Positive Association of Serum Vitamin B6 Levels with Intrapulmonary Lymph Node and/or Localized Pleural Metastases in Non-Small Cell Lung Cancer: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Serum Vitamin Level Testing
2.4. Intrapulmonary Metastasis Status Classification
2.5. Covariates
2.6. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Association of Serum B Vitamin Levels with Presence of Lung Cancer
3.3. Association of Serum B Vitamin Levels with Intrapulmonary Metastases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 2017, 67, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 2016, 66, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Minguet, J.; Smith, K.H.; Bramlage, P. Targeted therapies for treatment of non-small cell lung cancer--Recent advances and future perspectives. Int. J. Cancer 2016, 138, 2549–2561. [Google Scholar] [CrossRef] [PubMed]
- Goldstraw, P.; Chansky, K.; Crowley, J.; Rami-Porta, R.; Asamura, H.; Eberhardt, W.E.; Nicholson, A.G.; Groome, P.; Mitchell, A.; Bolejack, V.; et al. The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. J. Thorac. Oncol. 2016, 11, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Musika, W.; Kamsa-Ard, S.; Jirapornkul, C.; Santong, C.; Phunmanee, A. Lung Cancer Survival with Current Therapies and New Targeted Treatments: A Comprehensive Update from the Srinagarind Hospital-Based Cancer Registry from (2013 to 2017). Asian Pac. J. Cancer Prev. 2021, 22, 2501–2507. [Google Scholar] [CrossRef] [PubMed]
- MacMahon, H.; Naidich, D.P.; Goo, J.M.; Lee, K.S.; Leung, A.N.C.; Mayo, J.R.; Mehta, A.C.; Ohno, Y.; Powell, C.A.; Prokop, M.; et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology 2017, 284, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Bitenc, M.; Cufer, T.; Kern, I.; Miklavcic, M.; Petrovic, S.; Groznik, V.; Sadikov, A. Real-life long-term outcomes of upfront surgery in patients with resectable stage I–IIIA non-small cell lung cancer. Radiol. Oncol. 2022, 56, 346–354. [Google Scholar] [CrossRef]
- Solberg, S.; Nilssen, Y.; Terje Brustugun, O.; Magnus Haram, P.; Helland, A.; Moller, B.; Strand, T.E.; Gyrid Freim Wahl, S.; Fjellbirkeland, L. Concordance between clinical and pathology TNM-staging in lung cancer. Lung Cancer 2022, 171, 65–69. [Google Scholar] [CrossRef]
- Navani, N.; Fisher, D.J.; Tierney, J.F.; Stephens, R.J.; Burdett, S.; Group, N.M.-a.C. The Accuracy of Clinical Staging of Stage I-IIIa Non-Small Cell Lung Cancer: An Analysis Based on Individual Participant Data. Chest 2019, 155, 502–509. [Google Scholar] [CrossRef]
- Zheng, X.; He, B.; Hu, Y.; Ren, M.; Chen, Z.; Zhang, Z.; Ma, J.; Ouyang, L.; Chu, H.; Gao, H.; et al. Diagnostic Accuracy of Deep Learning and Radiomics in Lung Cancer Staging: A Systematic Review and Meta-Analysis. Front. Public Health 2022, 10, 938113. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, Z.; Wang, M.; Zhao, W.; Zhu, Q.; Shi, W.; Yu, H.; Liang, Z.; Chen, L. A computerized tomography-based radiomic model for assessing the invasiveness of lung adenocarcinoma manifesting as ground-glass opacity nodules. Respir. Res. 2022, 23, 96. [Google Scholar] [CrossRef] [PubMed]
- Kurzius-Spencer, M.; da Silva, V.; Thomson, C.A.; Hartz, V.; Hsu, C.H.; Burgess, J.L.; O’Rourke, M.K.; Harris, R.B. Nutrients in one-carbon metabolism and urinary arsenic methylation in the National Health and Nutrition Examination Survey (NHANES) 2003–2004. Sci. Total Environ. 2017, 607–608, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Shaukat, Z.; Hussain, R.; Gregory, S.L. One-Carbon and Polyamine Metabolism as Cancer Therapy Targets. Biomolecules 2022, 12, 1902. [Google Scholar] [CrossRef] [PubMed]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef]
- Brasky, T.M.; White, E.; Chen, C.L. Long-Term, Supplemental, One-Carbon Metabolism-Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort. J. Clin. Oncol. 2017, 35, 3440–3448. [Google Scholar] [CrossRef]
- Vollset, S.E.; Clarke, R.; Lewington, S.; Ebbing, M.; Halsey, J.; Lonn, E.; Armitage, J.; Manson, J.E.; Hankey, G.J.; Spence, J.D.; et al. Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: Meta-analyses of data on 50,000 individuals. Lancet 2013, 381, 1029–1036. [Google Scholar] [CrossRef]
- Fanidi, A.; Carreras-Torres, R.; Larose, T.L.; Yuan, J.M.; Stevens, V.L.; Weinstein, S.J.; Albanes, D.; Prentice, R.; Pettinger, M.; Cai, Q.; et al. Is high vitamin B12 status a cause of lung cancer? Int. J. Cancer 2019, 145, 1499–1503. [Google Scholar] [CrossRef]
- Ebbing, M.; Bonaa, K.H.; Nygard, O.; Arnesen, E.; Ueland, P.M.; Nordrehaug, J.E.; Rasmussen, K.; Njolstad, I.; Refsum, H.; Nilsen, D.W.; et al. Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA 2009, 302, 2119–2126. [Google Scholar] [CrossRef]
- Fanidi, A.; Muller, D.C.; Yuan, J.M.; Stevens, V.L.; Weinstein, S.J.; Albanes, D.; Prentice, R.; Thomsen, C.A.; Pettinger, M.; Cai, Q.; et al. Circulating Folate, Vitamin B6, and Methionine in Relation to Lung Cancer Risk in the Lung Cancer Cohort Consortium (LC3). J. Natl. Cancer Inst. 2018, 110, 57–67. [Google Scholar]
- Yang, J.; Li, H.; Deng, H.; Wang, Z. Association of One-Carbon Metabolism-Related Vitamins (Folate, B6, B12), Homocysteine and Methionine with the Risk of Lung Cancer: Systematic Review and Meta-Analysis. Front. Oncol. 2018, 8, 493. [Google Scholar] [CrossRef]
- Yan, H.; Jin, X.; Yin, L.; Zhu, C.; Feng, G. Investigating Causal Associations of Circulating Micronutrients Concentrations with the Risk of Lung Cancer: A Mendelian Randomization Study. Nutrients 2022, 14, 4569. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, E.A.; Evans, C.V.; Ivlev, I.; Rushkin, M.C.; Thomas, R.G.; Martin, A.; Lin, J.S. Vitamin and Mineral Supplements for the Primary Prevention of Cardiovascular Disease and Cancer: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2022, 327, 2334–2347. [Google Scholar] [CrossRef] [PubMed]
- Zuo, H.; Ueland, P.M.; Midttun, O.; Tell, G.S.; Fanidi, A.; Zheng, W.; Shu, X.; Xiang, Y.; Wu, J.; Prentice, R.; et al. Vitamin B6 catabolism and lung cancer risk: Results from the Lung Cancer Cohort Consortium (LC3). Ann. Oncol. 2019, 30, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Zuo, H.; Ueland, P.M.; Eussen, S.J.; Tell, G.S.; Vollset, S.E.; Nygard, O.; Midttun, O.; Meyer, K.; Ulvik, A. Markers of vitamin B6 status and metabolism as predictors of incident cancer: The Hordaland Health Study. Int. J. Cancer 2015, 136, 2932–2939. [Google Scholar] [CrossRef]
- Zuo, H.; Ueland, P.M.; Midttun, O.; Vollset, S.E.; Tell, G.S.; Theofylaktopoulou, D.; Travis, R.C.; Boutron-Ruault, M.C.; Fournier, A.; Severi, G.; et al. Results from the European Prospective Investigation into Cancer and Nutrition Link Vitamin B6 Catabolism and Lung Cancer Risk. Cancer Res. 2018, 78, 302–308. [Google Scholar] [CrossRef]
- Meyer, H.E.; Willett, W.C.; Fung, T.T.; Holvik, K.; Feskanich, D. Association of High Intakes of Vitamins B6 and B12 from Food and Supplements with Risk of Hip Fracture Among Postmenopausal Women in the Nurses’ Health Study. JAMA Netw. Open 2019, 2, e193591. [Google Scholar] [CrossRef]
- Takata, Y.; Shu, X.O.; Buchowski, M.S.; Munro, H.M.; Wen, W.; Steinwandel, M.D.; Hargreaves, M.K.; Blot, W.J.; Cai, Q. Food intake of folate, folic acid and other B vitamins with lung cancer risk in a low-income population in the Southeastern United States. Eur. J. Nutr. 2020, 59, 671–683. [Google Scholar] [CrossRef]
- Obeid, R.; Pietrzik, K.; Smoking, B. Vitamins, and Lung Cancer: The Chicken or the Egg Causality Dilemma. J. Clin. Oncol. 2018, 36, 626–627. [Google Scholar] [CrossRef]
- Board WCoTE. World Health Organization Classification of Tumours, Volume 5: Thoracic Tumours, 5th ed.; IARC Press: Lyon, France, 2021; Available online: https://tumourclassification.iarc.who.int/ (accessed on 15 April 2023).
- Lu, X.; Ma, L.; Yin, X.; Ji, H.; Qian, Y.; Zhong, S.; Yan, A.; Zhang, Y. The impact of tobacco exposure on tumor microenvironment and prognosis in lung adenocarcinoma by integrative analysis of multi-omics data. Int. Immunopharmacol. 2021, 101, 108253. [Google Scholar] [CrossRef]
- Parra, M.; Stahl, S.; Hellmann, H. Vitamin B(6) and Its Role in Cell Metabolism and Physiology. Cells 2018, 7, 84. [Google Scholar] [CrossRef]
- Bird, R.P. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. Adv. Food Nutr. Res. 2018, 83, 151–194. [Google Scholar] [PubMed]
- Midttun, O.; Theofylaktopoulou, D.; McCann, A.; Fanidi, A.; Muller, D.C.; Meyer, K.; Ulvik, A.; Zheng, W.; Shu, X.O.; Xiang, Y.B.; et al. Circulating concentrations of biomarkers and metabolites related to vitamin status, one-carbon and the kynurenine pathways in US, Nordic, Asian, and Australian populations. Am. J. Clin. Nutr. 2017, 105, 1314–1326. [Google Scholar] [CrossRef] [PubMed]
- Theofylaktopoulou, D.; Midttun, O.; Ueland, P.M.; Meyer, K.; Fanidi, A.; Zheng, W.; Shu, X.O.; Xiang, Y.B.; Prentice, R.; Pettinger, M.; et al. Impaired functional vitamin B6 status is associated with increased risk of lung cancer. Int. J. Cancer 2018, 142, 2425–2434. [Google Scholar] [CrossRef] [PubMed]
- Stach, K.; Stach, W.; Augoff, K. Vitamin B6 in Health and Disease. Nutrients 2021, 13, 3229. [Google Scholar] [CrossRef]
- Calderon-Ospina, C.A.; Nava-Mesa, M.O.; Paez-Hurtado, A.M. Update on Safety Profiles of Vitamins B1, B6, and B12: A Narrative Review. Ther. Clin. Risk Manag. 2020, 16, 1275–1288. [Google Scholar] [CrossRef]
- Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 2007, 121, 2381–2386. [Google Scholar] [CrossRef]
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar] [CrossRef]
- Merigliano, C.; Mascolo, E.; Burla, R.; Saggio, I.; Verni, F. The Relationship between Vitamin B6, Diabetes and Cancer. Front. Genet. 2018, 9, 388. [Google Scholar] [CrossRef]
- Myte, R.; Gylling, B.; Haggstrom, J.; Schneede, J.; Magne Ueland, P.; Hallmans, G.; Johansson, I.; Palmqvist, R.; Van Guelpen, B. Untangling the role of one-carbon metabolism in colorectal cancer risk: A comprehensive Bayesian network analysis. Sci. Rep. 2017, 7, 43434. [Google Scholar] [CrossRef]
- Selhub, J.; Byun, A.; Liu, Z.; Mason, J.B.; Bronson, R.T.; Crott, J.W. Dietary vitamin B6 intake modulates colonic inflammation in the IL10-/- model of inflammatory bowel disease. J. Nutr. Biochem. 2013, 24, 2138–2143. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Tape, C.J.; Ling, S.; Dimitriadi, M.; McMahon, K.M.; Worboys, J.D.; Leong, H.S.; Norrie, I.C.; Miller, C.J.; Poulogiannis, G.; Lauffenburger, D.A.; et al. Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation. Cell 2016, 165, 910–920. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid. Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. The antioxidant paradox. Lancet 2000, 355, 1179–1180. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.S.; Bird, R.P. Elevated expression of tumor necrosis factor-alpha signaling molecules in colonic tumors of Zucker obese (fa/fa) rats. Int. J. Cancer 2010, 127, 2042–2050. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.C.; Yi, Z.J.; Zhou, Y.; Li, P.Z.; Liu, Z.J.; Duan, S.G.; Gong, J.P. Overexpression of RIP140 suppresses the malignant potential of hepatocellular carcinoma by inhibiting NF-kappaB-mediated alternative polarization of macrophages. Oncol. Rep. 2017, 37, 2971–2979. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhang, J. Inflammasomes in Inflammation-Induced Cancer. Front. Immunol. 2017, 8, 271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Tsuchiya, K.; Kinoshita, T.; Kushiyama, H.; Suidasari, S.; Hatakeyama, M.; Imura, H.; Kato, N.; Suda, T. Vitamin B6 Prevents IL-1beta Protein Production by Inhibiting NLRP3 Inflammasome Activation. J. Biol. Chem. 2016, 291, 24517–24527. [Google Scholar] [CrossRef]
- Huq, M.D.; Wei, L.N. Post-translational modification of nuclear co-repressor receptor-interacting protein 140 by acetylation. Mol. Cell. Proteom. 2005, 4, 975–983. [Google Scholar] [CrossRef]
- Huang, S.C.; Wei, J.C.; Lin, P.T.; Wu, D.J.; Huang, Y.C. Plasma pyridoxal 5′-phosphate is not associated with inflammatory and immune responses after adjusting for serum albumin in patients with rheumatoid arthritis: A preliminary study. Ann. Nutr. Metab. 2012, 60, 83–89. [Google Scholar] [CrossRef]
- Campbell, B.M.; Charych, E.; Lee, A.W.; Moller, T. Kynurenines in CNS disease: Regulation by inflammatory cytokines. Front. Neurosci. 2014, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Ciorba, M.A. Kynurenine pathway metabolites: Relevant to vitamin B-6 deficiency and beyond. Am. J. Clin. Nutr. 2013, 98, 863–864. [Google Scholar] [CrossRef]
- Di Salvo, M.L.; Safo, M.K.; Contestabile, R. Biomedical aspects of pyridoxal 5′-phosphate availability. Front. Biosci. Elite Ed. 2012, 4, 897–913. [Google Scholar] [PubMed]
- Ueland, P.M.; Ulvik, A.; Rios-Avila, L.; Midttun, O.; Gregory, J.F. Direct and Functional Biomarkers of Vitamin B6 Status. Ann. Rev. Nutr. 2015, 35, 33–70. [Google Scholar] [CrossRef] [PubMed]
- Ulvik, A.; Midttun, O.; Pedersen, E.R.; Eussen, S.J.; Nygard, O.; Ueland, P.M. Evidence for increased catabolism of vitamin B-6 during systemic inflammation. Am. J. Clin. Nutr. 2014, 100, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Shiels, M.S.; Katki, H.A.; Freedman, N.D.; Purdue, M.P.; Wentzensen, N.; Trabert, B.; Kitahara, C.M.; Furr, M.; Li, Y.; Kemp, T.J.; et al. Cigarette smoking and variations in systemic immune and inflammation markers. J. Natl. Cancer Inst. 2014, 106, dju294. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Zhang, J.; Xiao, M.; Cui, S.; Wu, S.; Jin, C.; Yang, J.; Lu, X. Transcription factor SP1 and oncoprotein PPP1R13L regulate nicotine-induced epithelial-mesenchymal transition in lung adenocarcinoma via a feedback loop. Biochem. Pharmacol. 2022, 206, 115344. [Google Scholar] [CrossRef]
Characteristics | All Patients (n = 1498) | Patients with Non-Small Cell Lung Cancer | Patients with Benign Lung Nodule | p-Value |
---|---|---|---|---|
(n = 1283) | (n = 215) | |||
Age (year), median [IQR] | 58 [53, 64] | 59 [51, 65] | 52 [48, 55] | <0.001 † |
Sex | ||||
Male, N (%) | 717 (47.9) | 636 (49.6) | 81 (37.7) | 0.001 ‡ |
Female, N (%) | 781 (52.1) | 647 (50.4) | 134 (62.3) | |
BMI (kg/m2), median [IQR] | 24.4 [22.3, 26.8] | 24.4 [22.5, 26.6] | 24.9 [22.7, 27.3] | 0.323 † |
Family history of cancer | ||||
No, N (%) | 1188 (79.3) | 1018 (79.3) | 170 (79.1) | 0.926 ‡ |
Yes, N (%) | 310 (20.7) | 265 (20.7) | 45 (20.9) | |
Marital status | ||||
Married, N (%) | 1466 (97.9) | 1256 (97.9) | 210 (97.7) | 0.514 ‡ |
Never married, N (%) | 8 (0.5) | 6 (0.5) | 2 (0.9) | |
Divorced or widowed, N (%) | 24 (1.6) | 21 (1.6) | 3 (1.4) | |
Smoking history | ||||
Never a smoker, N (%) | 937 (62.6) | 807 (62.9) | 130 (60.5) | 0.308 ‡ |
Ex-smoker, N (%) | 207 (13.8) | 182 (14.2) | 25 (11.6) | |
Current smoker, N (%) | 354 (23.6) | 294 (22.9) | 60 (27.9) | |
Alcohol consumption | ||||
No, N (%) | 1042 (69.6) | 904 (70.5) | 138 (64.2) | 0.064 ‡ |
Yes, N (%) | 456 (30.4) | 379 (29.5) | 77 (35.8) | |
Season of blood sampling for vitamin testing | ||||
June–September, N (%) | 616 (41.1) | 529 (41.2) | 87 (40.5) | 0.833 ‡ |
Other, N (%) | 882 (58.9) | 754 (58.8) | 128 (59.5) | |
Educational level | ||||
No greater than elementary school, N (%) | 203 (13.5) | 179 (14.0) | 24 (11.2) | 0.985 ‡ |
High school graduation, N (%) | 693 (46.3) | 585 (45.6) | 108 (50.2) | |
University or postgraduate graduation, N (%) | 602 (40.2) | 519 (40.5) | 83 (38.6) | |
Diameter of tumor (cm), median [IQR] | 1.5 [1.0, 2.4] | 1.6 [1.0, 2.5] | 1.5 [0.9, 2.4] | 0.018 † |
Number of tumor(s) | ||||
Solitary, N (%) | 1405 (93.8) | 1197 (93.3) | 208 (96.7) | 0.053 ‡ |
Multiple, N (%) | 93 (6.2) | 86 (6.7) | 7 (3.3) | |
Density of tumor | ||||
Solid, N (%) | 854 (57.0) | 675 (52.6) | 179 (83.3) | <0.001 ‡ |
Subsolid, N (%) | 644 (43.0) | 608 (47.4) | 3 6(16.7) | |
Serum vitamin levels | ||||
Vitamin B1, nmol/L | 88.3 [75.2, 108.2] | 88.3 [77.9, 104.1] | 88.8 [73.5, 108.6] | 0.685 † |
Vitamin B2, mg/L | 4.5 [4.0, 5.1] | 4.5 [4.1, 5.1] | 4.6 [4.1, 5.3] | 0.538 † |
Vitamin B6, nmol/L | 35.1 [29.3, 39.8] | 35.6 [30.2, 40.4] | 32.4 [25.8, 38.5] | 0.023 † |
Vitamin B9, nmol/L | 20.4 [16.6, 24.5] | 20.4 [17.4, 24.0] | 20.8 [17.5, 24.2] | 0.643 † |
Vitamin B12, pg/mL | 432.4 [348.2, 519.5] | 434.8 [360.4, 529.3] | 423.7 [326.6, 537.2] | 0.688 † |
Characteristics | Total (n = 1283) | Patients with Intrapulmonary Metastases | Patients without Intrapulmonary Metastases | p-Value |
---|---|---|---|---|
(n = 276) | (n = 1007) | |||
Age (year), median [IQR] | 59 [51, 65] | 59 [52, 65] | 59 [51, 65] | 0.800 † |
Sex | ||||
Male, N (%) | 636 (49.6) | 104 (37.7) | 532 (52.8) | <0.001 ‡ |
Female, N (%) | 647 (50.4) | 172 (62.3) | 475 (47.2) | |
BMI (kg/m2), median [IQR] | 24.4 [22.5, 26.6] | 24.4 [22.1, 26.9] | 24.4 [22.5, 26.5] | 0.909 † |
Family history of cancer | ||||
No, N (%) | 1018 (79.3) | 231 (83.7) | 787 (78.2) | 0.044 ‡ |
Yes, N (%) | 265 (20.7) | 45 (16.3) | 220 (21.8) | |
Marital status | ||||
Married, N (%) | 1256 (97.9) | 270 (97.8) | 985 (97.9) | 0.919 ‡ |
Never married, N (%) | 6 (0.5) | 1 (0.4) | 5 (0.5) | |
Divorced or widowed, N (%) | 21 (1.6) | 5 (1.8) | 16 (1.6) | |
Smoking history | ||||
Never a smoker, N (%) | 807 (62.9) | 134 (48.6) | 673 (66.8) | <0.001 ‡ |
Ex-smoker, N (%) | 182 (14.2) | 52 (18.8) | 130 (12.9) | |
Current smoker, N (%) | 294 (22.9) | 90 (32.6) | 204 (20.3) | |
Alcohol consumption | ||||
No, N (%) | 904 (70.5) | 178 (64.5) | 726 (72.1) | 0.014 ‡ |
Yes, N (%) | 379 (29.5) | 98 (35.5) | 281 (27.9) | |
Season of blood sampling for vitamin testing | ||||
June–September, N (%) | 529 (41.2) | 126 (45.7) | 403 (40.0) | 0.092 ‡ |
Other, N (%) | 754 (58.8) | 150 (54.3) | 604 (60.0) | |
Educational level | ||||
No greater than elementary school, N (%) | 179 (14.0) | 42 (15.2) | 137 (13.6) | 0.007 ‡ |
High school graduation, N (%) | 585 (45.6) | 145 (52.5) | 440 (43.7) | |
University or postgraduate graduation, N (%) | 519 (40.5) | 89 (32.2) | 430 (42.7) | |
Pathology of tumor | ||||
Adenocarcinoma, N (%) | 1125 (87.7) | 218 (79.0) | 907 (90.1) | <0.001 ‡ |
Squamous cell carcinoma, N (%) | 158 (12.3) | 58 (21.0) | 100 (9.9) | |
Intrapulmonary metastasis | ||||
Lymph node, N (%) | 223 (17.5) | 223 (80.8) | NA § | |
Localized pleura, N (%) | 53 (4.1) | 53 (19.2) | ||
None, N (%) | 1007 (78.4) | 1007 (100) | ||
Diameter of tumor (cm), median [IQR] | 1.6 [1.0, 2.5] | 2.5 [1.8, 3.5] | 1.5 [1.0, 2.2] | <0.001 † |
Number of tumor(s) | ||||
Solitary, N (%) | 1197 (93.3) | 221 (80.1) | 976 (96.9) | <0.001 ‡ |
Multiple, N (%) | 86 (6.7) | 55 (19.9) | 31 (3.1) | |
Density of tumor | ||||
Solid, N (%) | 675 (52.6) | 219 (79.3) | 456 (45.3) | <0.001 ‡ |
Subsolid, N (%) | 608 (47.4) | 57 (20.7) | 551 (54.7) | |
Serum vitamin levels | ||||
Vitamin B1, nmol/L | 88.3 [77.9, 104.1] | 89.3 [77.7, 108.6] | 88.1 [78.0, 102.7] | 0.237 † |
Vitamin B2, mg/L | 4.5 [4.1, 5.1] | 4.6 [4.2, 5.2] | 4.5 [4.1, 5.1] | 0.162 † |
Vitamin B6, nmol/L | 35.6 [30.2, 40.4] | 36.7 [30.5, 42.0] | 35.1 [30.2, 40.2] | 0.037 † |
Vitamin B9, nmol/L | 20.4 [17.4, 24.0] | 20.2 [17.1, 24.5] | 20.5 [17.5, 23.9] | 0.929 † |
Vitamin B12, pg/mL | 434.8 [360.4, 529.3] | 418.2 [340.6, 532.3] | 437.8 [365.7, 527.4] | 0.039 † |
Characteristics | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age, year (continuous) | 1.060 (1.044, 1.076) | <0.001 | 1.073 (1.056, 1.090) | <0.001 |
Female (vs. male) | 0.615 (0.457, 0.827) | 0.001 | ||
BMI, kg/m2 (continuous) | 0.976 (0.931, 1.023) | 0.305 | ||
Family history of cancer (vs. none) | 0.983 (0.689, 1.403) | 0.926 | ||
Married (vs. other) | 1.419 (0.499, 4.041) | 0.512 | ||
Current smoker (vs. never a smoker and ex-smoker) | 0.903 (0.764, 1.068) | 0.232 | ||
Current drinker (vs. not) | 0.751 (0.555, 1.018) | 0.065 | ||
Blood sampling in Jun–Sep (vs. other) | 0.969 (0.722, 1.300) | 0.833 | ||
High educational level (vs. low) | 0.980 (0.793, 1.211) | 0.852 | ||
Diameter of tumor, cm (continuous) | 1.086 (0.973, 1.212) | 0.143 | ||
Multiple tumors (vs. solitary tumor) | 2.135 (0.974, 4.677) | 0.058 | ||
Subsolid tumor (vs. solid tumor) | 4.479 (3.080, 6.513) | <0.001 | 5.690 (3.850, 8.408) | <0.001 |
Serum vitamin levels | ||||
Vitamin B1 (continuous) | 0.999 (0.992, 1.005) | 0.728 | ||
Vitamin B2 (continuous) | 0.985 (0.911, 1.065) | 0.711 | ||
Vitamin B6 (continuous) | 1.009 (0.944, 1.024) | 0.251 | ||
Vitamin B9 (continuous) | 0.995 (0.968, 1.023) | 0.731 | ||
Vitamin B12 (continuous) | 1.000 (0.999, 1.001) | 0.759 |
Characteristics | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age, year (continuous) | 1.003 (0.989, 1.017) | 0.703 | ||
Female (vs. male) | 1.852 (1.410, 2.434) | <0.001 | 1.439 (1.039, 1.993) | 0.028 |
BMI, kg/m2 (continuous) | 1.006 (0.963, 1.051) | 0.786 | ||
Family history of cancer (vs. none) | 0.697 (0.490, 0.991) | 0.045 | ||
Married (vs. other) | 1.181 (0.481, 2.903) | 0.716 | ||
Current smoker (vs. never a smoker and ex-smoker) | 1.511 (1.298, 1.759) | <0.001 | ||
Current drinker (vs. not) | 1.422 (1.073, 1.887) | 0.014 | ||
Blood sampling in Jun–Sep (vs. other) | 0.794 (0.607, 1.039) | 0.093 | ||
High educational level (vs. low) | 0.778 (0.643, 0.942) | 0.010 | ||
Squamous cell carcinoma (vs. adenocarcinoma) | 2.413 (1.691, 3.444) | <0.001 | ||
Diameter of tumor, cm (continuous) | 1.686 (1.530, 1.859) | <0.001 | 1.495 (1.337, 1.672) | <0.001 |
Multiple tumors (vs. solitary tumor) | 7.835 (4.928, 12.459) | <0.001 | 26.004 (14.517, 46.580) | <0.001 |
Subsolid tumor (vs. solid tumor) | 0.215 (0.157, 0.296) | <0.001 | 0.220 (0.142, 0.342) | <0.001 |
Serum vitamin levels | ||||
Vitamin B1 (continuous) | 1.004 (0.999, 1.010) | 0.134 | ||
Vitamin B2 (continuous) | 1.013 (0.943, 1.088) | 0.725 | ||
Vitamin B6 (continuous) | 1.016 (1.004, 1.028) | 0.010 | 1.016 (1.002, 1.031) | 0.021 |
Vitamin B9 (continuous) | 1.004 (0.979, 1.030) | 0.729 | ||
Vitamin B12 (continuous) | 0.999 (0.998, 1.000) | 0.074 |
Characteristics | Serum Vitamin B6 Quartile | p-Value | |||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
(n = 322) | (n = 320) | (n = 321) | (n = 320) | ||
Age (year), median [IQR] | 59 [51, 64] | 59 [51, 66] | 58 [50, 64] | 59 [53, 66] | 0.369 † |
Sex | |||||
Male, N (%) | 162 (50.3) | 165 (51.6) | 158 (49.2) | 151 (47.2) | 0.724 ‡ |
Female, N (%) | 160 (49.7) | 155 (48.4) | 163 (50.8) | 169 (52.8) | |
BMI (kg/m2), median [IQR] | 24.5 [22.2, 26.5] | 24.5 [22.6, 26.6] | 24.3 [22.7, 26.5] | 24.3 [22.3, 26.6] | 0.835 † |
Family history of cancer | |||||
No, N (%) | 245 (76.1) | 254 (79.4) | 257 (80.1) | 262 (81.9) | 0.329 ‡ |
Yes, N (%) | 77 (23.9) | 66 (20.6) | 64 (19.9) | 58 (18.1) | |
Smoking history | |||||
Never a smoker, N (%) | 198 (61.5) | 207 (64.7) | 209 (65.1) | 193 (60.3) | 0.032 ‡ |
Ex-smoker, N (%) | 47 (14.6) | 39 (12.2) | 33 (10.3) | 63 (19.7) | |
Current smoker, N (%) | 77 (23.9) | 74 (23.1) | 79 (24.6) | 64 (20.0) | |
Alcohol consumption | |||||
No, N (%) | 228 (70.8) | 222 (69.4) | 242 (75.4) | 212 (66.3) | 0.083 ‡ |
Yes, N (%) | 94 (29.2) | 98 (30.6) | 79 (24.6) | 108 (33.8) | |
Pathology of tumor | |||||
Adenocarcinoma, N (%) | 282 (87.6) | 282 (88.1) | 285 (88.8) | 276 (86.3) | 0.794 ‡ |
Squamous cell carcinoma, N (%) | 40 (12.4) | 38 (11.9) | 36 (11.2) | 44 (13.8) | |
Diameter of tumor (cm), median [IQR] | 1.6 [1.0, 2.5] | 1.5 [1.0, 2.5] | 1.5 [1.0, 2.5] | 1.8 [1.0, 2.7] | 0.277 † |
Number of tumor(s) | |||||
Solitary, N (%) | 297 (92.2) | 305 (95.3) | 304 (94.7) | 291 (90.9) | 0.089 ‡ |
Multiple, N (%) | 25 (7.8) | 15 (4.7) | 17 (5.3) | 29 (9.1) | |
Density of the tumor | |||||
Solid, N (%) | 176 (54.7) | 166 (51.9) | 166 (51.7) | 167 (52.2) | 0.864 ‡ |
Subsolid, N (%) | 146 (45.3) | 154 (48.1) | 155 (48.3) | 153 (47.8) |
Stratified Characteristics | Vit B6 (μmol/L) (in Quartiles) | p for Trend ‡ | p for Interaction § | |||||
---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | |||||
(n = 322) | (n = 320) | (n = 321) | (n = 320) | |||||
All patients | (n = 1283) | OR | 1.0 (Ref) | 1.208 (0.775, 1.885) | 1.123 (0.717, 1.759) | 1.676 (1.092, 2.574) | 0.030 | |
p-value † | 0.404 | 0.612 | 0.018 | |||||
Age, y | <40 (n = 43) | OR | 1.0 (Ref) | NA ¶ | NA ¶ | NA ¶ | NA ¶ | 0.032 |
p-value † | ||||||||
40 to 60 (n = 693) | OR | 1.0 (Ref) | 1.432 (0.769, 2.669) | 1.130 (0.593, 2.152) | 1.803 (0.978, 3.325) | 0.112 | ||
p-value † | 0.258 | 0.711 | 0.059 | |||||
>60 (n = 547) | OR | 1.0 (Ref) | 1.172 (0.602, 2.283) | 1.084 (0.549, 2.137) | 1.738 (0.914, 3.305) | 0.119 | ||
p-value † | 0.640 | 0.817 | 0.092 | |||||
Sex | Male (n = 636) | OR | 1.0 (Ref) | 0.966 (0.473, 1.946) | 0.731 (0.338, 1.579) | 1.172 (0.569, 2.414) | 0.838 | <0.001 |
p-value † | 0.926 | 0.425 | 0.667 | |||||
Female (n = 647) | OR | 1.0 (Ref) | 1.252 (0.704, 2.229) | 1.404 (0.799, 2.466) | 1.968 (1.144, 3.386) | 0.014 | ||
p-value † | 0.444 | 0.238 | 0.014 | |||||
BMI, kg/m2 | <18.5 (n = 11) | OR | 1.0 (Ref) | NA ¶ | NA ¶ | NA ¶ | NA ¶ | 0.527 |
p-value † | ||||||||
18.5 to 24.0 (n = 553) | OR | 1.0 (Ref) | 1.478 (0.749, 2.917) | 0.949 (0.472, 1.909) | 1.947 (0.999, 3.793) | 0.137 | ||
p-value † | 0.260 | 0.884 | 0.050 | |||||
>24.0 (n = 719) | OR | 1.0 (Ref) | 1.025 (0.560, 1.873) | 1.245 (0.683, 2.271) | 1.633 (0.920, 2.898) | 0.069 | ||
p-value † | 0.937 | 0.474 | 0.094 | |||||
Family history of cancer | No (n = 1018) | OR | 1.0 (Ref) | 0.997 (0.614, 1.618) | 0.847 (0.515, 1.393) | 1.375 (0.865, 2.185) | 0.252 | 0.846 |
p-value † | 0.989 | 0.513 | 0.179 | |||||
Yes (n = 265) | OR | 1.0 (Ref) | 4.176 (1.151, 15.146) | 4.646 (1.377, 15.674) | 5.337 (1.492, 19.093) | 0.010 | ||
p-value † | 0.030 | 0.013 | 0.010 | |||||
Smoking history | Never a smoker (n = 807) | OR | 1.0 (Ref) | 1.428 (0.754, 2.704) | 1.257 (0.653, 2.421) | 1.356 (0.709, 2.593) | 0.476 | <0.001 |
p-value † | 0.274 | 0.494 | 0.357 | |||||
Ex-smoker (n = 182) | OR | 1.0 (Ref) | 1.684 (0.564, 5.026) | 0.528 (0.138, 2.022) | 1.810 (0.694, 4.722) | 0.393 | ||
p-value † | 0.350 | 0.351 | 0.225 | |||||
Current smoker (n = 294) | OR | 1.0 (Ref) | 0.697 (0.298, 1.630) | 1.211 (0.555, 2.642) | 2.462 (1.104, 5.491) | 0.016 | ||
p-value † | 0.405 | 0.631 | 0.028 | |||||
Alcohol consumption | Never a drinker (n = 904) | OR | 1.0 (Ref) | 1.441 (0.837, 2.483) | 0.818 (0.463, 1.445) | 1.371 (0.797, 2.358) | 0.642 | <0.001 |
p-value † | 0.188 | 0.488 | 0.254 | |||||
Current drinker (n = 379) | OR | 1.0 (Ref) | 0.800 (0.357, 1.793) | 2.159 (1.008, 4.628) | 2.163 (1.041, 4.492) | 0.006 | ||
p-value † | 0.588 | 0.048 | 0.039 | |||||
Pathology of tumor | Adenocarcinoma (n = 1125) | OR | 1.0 (Ref) | 1.124 (0.682, 1.853) | 1.193 (0.725, 1.962) | 1.360 (0.836, 2.214) | 0.211 | <0.001 |
p-value † | 0.645 | 0.487 | 0.216 | |||||
Squamous cell carcinoma (n = 158) | OR | 1.0 (Ref) | 1.523 (0.519, 4.470) | 0.761 (0.248, 2.333) | 3.933 (1.421, 10.888) | 0.024 | ||
p-value † | 0.444 | 0.633 | 0.008 | |||||
Diameter of tumor, cm | <1 (n = 370) | OR | 1.0 (Ref) | 0.339 (0.031, 3.656) | 0.450 (0.055, 3.659) | 1.069 (0.183, 6.262) | 0.898 | <0.001 |
p-value † | 0.373 | 0.455 | 0.941 | |||||
1–3 (n = 731) | OR | 1.0 (Ref) | 1.661 (0.944, 2.923) | 1.759 (1.000, 3.094) | 2.152 (1.233, 3.755) | 0.009 | ||
p-value † | 0.078 | 0.050 | 0.007 | |||||
>3 (n = 182) | OR | 1.0 (Ref) | 0.684 (0.279, 1.679) | 0.455 (0.180, 1.149) | 1.406 (0.605, 3.265) | 0.645 | ||
p-value † | 0.408 | 0.096 | 0.429 | |||||
Number of tumor(s) | Solitary (n = 1197) | OR | 1.0 (Ref) | 1.205 (0.752, 1.932) | 1.156 (0.719, 1.859) | 1.664 (1.051, 2.636) | 0.043 | <0.001 |
p-value † | 0.439 | 0.548 | 0.030 | |||||
Multiple (n = 86) | OR | 1.0 (Ref) | 1.058 (0.225, 4.985) | 0.578 (0.118, 2.826) | 1.319 (0.327, 5.323) | 0.776 | ||
p-value † | 0.943 | 0.499 | 0.698 | |||||
Density of tumor | Solid (n = 675) | OR | 1.0 (Ref) | 1.251 (0.760, 2.059) | 1.048 (0.634, 1.730) | 1.519 (0.932, 2.477) | 0.167 | <0.001 |
p-value † | 0.379 | 0.856 | 0.094 | |||||
Subsolid (n = 608) | OR | 1.0 (Ref) | 1.113 (0.388, 3.191) | 1.628 (0.559, 4.743) | 2.468 (0.963, 6.325) | 0.038 | ||
p-value † | 0.842 | 0.372 | 0.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Yu, H.; Bai, J.; Xu, Q.; Zhang, Y.; Zhang, X.; Yu, Z.; Liu, Y. Positive Association of Serum Vitamin B6 Levels with Intrapulmonary Lymph Node and/or Localized Pleural Metastases in Non-Small Cell Lung Cancer: A Retrospective Study. Nutrients 2023, 15, 2340. https://doi.org/10.3390/nu15102340
Liu L, Yu H, Bai J, Xu Q, Zhang Y, Zhang X, Yu Z, Liu Y. Positive Association of Serum Vitamin B6 Levels with Intrapulmonary Lymph Node and/or Localized Pleural Metastases in Non-Small Cell Lung Cancer: A Retrospective Study. Nutrients. 2023; 15(10):2340. https://doi.org/10.3390/nu15102340
Chicago/Turabian StyleLiu, Lu, Hang Yu, Jingmin Bai, Qing Xu, Yong Zhang, Xinsheng Zhang, Zhimeng Yu, and Yinghua Liu. 2023. "Positive Association of Serum Vitamin B6 Levels with Intrapulmonary Lymph Node and/or Localized Pleural Metastases in Non-Small Cell Lung Cancer: A Retrospective Study" Nutrients 15, no. 10: 2340. https://doi.org/10.3390/nu15102340
APA StyleLiu, L., Yu, H., Bai, J., Xu, Q., Zhang, Y., Zhang, X., Yu, Z., & Liu, Y. (2023). Positive Association of Serum Vitamin B6 Levels with Intrapulmonary Lymph Node and/or Localized Pleural Metastases in Non-Small Cell Lung Cancer: A Retrospective Study. Nutrients, 15(10), 2340. https://doi.org/10.3390/nu15102340