development of Advanced Cancer: A Secondary Analysis of the VITAL Randomized Clinical Trial. JAMA Netw. Open. 2020, 3, e2025850. [Google Scholar] [CrossRef]
- Henn, M.; Martin-Gorgojo, V.; Martin-Moreno, J.M. Vitamin D in Cancer Prevention: Gaps in Current Knowledge and Room for Hope. Nutrients 2022, 14, 4512. [Google Scholar] [CrossRef]
- Blomberg Jensen, M.; Nielsen, J.; Jorgensen, A.; Juul, A.; Rajpert-De Meyts, E. Expression of FGF23, Klotho, CaSR, and PTHrP in Carcinoma In Situ and Germ Cell Tumors of the Testis: Implications for Testicular Microlithiasis. In Endocrine Abstracts; Bioscientifica: Bristol, UK, 2013. [Google Scholar] [CrossRef]
- Jeremy, M.; Gurusubramanian, G.; Roy, V.K. Vitamin D3 Regulates Apoptosis and Proliferation in the Testis of D-Galactose-Induced Aged Rat Model. Sci. Rep. 2019, 9, 14103. [Google Scholar] [CrossRef]
- Nangia, A.K.; Hill, O.; Waterman, M.D.; Schwender, C.E.; Memoli, V. Testicular Maturation Arrest to Testis Cancer: Spectrum of Expression of the Vitamin D Receptor and Vitamin D Treatment In Vitro. J. Urol. 2007, 178, 1092–1096. [Google Scholar] [CrossRef]
- Blomberg Jensen, M. Vitamin D and Male Reproduction. Nat. Rev. Endocrinol. 2014, 10, 175–186. [Google Scholar] [CrossRef]
- Nappi, L.; Damiano, V.; Ottaviano, M.; Rescigno, P.; Condello, C.; Curcio, C.; Candido, C.; Matano, E.; Palmieri, G. Correlation between Plasmatic Levels of Vitamin D and Testicular Cancer. Ann. Oncol. 2015, 26, vi58. [Google Scholar] [CrossRef]
- Dieckmann, K.P.; Andura, O.; Pichlmeier, U.; Otte, K.M.; Isbarn, H.; Wulfing, C. Revised Manuscript R2, Clean Version Are Serum Levels of 25-Hydroxy Vitamin D Reduced following Orchiectomy in Testicular Cancer Patients? Basic. Clin. Androl. 2021, 31, 14. [Google Scholar] [CrossRef]
- Lesko, P.; Vlkova, B.; Kalavska, K.; De Angelis, V.; Novotna, V.; Obertova, J.; Orszaghova, Z.; Palacka, P.; Rejlekova, K.; Sycova-Mila, Z.; et al. Prognostic Role of Plasma Vitamin D and Its Association with Disease Characteristics in Germ Cell Tumours. Front Oncol. 2023, 13, 1149432. [Google Scholar] [CrossRef] [PubMed]
- Aquila, S.; Guido, C.; Middea, E.; Perrotta, I.; Bruno, R.; Pellegrino, M.; Ando, S. Human Male Gamete Endocrinology: 1alpha, 25-Dihydroxyvitamin D3 (1,25(OH)2D3) Regulates Different Aspects of Human Sperm Biology and Metabolism. Reprod. Biol. Endocrinol. 2009, 7, 140. [Google Scholar] [CrossRef] [PubMed]
- Blomberg Jensen, M.; Jorgensen, A.; Nielsen, J.E.; Steinmeyer, A.; Leffers, H.; Juul, A.; Rajpert-De Meyts, E. Vitamin D Metabolism and Effects on Pluripotency Genes and Cell Differentiation in Testicular Germ Cell Tumors In Vitro and In Vivo. Neoplasia 2012, 14, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, A.K.; Amento, E.P.; Clemens, T.L.; Holick, M.F.; Krane, S.M. Specific High-Affinity Receptors for 1,25-Dihydroxyvitamin D3 in Human Peripheral Blood Mononuclear Cells: Presence in Monocytes and Induction in T Lymphocytes following Activation. J. Clin. Endocrinol. Metab. 1983, 57, 1308–1310. [Google Scholar] [CrossRef] [PubMed]
- Manolagas, S.C.; Werntz, D.A.; Tsoukas, C.D.; Provvedini, D.M.; Vaughan, J.H. 1,25-Dihydroxyvitamin D3 Receptors in Lymphocytes from Patients with Rheumatoid Arthritis. J. Lab. Clin. Med. 1986, 108, 596–600. [Google Scholar]
- Veldman, C.M.; Cantorna, M.T.; DeLuca, H.F. Expression of 1,25-Dihydroxyvitamin D(3) Receptor in the Immune system. Arch. Biochem. Biophys. 2000, 374, 334–338. [Google Scholar] [CrossRef]
- Trump, D.L.; Deeb, K.K.; Johnson, C.S. Vitamin D: Considerations in the Continued Development as an Agent for Cancer Prevention and Therapy. Cancer J. 2010, 16, 1–9. [Google Scholar] [CrossRef]
- Nappi, L.; Ottaviano, M.; Rescigno, P.; Fazli, L.; Gleave, M.E.; Damiano, V.; De Placido, S.; Palmieri, G. Long Term Deficiency of Vitamin D in Germ Cell Testicular Cancer Survivors. Oncotarget 2018, 9, 21078–21085. [Google Scholar] [CrossRef]
- Boisen, I.M.; Bollehuus Hansen, L.; Mortensen, L.J.; Lanske, B.; Juul, A.; Blomberg Jensen, M. Possible Influence of Vitamin D on Male Reproduction. J. Steroid Biochem. Mol. Biol. 2017, 173, 215–222. [Google Scholar] [CrossRef]
- Corsini, C.; Boeri, L.; Candela, L.; Pozzi, E.; Belladelli, F.; Capogrosso, P.; Fallara, G.; Schifano, N.; Cignoli, D.; Ventimiglia, E.; et al. Is There a Relevant Clinical Impact in Differentiating Idiopathic versus Unexplained Male Infertility? World J. Men’s Health 2022, 41, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Fedirko, V.; Bostick, R.M.; Long, Q.; Flanders, W.D.; McCullough, M.L.; Sidelnikov, E.; Daniel, C.R.; Rutherford, R.E.; Shaukat, A. Effects of Supplemental Vitamin D and Calcium on Oxidative DNA Damage Marker in Normal Colorectal Mucosa: A Randomized Clinical Trial. Cancer Epidemiol. Biomark. Prev. 2010, 19, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Pasqualotto, F.F.; Sharma, R.K.; Kobayashi, H.; Nelson, D.R.; Thomas, A.J.; Agarwal, A. Oxidative Stress in Normospermic Men Undergoing Infertility Evaluation. J. Androl. 2001, 22, 316–322. [Google Scholar]
- Torzsok, P.; Steiner, C.; Pallauf, M.; Abenhardt, M.; Milinovic, L.; Plank, B.; Ruckl, A.; Sieberer, M.; Lusuardi, L.; Deininger, S. Long-Term Follow-Up after Testicular Torsion: Prospective Evaluation of Endocrine and Exocrine Testicular Function, Fertility, Oxidative Stress and Erectile Function. J. Clin. Med. 2022, 11, 6507. [Google Scholar] [CrossRef] [PubMed]
- Tan, I.B.; Ang, K.K.; Ching, B.C.; Mohan, C.; Toh, C.K.; Tan, M.H. Testicular Microlithiasis Predicts Concurrent Testicular Germ Cell Tumors and Intratubular Germ Cell Neoplasia of Unclassified Type in Adults: A Meta-Analysis and Systematic Review. Cancer 2010, 116, 4520–4532. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Winter, T.C., 3rd; Ryu, J.A. Testicular Microlithiasis: Clinical Significance and Review of the Literature. Eur. Radiol. 2003, 13, 2567–2576. [Google Scholar] [CrossRef] [PubMed]
- Blomberg Jensen, M.; Jorgensen, A.; Nielsen, J.E.; Bjerrum, P.J.; Skalkam, M.; Petersen, J.H.; Egeberg, D.L.; Bangsboll, S.; Andersen, A.N.; Skakkebaek, N.E.; et al. Expression of the Vitamin D Metabolizing Enzyme CYP24A1 at the Annulus of Human Spermatozoa May Serve as a Novel Marker of Semen Quality. Int. J. Androl. 2012, 35, 499–510. [Google Scholar] [CrossRef]
- Bollehuus Hansen, L.; Lorenzen, M.; Bentin-Ley, U.; Nielsen, J.E.; Krog, H.; Berg, A.H.; Hakansson, B.S.; Pedersen, A.M.; Host, T.; Juul, A.; et al. Presence of the Vitamin D Inactivating Enzyme CYP24A1 in Human Sperm and Prediction of the Success of Intrauterine Insemination: A Prospective Study. J. Steroid Biochem. Mol. Biol. 2019, 191, 105353. [Google Scholar] [CrossRef]
- Luo, W.; Hershberger, P.A.; Trump, D.L.; Johnson, C.S. 24-Hydroxylase in Cancer: Impact on Vitamin D-Based Anticancer Therapeutics. J. Steroid Biochem. Mol. Biol. 2013, 136, 252–257. [Google Scholar] [CrossRef]
- Meijer, G.A.; Hermsen, M.A.; Baak, J.P.; van Diest, P.J.; Meuwissen, S.G.; Belien, J.A.; Hoovers, J.M.; Joenje, H.; Snijders, P.J.; Walboomers, J.M. Progression from Colorectal Adenoma to Carcinoma Is Associated with Non-Random Chromosomal Gains as Detected by Comparative Genomic Hybridisation. J. Clin. Pathol. 1998, 51, 901–909. [Google Scholar] [CrossRef]
Gene | Description | Cytoband | Samples with CNA | Samples Profiled | Frequency of CNA |
---|---|---|---|---|---|
CCND2 | Cyclin D2, cell cycle regulator | 12p13.32 | 142 | 701 | 20.3% |
CDKN1B | p27KIP1, inhibitor of cyclin D-CDK4 complexes | 12p13.1 | 163 | 701 | 23.3% |
CHD4 | Helicase, epigenetic transcriptional repression | 12p13.31 | 1 | 5 | 20.0% |
ETV6 | ETS family transcription factor | 12p13.2 | 134 | 698 | 19.2% |
FGF23 | Growth factor, phosphate homeostasis | 12p13.32 | 1 | 6 | 16.7% |
FGF6 | Growth factor controlling cell proliferation/differentiation | 12p13.32 | 1 | 6 | 16.7% |
H3F3C | Histone of the H3 family | 12p11.21 | 103 | 594 | 17.3% |
KDM5A | Demethylase of Lysine 4 of histone H3 | 12p13.33 | 122 | 638 | 19.1% |
KRAS | Proto-oncogene, small GTPase | 12p12.1 | 135 | 702 | 19.2% |
PIK3C2G | Member of the phosphoinositide 3-kinase family | 12p12.3 | 102 | 599 | 17.0% |
PTPN6 | Protein tyrosine phosphatase | 12p13.31 | 1 | 1 | 100.0% |
PTPRO | Receptor-type protein tyrosine phosphatase | 12p12.3|12p13-p12 | 1 | 1 | 100.0% |
RAD52 | DNA repair | 12p13.33 | 130 | 637 | 20.4% |
RECQL | Helicase involved in DNA repair | 12p12.1 | 58 | 300 | 19.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Törzsök, P.; Van Goubergen, J.; Pichler, M.; Pichler, R.; Santer, F.R. Isochromosome 12p Formation Regulates Vitamin D Metabolism in Testicular Cancer. Nutrients 2023, 15, 2384. https://doi.org/10.3390/nu15102384
Törzsök P, Van Goubergen J, Pichler M, Pichler R, Santer FR. Isochromosome 12p Formation Regulates Vitamin D Metabolism in Testicular Cancer. Nutrients. 2023; 15(10):2384. https://doi.org/10.3390/nu15102384
Chicago/Turabian StyleTörzsök, Peter, Jasper Van Goubergen, Martin Pichler, Renate Pichler, and Frédéric R. Santer. 2023. "Isochromosome 12p Formation Regulates Vitamin D Metabolism in Testicular Cancer" Nutrients 15, no. 10: 2384. https://doi.org/10.3390/nu15102384
APA StyleTörzsök, P., Van Goubergen, J., Pichler, M., Pichler, R., & Santer, F. R. (2023). Isochromosome 12p Formation Regulates Vitamin D Metabolism in Testicular Cancer. Nutrients, 15(10), 2384. https://doi.org/10.3390/nu15102384