The Intake of Dicarbonyls and Advanced Glycation Endproducts as Part of the Habitual Diet Is Not Associated with Intestinal Inflammation in Inflammatory Bowel Disease and Irritable Bowel Syndrome Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.1.1. IBD South Limburg Cohort
2.1.2. Maastricht IBS Cohort
2.2. Demographic and Clinical Data Collection
2.3. Dietary Data Collection
Dietary Dicarbonyls & AGEs
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Intake of Dietary Dicarbonyls
3.3. Intake of Dietary AGEs
3.4. Intestinal Inflammation
3.5. Inflammatory Potential of Diet and Overall Diet Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3-DG | 3-deoxyglucosone |
ADII | Adapted Dietary Inflammatory Index |
AGEs | advanced glycation endproducts |
ANOVA | analysis of variance |
BMI | body mass index |
CD | Crohn’s disease |
CEL | Nε-(1-carboxyethyl)lysine |
CML | Nε-(carboxymethyl)lysine |
CRP | C-Reactive Protein |
DHD-2015 | Dutch Healthy Diet Index 2015 |
ELISA | enzyme-linked immunosorbent assay |
FEIA | fluorescent enzyme immune assay |
FFQ | food frequency questionnaire |
GI | gastrointestinal |
GO | glyoxal |
HBI | Harvey Bradshaw Index |
HC | healthy controls |
IBD | inflammatory bowel disease |
IBDSL | IBD South Limburg |
IBS | irritable bowel syndrome |
IBS-C | constipation predominant IBS |
IBS-D | diarrhoea predominant IBS |
IBS-M | mixed stool pattern IBS |
IBS-U | unspecified subtype IBS |
MIBS | Maastricht IBS |
MG-H1 | methylglyoxal-derived hydroimidazolone-1 |
MGO | methylglyoxal |
MRPs | Maillard reaction products |
MUMC+ | Maastricht University Medical Center+ |
RAGE | receptor for advanced glycation endproducts |
SCCAI | Simple Clinical Colitis Activity Index |
TIM-1 | TNO in vitro gastrointestinal digestion model |
SD | standard deviation |
UC | ulcerative colitis |
UHPLC-MS/MS | ultra high-performance liquid chromatography tandem mass spectrometry |
References
- Bastos, D.; Monaro, E.R.; Siguemoto, E.; Séfora, M. Maillard Reaction Products in Processed Food: Pros and Cons; InTech: London, UK, 2012. [Google Scholar]
- Uribarri, J.; Cai, W.; Peppa, M.; Goodman, S.; Ferrucci, L.; Striker, G.; Vlassara, H. Circulating glycotoxins and dietary advanced glycation endproducts: Two links to inflammatory response, oxidative stress, and aging. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 427–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajan, B.S.; Manivasagam, S.; Dhanusu, S.; Chandrasekar, N.; Krishna, K.; Kalaiarasu, L.P.; Babu, A.A.; Vellaichamy, E. Diet with high content of advanced glycation end products induces systemic inflammation and weight gain in experimental mice: Protective role of curcumin and gallic acid. Food Chem. Toxicol. 2018, 114, 237–245. [Google Scholar] [CrossRef]
- van der Lugt, T.; Weseler, A.R.; Gebbink, W.A.; Vrolijk, M.F.; Opperhuizen, A.; Bast, A. Dietary Advanced Glycation Endproducts Induce an Inflammatory Response in Human Macrophages In Vitro. Nutrients 2018, 10, 1868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dongen, K.C.W.; Linkens, A.M.A.; Wetzels, S.M.W.; Wouters, K.; Vanmierlo, T.; van de Waarenburg, M.P.H.; Scheijen, J.; de Vos, W.M.; Belzer, C.; Schalkwijk, C.G. Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility. Food Res. Int. 2021, 147, 110547. [Google Scholar] [CrossRef]
- Qu, W.; Yuan, X.; Zhao, J.; Zhang, Y.; Hu, J.; Wang, J.; Li, J. Dietary advanced glycation end products modify gut microbial composition and partially increase colon permeability in rats. Mol. Nutr. Food Res. 2017, 61, 1700118. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cai, W.; Yu, J.; Liu, H.; He, S.; Zhu, L.; Xu, J. Dietary Advanced Glycation End Products Shift the Gut Microbiota Composition and Induce Insulin Resistance in Mice. Diabetes Metab. Syndr. Obes. 2022, 15, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Seiquer, I.; Rubio, L.A.; Peinado, M.J.; Delgado-Andrade, C.; Navarro, M.P. Maillard reaction products modulate gut microbiota composition in adolescents. Mol. Nutr. Food Res. 2014, 58, 1552–1560. [Google Scholar] [CrossRef]
- Yacoub, R.; Nugent, M.; Cai, W.; Nadkarni, G.N.; Chaves, L.D.; Abyad, S.; Honan, A.M.; Thomas, S.A.; Zheng, W.; Valiyaparambil, S.A.; et al. Advanced glycation end products dietary restriction effects on bacterial gut microbiota in peritoneal dialysis patients; a randomized open label controlled trial. PLoS ONE 2017, 12, e0184789. [Google Scholar] [CrossRef] [Green Version]
- Linkens, A.M.A.; van Best, N.; Niessen, P.M.; Wijckmans, N.E.G.; de Goei, E.E.C.; Scheijen, J.L.J.M.; van Dongen, M.C.J.M.; van Gool, C.C.J.A.W.; de Vos, W.M.; Houben, A.J.H.M.; et al. A 4-Week Diet Low or High in Advanced Glycation Endproducts Has Limited Impact on Gut Microbial Composition in Abdominally Obese Individuals: The deAGEing Trial. Int. J. Mol. Sci. 2022, 23, 5328. [Google Scholar] [CrossRef]
- Nowotny, K.; Schroter, D.; Schreiner, M.; Grune, T. Dietary advanced glycation end products and their relevance for human health. Ageing Res. Rev. 2018, 47, 55–66. [Google Scholar] [CrossRef]
- Hellwig, M.; Gensberger-Reigl, S.; Henle, T.; Pischetsrieder, M. Food-derived 1,2-dicarbonyl compounds and their role in diseases. Semin. Cancer Biol. 2018, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Maessen, D.E.; Stehouwer, C.D.; Schalkwijk, C.G. The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin. Sci. 2015, 128, 839–861. [Google Scholar] [CrossRef] [PubMed]
- Baye, E.; de Courten, M.P.; Walker, K.; Ranasinha, S.; Earnest, A.; Forbes, J.M.; de Courten, B. Effect of dietary advanced glycation end products on inflammation and cardiovascular risks in healthy overweight adults: A randomised crossover trial. Sci. Rep. 2017, 7, 4123. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.-G.; Chun, S.-H.; Kim, D.H.; Kim, J.H.; Shin, H.S.; Cho, Y.S.; Kim, Y.K.; Choi, H.-d.; Lee, K.-W. Anti-inflammatory effect of sugar-amino acid Maillard reaction products on intestinal inflammation model in vitro and in vivo. Carbohydr. Res. 2017, 449, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Maasen, K.; Eussen, S.; Dagnelie, P.C.; Houben, A.; Webers, C.A.B.; Schram, M.T.; Berendschot, T.; Stehouwer, C.D.A.; Opperhuizen, A.; van Greevenbroek, M.M.J.; et al. Habitual intake of dietary methylglyoxal is associated with less low-grade inflammation: The Maastricht Study. Am. J. Clin. Nutr. 2022, 116, 1715–1728. [Google Scholar] [CrossRef]
- Degen, J.; Beyer, H.; Heymann, B.; Hellwig, M.; Henle, T. Dietary Influence on Urinary Excretion of 3-Deoxyglucosone and Its Metabolite 3-Deoxyfructose. J. Agric. Food Chem. 2014, 62, 2449–2456. [Google Scholar] [CrossRef] [PubMed]
- Degen, J.; Vogel, M.; Richter, D.; Hellwig, M.; Henle, T. Metabolic Transit of Dietary Methylglyoxal. J. Agric. Food Chem. 2013, 61, 10253–10260. [Google Scholar] [CrossRef]
- Koschinsky, T.; He, C.J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474–6479. [Google Scholar] [CrossRef] [Green Version]
- Hellwig, M.; Geissler, S.; Matthes, R.; Peto, A.; Silow, C.; Brandsch, M.; Henle, T. Transport of free and peptide-bound glycated amino acids: Synthesis, transepithelial flux at Caco-2 cell monolayers, and interaction with apical membrane transport proteins. Chembiochem 2011, 12, 1270–1279. [Google Scholar] [CrossRef]
- Grunwald, S.; Krause, R.; Bruch, M.; Henle, T.; Brandsch, M. Transepithelial flux of early and advanced glycation compounds across Caco-2 cell monolayers and their interaction with intestinal amino acid and peptide transport systems. Br. J. Nutr. 2006, 95, 1221–1228. [Google Scholar] [CrossRef]
- Geissler, S.; Hellwig, M.; Markwardt, F.; Henle, T.; Brandsch, M. Synthesis and intestinal transport of the iron chelator maltosine in free and dipeptide form. Eur. J. Pharm. Biopharm. 2011, 78, 75–82. [Google Scholar] [CrossRef]
- Xu, D.; Li, L.; Zhang, X.; Yao, H.; Yang, M.; Gai, Z.; Li, B.; Zhao, D. Degradation of Peptide-Bound Maillard Reaction Products in Gastrointestinal Digests of Glyoxal-Glycated Casein by Human Colonic Microbiota. J. Agric. Food Chem. 2019, 67, 12094–12104. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, Z.; Wang, Y.; Hu, S.; Liu, N. Biodistribution and elimination study of fluorine-18 labeled Nε-carboxymethyl-lysine following intragastric and intravenous administration. PLoS ONE 2013, 8, e57897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzello, F.; Spisni, E.; Giovanardi, E.; Imbesi, V.; Salice, M.; Alvisi, P.; Valerii, M.C.; Gionchetti, P. Implications of the Westernized Diet in the Onset and Progression of IBD. Nutrients 2019, 11, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajilic-Stojanovic, M.; Jonkers, D.M.; Salonen, A.; Hanevik, K.; Raes, J.; Jalanka, J.; de Vos, W.M.; Manichanh, C.; Golic, N.; Enck, P.; et al. Intestinal microbiota and diet in IBS: Causes, consequences, or epiphenomena? Am. J. Gastroenterol. 2015, 110, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Gomollón, F.; Dignass, A.; Annese, V.; Tilg, H.; Van Assche, G.; Lindsay, J.O.; Peyrin-Biroulet, L.; Cullen, G.J.; Daperno, M.; Kucharzik, T.; et al. European Evidence-based Consensus on the Diagnosis and Management of Crohn’s Disease 2016: Part 1: Diagnosis and Medical Management. J. Crohns Colitis 2017, 11, 3–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. J. Crohns Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef] [Green Version]
- Ford, A.C.; Lacy, B.E.; Talley, N.J. Irritable Bowel Syndrome. N. Engl. J. Med. 2017, 376, 2566–2578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrassy, M.; Igwe, J.; Autschbach, F.; Volz, C.; Remppis, A.; Neurath, M.F.; Schleicher, E.; Humpert, P.M.; Wendt, T.; Liliensiek, B.; et al. Posttranslationally modified proteins as mediators of sustained intestinal inflammation. Am. J. Pathol. 2006, 169, 1223–1237. [Google Scholar] [CrossRef] [Green Version]
- Ciccocioppo, R.; Vanoli, A.; Klersy, C.; Imbesi, V.; Boccaccio, V.; Manca, R.; Betti, E.; Cangemi, G.C.; Strada, E.; Besio, R.; et al. Role of the advanced glycation end products receptor in Crohn’s disease inflammation. World J. Gastroenterol. 2013, 19, 8269–8281. [Google Scholar] [CrossRef]
- Body-Malapel, M.; Djouina, M.; Waxin, C.; Langlois, A.; Gower-Rousseau, C.; Zerbib, P.; Schmidt, A.M.; Desreumaux, P.; Boulanger, E.; Vignal, C. The RAGE signaling pathway is involved in intestinal inflammation and represents a promising therapeutic target for Inflammatory Bowel Diseases. Mucosal Immunol. 2019, 12, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Wautier, M.P.; Guillausseau, P.J.; Wautier, J.L. Activation of the receptor for advanced glycation end products and consequences on health. Diabetes Metab. Syndr. 2017, 11, 305–309. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, M.C.G.; Spooren, C.E.G.M.; Hendrix, E.M.B.; Hesselink, M.A.M.; Feskens, E.J.M.; Smolinska, A.; Keszthelyi, D.; Pierik, M.J.; Mujagic, Z.; Jonkers, D.M.A.E. Diet Quality and Dietary Inflammatory Index in Dutch Inflammatory Bowel Disease and Irritable Bowel Syndrome Patients. Nutrients 2022, 14, 1945. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, T.R.; Jonkers, D.M.; Jeuring, S.F.; Romberg-Camps, M.J.; Oostenbrug, L.E.; Zeegers, M.P.; Masclee, A.A.; Pierik, M.J. Cohort Profile: The Inflammatory Bowel Disease South Limburg Cohort (IBDSL). Int. J. Epidemiol. 2017, 46, e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujagic, Z.; Ludidi, S.; Keszthelyi, D.; Hesselink, M.A.; Kruimel, J.W.; Lenaerts, K.; Hanssen, N.M.; Conchillo, J.M.; Jonkers, D.M.; Masclee, A.A. Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders. Aliment. Pharmacol. Ther. 2014, 40, 288–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennard-Jones, J.E. Classification of inflammatory bowel disease. Scand. J. Gastroenterol. Suppl. 1989, 170, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Ersryd, A.; Posserud, I.; Abrahamsson, H.; Simrén, M. Subtyping the irritable bowel syndrome by predominant bowel habit: Rome II versus Rome III. Aliment. Pharmacol. Ther. 2007, 26, 953–961. [Google Scholar] [CrossRef]
- Satsangi, J.; Silverberg, M.S.; Vermeire, S.; Colombel, J.F. The Montreal classification of inflammatory bowel disease: Controversies, consensus, and implications. Gut 2006, 55, 749–753. [Google Scholar] [CrossRef] [Green Version]
- Walmsley, R.S.; Ayres, R.C.; Pounder, R.E.; Allan, R.N. A simple clinical colitis activity index. Gut 1998, 43, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Harvey, R.F.; Bradshaw, J.M. A simple index of Crohn’s-disease activity. Lancet 1980, 1, 514. [Google Scholar] [CrossRef]
- de Jong, M.J.; van der Meulen-de Jong, A.E.; Romberg-Camps, M.J.; Becx, M.C.; Maljaars, J.P.; Cilissen, M.; van Bodegraven, A.A.; Mahmmod, N.; Markus, T.; Hameeteman, W.M.; et al. Telemedicine for management of inflammatory bowel disease (myIBDcoach): A pragmatic, multicentre, randomised controlled trial. Lancet 2017, 390, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Galazzo, G.; Tedjo, D.I.; Wintjens, D.S.J.; Savelkoul, P.H.M.; Masclee, A.A.M.; Bodelier, A.G.L.; Pierik, M.J.; Jonkers, D.; Penders, J. Faecal Microbiota Dynamics and their Relation to Disease Course in Crohn’s Disease. J. Crohns Colitis 2019, 13, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Siebelink, E.; Geelen, A.; de Vries, J.H. Self-reported energy intake by FFQ compared with actual energy intake to maintain body weight in 516 adults. Br. J. Nutr. 2011, 106, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Streppel, M.T.; de Vries, J.H.; Meijboom, S.; Beekman, M.; de Craen, A.J.; Slagboom, P.E.; Feskens, E.J. Relative validity of the food frequency questionnaire used to assess dietary intake in the Leiden Longevity Study. Nutr. J. 2013, 12, 75. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.C. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2013. [Google Scholar]
- Looman, M.; Feskens, E.J.; de Rijk, M.; Meijboom, S.; Biesbroek, S.; Temme, E.H.; de Vries, J.; Geelen, A. Development and evaluation of the Dutch Healthy Diet index 2015. Public Health Nutr. 2017, 20, 2289–2299. [Google Scholar] [CrossRef]
- van Woudenbergh, G.J.; Theofylaktopoulou, D.; Kuijsten, A.; Ferreira, I.; van Greevenbroek, M.M.; van der Kallen, C.J.; Schalkwijk, C.G.; Stehouwer, C.D.; Ocke, M.C.; Nijpels, G.; et al. Adapted dietary inflammatory index and its association with a summary score for low-grade inflammation and markers of glucose metabolism: The Cohort study on Diabetes and Atherosclerosis Maastricht (CODAM) and the Hoorn study. Am. J. Clin. Nutr. 2013, 98, 1533–1542. [Google Scholar] [CrossRef] [Green Version]
- Health Council of the Netherlands. Dutch Dietary Guidelines 2015; Health Council of the Netherlands: The Hague, The Netherlands, 2015. [Google Scholar]
- Maasen, K.; Scheijen, J.; Opperhuizen, A.; Stehouwer, C.D.A.; Van Greevenbroek, M.M.; Schalkwijk, C.G. Quantification of dicarbonyl compounds in commonly consumed foods and drinks; presentation of a food composition database for dicarbonyls. Food Chem. 2021, 339, 128063. [Google Scholar] [CrossRef]
- Scheijen, J.; Clevers, E.; Engelen, L.; Dagnelie, P.C.; Brouns, F.; Stehouwer, C.D.A.; Schalkwijk, C.G. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food Chem. 2016, 190, 1145–1150. [Google Scholar] [CrossRef]
- IBM_Corp. IBM SPSS Statistics for Macintosh; IMB Corp.: Armonk, NY, USA, 2019. [Google Scholar]
- Pathirana, W.G.W.; Chubb, S.P.; Gillett, M.J.; Vasikaran, S.D. Faecal Calprotectin. Clin. Biochem. Rev. 2018, 39, 77–90. [Google Scholar]
- Maasen, K.; van Greevenbroek, M.M.J.; Scheijen, J.; van der Kallen, C.J.H.; Stehouwer, C.D.A.; Schalkwijk, C.G. High dietary glycemic load is associated with higher concentrations of urinary advanced glycation endproducts: The Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) Study. Am. J. Clin. Nutr. 2019, 110, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Maasen, K.; Eussen, S.; Scheijen, J.; van der Kallen, C.J.H.; Dagnelie, P.C.; Opperhuizen, A.; Stehouwer, C.D.A.; van Greevenbroek, M.M.J.; Schalkwijk, C.G. Higher habitual intake of dietary dicarbonyls is associated with higher corresponding plasma dicarbonyl concentrations and skin autofluorescence: The Maastricht Study. Am. J. Clin. Nutr. 2021, 115, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Linkens, A.M.A.; Houben, A.; Kroon, A.A.; Schram, M.T.; Berendschot, T.; Webers, C.A.B.; van Greevenbroek, M.; Henry, R.M.A.; de Galan, B.; Stehouwer, C.D.A.; et al. Habitual intake of dietary advanced glycation end products is not associated with generalized microvascular function-the Maastricht Study. Am. J. Clin. Nutr. 2022, 115, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Scheijen, J.; Hanssen, N.M.J.; van Greevenbroek, M.M.; Van der Kallen, C.J.; Feskens, E.J.M.; Stehouwer, C.D.A.; Schalkwijk, C.G. Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clin. Nutr. 2018, 37, 919–925. [Google Scholar] [CrossRef]
- Förster, A.; Kühne, Y.; Henle, T. Studies on absorption and elimination of dietary maillard reaction products. Ann. N. Y. Acad. Sci. 2005, 1043, 474–481. [Google Scholar] [CrossRef] [PubMed]
- van der Lugt, T.; Venema, K.; van Leeuwen, S.; Vrolijk, M.F.; Opperhuizen, A.; Bast, A. Gastrointestinal digestion of dietary advanced glycation endproducts using an in vitro model of the gastrointestinal tract (TIM-1). Food Funct. 2020, 11, 6297–6307. [Google Scholar] [CrossRef] [PubMed]
- Almajwal, A.M.; Alam, I.; Abulmeaty, M.; Razak, S.; Pawelec, G.; Alam, W. Intake of dietary advanced glycation end products influences inflammatory markers, immune phenotypes, and antiradical capacity of healthy elderly in a little-studied population. Food Sci. Nutr. 2020, 8, 1046–1057. [Google Scholar] [CrossRef] [Green Version]
- Poulsen, M.W.; Hedegaard, R.V.; Andersen, J.M.; de Courten, B.; Bügel, S.; Nielsen, J.; Skibsted, L.H.; Dragsted, L.O. Advanced glycation endproducts in food and their effects on health. Food Chem. Toxicol. 2013, 60, 10–37. [Google Scholar] [CrossRef]
- Liu, H.; Huo, X.; Wang, S.; Yin, Z. The inhibitory effects of natural antioxidants on protein glycation as well as aggregation induced by methylglyoxal and underlying mechanisms. Colloids Surf. B Biointerfaces 2022, 212, 112360. [Google Scholar] [CrossRef]
- Yu, H.; Zhong, Q.; Guo, Y.; Xie, Y.; Cheng, Y.; Yao, W. Potential of resveratrol in mitigating advanced glycation end-products formed in baked milk and baked yogurt. Food Res. Int. 2020, 133, 109191. [Google Scholar] [CrossRef]
- Van den Eynde, M.D.G.; Geleijnse, J.M.; Scheijen, J.; Hanssen, N.M.J.; Dower, J.I.; Afman, L.A.; Stehouwer, C.D.A.; Hollman, P.C.H.; Schalkwijk, C.G. Quercetin, but Not Epicatechin, Decreases Plasma Concentrations of Methylglyoxal in Adults in a Randomized, Double-Blind, Placebo-Controlled, Crossover Trial with Pure Flavonoids. J. Nutr. 2018, 148, 1911–1916. [Google Scholar] [CrossRef]
- Moraru, A.; Wiederstein, J.; Pfaff, D.; Fleming, T.; Miller, A.K.; Nawroth, P.; Teleman, A.A. Elevated Levels of the Reactive Metabolite Methylglyoxal Recapitulate Progression of Type 2 Diabetes. Cell Metab. 2018, 27, 926–934. [Google Scholar] [CrossRef]
- Ravichandran, M.; Priebe, S.; Grigolon, G.; Rozanov, L.; Groth, M.; Laube, B.; Guthke, R.; Platzer, M.; Zarse, K.; Ristow, M. Impairing L-Threonine Catabolism Promotes Healthspan through Methylglyoxal-Mediated Proteohormesis. Cell Metab. 2018, 27, 914–925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabre, N.T.; Thieme, K.; Silva, K.S.; Catanozi, S.; Cavaleiro, A.M.; Pinto, D.A., Jr.; Okamoto, M.M.; Morais, M.R.; Falquetto, B.; Zorn, T.M.; et al. Hormetic modulation of hepatic insulin sensitivity by advanced glycation end products. Mol. Cell. Endocrinol. 2017, 447, 116–124. [Google Scholar] [CrossRef]
- Mastrocola, R.; Collotta, D.; Gaudioso, G.; Le Berre, M.; Cento, A.S.; Ferreira Alves, G.; Chiazza, F.; Verta, R.; Bertocchi, I.; Manig, F.; et al. Effects of Exogenous Dietary Advanced Glycation End Products on the Cross-Talk Mechanisms Linking Microbiota to Metabolic Inflammation. Nutrients 2020, 12, 2497. [Google Scholar] [CrossRef] [PubMed]
- Brighina, S.; Poveda Turrado, C.; Restuccia, C.; Walton, G.; Fallico, B.; Oruna-Concha, M.J.; Arena, E. Detrimental effect on the gut microbiota of 1,2-dicarbonyl compounds after in vitro gastro-intestinal and fermentative digestion. Food Chem. 2021, 341 Pt 1, 128237. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, G.; Ma, Z.F.; Qin, L.Q.; Zhai, Y.J.; Yu, Z.L.; Xue, M.; Zhang, Y.H.; Wan, Z. DietaryAdvancedGlycationEnd Products-InducedCognitive Impairment in Aged ICR Mice: Protective Role of Quercetin. Mol. Nutr. Food Res. 2020, 64, e1901019. [Google Scholar] [CrossRef] [PubMed]
- Snelson, M.; Tan, S.M.; Clarke, R.E.; de Pasquale, C.; Thallas-Bonke, V.; Nguyen, T.V.; Penfold, S.A.; Harcourt, B.E.; Sourris, K.C.; Lindblom, R.S.; et al. Processed foods drive intestinal barrier permeability and microvascular diseases. Sci. Adv. 2021, 7, eabe4841. [Google Scholar] [CrossRef]
- Kamphuis, J.B.J.; Guiard, B.; Leveque, M.; Olier, M.; Jouanin, I.; Yvon, S.; Tondereau, V.; Rivière, P.; Guéraud, F.; Chevolleau, S.; et al. Lactose and Fructo-oligosaccharides Increase Visceral Sensitivity in Mice via Glycation Processes, Increasing Mast Cell Density in Colonic Mucosa. Gastroenterology 2020, 158, 652–663. [Google Scholar] [CrossRef]
- Kamphuis, J.B.J.; Reber, L.; Eutamène, H.; Theodorou, V. Increased fermentable carbohydrate intake alters colonic mucus barrier function through glycation processes and increased mast cell counts. FASEB J. 2022, 36, e22297. [Google Scholar] [CrossRef]
- Vila, A.V.; Imhann, F.; Collij, V.; Jankipersadsing, S.A.; Gurry, T.; Mujagic, Z.; Kurilshikov, A.; Bonder, M.J.; Jiang, X.; Tigchelaar, E.F.; et al. Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome. Sci. Transl. Med. 2018, 10, eaap8914. [Google Scholar] [CrossRef] [Green Version]
- Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 2010, 110, 911–916. [Google Scholar] [CrossRef] [PubMed]
IBD Patients (n = 238) | IBS Patients (n = 261) | HC (n = 195) | p-Value | |
---|---|---|---|---|
Age (years) | 45.7 ± 14.8 | 43.3 ± 17.0 | 44.4 ± 18.9 | 0.285 |
Sex | <0.001 | |||
Male | 47.1% | 25.3% | 36.9% | |
Female | 52.9% | 74.7% | 63.1% | |
BMI (kg/m2) * | 25.5 ± 4.2 | 25.0 ± 4.6 | 23.9 ± 3.8 | <0.001 |
Smoking ** | <0.001 | |||
Active smoker | 20.4% | 23.6% | 6.7% | |
Former smoker | 41.7% | 24.4% | 31.8% | |
Never smoker | 37.9% | 52.0% | 61.5% | |
IBD Phenotype | ||||
Ulcerative colitis | 34.5% | n/a | n/a | n/a |
Crohn’s disease | 65.5% | n/a | n/a | n/a |
Age of onset ** | ||||
A1—below 17 years old | 5.9% | n/a | n/a | n/a |
A2—17–40 years old | 64.0% | n/a | n/a | n/a |
A3—above 40 years old | 30.1% | n/a | n/a | n/a |
Extent of ulcerative colitis (UC) at inclusion ** | ||||
E1—ulcerative proctitis | 11.1% | n/a | n/a | n/a |
E2—left sided UC (distal UC) | 39.5% | n/a | n/a | n/a |
E3—extensive UC (pancolitis) | 49.4% | n/a | n/a | n/a |
Behaviour of Crohn’s disease at inclusion | ||||
B1—non-stricturing, non-penetrating | 57.1% | n/a | n/a | n/a |
B2—stricturing | 17.9% | n/a | n/a | n/a |
B3—penetrating | 25.0% | n/a | n/a | n/a |
Location of Crohn’s disease at inclusion | ||||
L1—ileal | 23.7% | n/a | n/a | n/a |
L2—colonic | 16.7% | n/a | n/a | n/a |
L3—ileocolonic | 59.6% | n/a | n/a | n/a |
L4—upper-GI modifier | 10.3% | n/a | n/a | n/a |
Disease activity at inclusion | ||||
Active disease | 34.9% | n/a | n/a | n/a |
Remission | 61.5% | n/a | n/a | n/a |
Disease duration (years) ** | 11.5 ± 10.1 | n/a | n/a | n/a |
Time to last flare (months) | 37.7 ± 67.7 | n/a | n/a | n/a |
Bowel resection at inclusion | ||||
Yes | 23.1% | n/a | n/a | n/a |
No | 76.9% | n/a | n/a | n/a |
Symptom score * | ||||
Simple Clinical Colitis Activity Index | 1.2 ± 1.8 | n/a | n/a | n/a |
Harvey Bradshaw Index | 2.9 ± 3.4 | n/a | n/a | n/a |
IBS Subtype | ||||
Constipation predominant IBS | n/a | 21.5% | n/a | n/a |
Diarrhoea predominant IBS | n/a | 35.6% | n/a | n/a |
Mixed stool pattern IBS | n/a | 39.5% | n/a | n/a |
Unspecified subtype IBS | n/a | 3.4% | n/a | n/a |
Faecal calprotectin (μg/g) *** | 197.3 ± 426.3 | 64.4 ± 87.1 | 39.3 ± 63.6 | <0.001 |
Medication **** | ||||
No medication | 14.3% | 26.8% | 52.8% | <0.001 |
5-ASA, local immunosuppressants, or local corticosteroids | 17.6% | n/a | n/a | n/a |
Systemic corticosteroids | 0.4% | n/a | n/a | n/a |
Immunomodulators | 22.7% | n/a | n/a | n/a |
Biologicals | 45.0% | n/a | n/a | n/a |
PPIs | n/a | 20.7% | 3.1% | <0.001 |
NSAIDs | n/a | 24.9% | 20.0% | 0.217 |
Laxatives | n/a | 18.4% | 0.0% | n/a |
Spasmolytic drugs | n/a | 14.2% | 0.0% | n/a |
Antihypertensive drugs | n/a | 15.3% | 13.3% | 0.550 |
Statins | n/a | 10.0% | 7.7% | 0.402 |
Antidepressant drugs | n/a | 10.0% | 3.6% | 0.009 |
Energy intake (kcal/day) | 2180.0 ± 634.4 | 1939.6 ± 604.9 | 2180.4 ± 622.9 | <0.001 |
Absolute Intake (mg/Day, Mean ± SD) | IBD Patients (n = 238) | IBS Patients (n = 261) | HC (n = 195) | p-Value |
---|---|---|---|---|
MGO | 4.04 ± 1.59 | 3.53 ± 1.46 | 3.94 ± 1.45 | <0.001 |
GO | 3.32 ± 1.04 | 3.09 ± 0.96 | 3.49 ± 1.06 | <0.001 |
3-DG | 15.55 ± 6.44 | 13.76 ± 5.85 | 15.83 ± 5.75 | <0.001 |
Dicarbonyls | 22.91 ± 8.23 | 20.38 ± 7.50 | 23.26 ± 7.54 | <0.001 |
CML | 3.35 ± 1.16 | 2.91 ± 1.07 | 3.27 ± 1.16 | <0.001 |
CEL | 2.70 ± 0.93 | 2.40 ± 0.83 | 2.64 ± 0.94 | <0.001 |
MG-H1 | 22.61 ± 7.97 | 19.97 ± 7.32 | 23.06 ± 7.84 | <0.001 |
AGEs | 28.67 ± 9.79 | 25.28 ± 9.02 | 28.97 ± 9.69 | <0.001 |
IBD Patients (n = 209) | IBS Patients (n = 90) | HC (n = 148) | |||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | |
MGO | −19.01 | −48.57; 10.59 | 0.206 | 6.44 | −7.25; 20.12 | 0.352 | −4.77 | −13.71; 4.18 | 0.294 |
GO | −20.80 | −65.04; 23.45 | 0.355 | −0.50 | −21.42; 20.41 | 0.962 | −11.21 | −22.17; −0.25 | 0.045 |
3-DG | −1.28 | −8.61; 6.04 | 0.730 | −1.38 | −4.59; 1.82 | 0.393 | −0.86 | −2.77; 1.05 | 0.374 |
Dicarbonyls | −1.83 | −7.54; 3.88 | 0.528 | −0.67 | −3.25; 1.91 | 0.606 | −0.09 | −2.33; 0.63 | 0.258 |
CML | −35.48 | −75.31; 4.35 | 0.080 | −0.87 | −19.78; 17.44 | 0.925 | −1.99 | −12.02; 8.04 | 0.696 |
CEL | −30.29 | −81.11; 20.54 | 0.241 | −1.97 | −24.03; 20.09 | 0.859 | −0.87 | −13.26; 11.54 | 0.891 |
MG-H1 | −1.67 | −7.74; 4.42 | 0.590 | −0.22 | −2.70; 2.27 | 0.863 | −0.51 | −1.98; 0.96 | 0.491 |
AGEs | −1.91 | −6.84; 3.02 | 0.445 | −0.17 | −2.21; 1.86 | 0.867 | −0.37 | −1.56; 0.82 | 0.538 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Graaf, M.C.G.; Scheijen, J.L.J.M.; Spooren, C.E.G.M.; Mujagic, Z.; Pierik, M.J.; Feskens, E.J.M.; Keszthelyi, D.; Schalkwijk, C.G.; Jonkers, D.M.A.E. The Intake of Dicarbonyls and Advanced Glycation Endproducts as Part of the Habitual Diet Is Not Associated with Intestinal Inflammation in Inflammatory Bowel Disease and Irritable Bowel Syndrome Patients. Nutrients 2023, 15, 83. https://doi.org/10.3390/nu15010083
de Graaf MCG, Scheijen JLJM, Spooren CEGM, Mujagic Z, Pierik MJ, Feskens EJM, Keszthelyi D, Schalkwijk CG, Jonkers DMAE. The Intake of Dicarbonyls and Advanced Glycation Endproducts as Part of the Habitual Diet Is Not Associated with Intestinal Inflammation in Inflammatory Bowel Disease and Irritable Bowel Syndrome Patients. Nutrients. 2023; 15(1):83. https://doi.org/10.3390/nu15010083
Chicago/Turabian Stylede Graaf, Marlijne C. G., Jean L. J. M. Scheijen, Corinne E. G. M. Spooren, Zlatan Mujagic, Marieke J. Pierik, Edith J. M. Feskens, Daniel Keszthelyi, Casper G. Schalkwijk, and Daisy M. A. E. Jonkers. 2023. "The Intake of Dicarbonyls and Advanced Glycation Endproducts as Part of the Habitual Diet Is Not Associated with Intestinal Inflammation in Inflammatory Bowel Disease and Irritable Bowel Syndrome Patients" Nutrients 15, no. 1: 83. https://doi.org/10.3390/nu15010083
APA Stylede Graaf, M. C. G., Scheijen, J. L. J. M., Spooren, C. E. G. M., Mujagic, Z., Pierik, M. J., Feskens, E. J. M., Keszthelyi, D., Schalkwijk, C. G., & Jonkers, D. M. A. E. (2023). The Intake of Dicarbonyls and Advanced Glycation Endproducts as Part of the Habitual Diet Is Not Associated with Intestinal Inflammation in Inflammatory Bowel Disease and Irritable Bowel Syndrome Patients. Nutrients, 15(1), 83. https://doi.org/10.3390/nu15010083