Moderate Wine Consumption and Health: A Narrative Review
Abstract
:1. Introduction
2. Literature Search Strategy
3. Ongoing Research to Improve the Phenolic Profile of Grapes and Wine
4. Wine Bioactive Compounds: Modulation of Biochemical Pathways and Gene Expression
4.1. Modulation of Biochemical Pathways
4.2. Wine Intake and Gene Expression
5. Wine and Health: Epidemiological Data
5.1. Low-to-Moderate Wine Consumption and Cardiovascular Diseases
Wine/Alcohol Consumption and CVD Risk | Number of Subjects | Study Design | References |
---|---|---|---|
Alcohol consumption is inversely related to coronary heart disease incidence (p for trend < 0.001). | 51,529 male healthy professionals | Prospective study | Rimm et al., 1991 [92] |
Strong negative association between moderate alcohol consumption and the risk of nonfatal myocardial infarction and death from coronary heart disease. | 7705 Japanese men living in Hawaii | Cohort study | Yano et al., 1977 [93] |
Risk of coronary heart disease decreased from 0 to 20 g/day of alcohol (RR = 0.80; 95% CI: 0.78, 0.83); evidence of a protective effect up to 72 g/day (RR = 0.96; 95% CI: 0.92, 1.00) and increased risk above 89 g/day (RR = 1.05; 95% CI: 1.00, 1.11). Lower protective effects in women and in men living in countries outside the Mediterranean area. | 28 cohort studies | Meta-analysis | Corrao et al., 2000 [94] |
Compared with non-drinkers, light drinkers who avoid wine have a relative risk for death from coronary heart disease of 0.76 (CI, 0.63 to 0.92) and those who drank wine have a risk of 0.58 (CI, 0.47 to 0.72). | 13,064 men and 11,459 women 20 to 98 years of age | Pooled cohort studies | Grønbaek et al., 1995 [95] |
IHD-associated mortality: 62 men. In men, RR for IHD in drinkers vs nondrinkers was 0.51 (95% CI, 0.27–0.95). Report a cardioprotective effect from IHD in a predominantly beer drinking population (starts with 0.1–0.99 g/d alcohol intake), and effect did not decrease with higher consumption. | 2084 subjects (1071 men; 1013 women) | Population-based prospective study | Keil et al., 1997 [97] |
Wine drinkers had lower mortality from IHD than non-wine drinkers (p = 0.007). At all levels of intake of alcohol, wine drinkers were at a significantly lower risk for all-cause mortality than nonwine drinkers (p < 0.001). | 24,525 (13,064 men; 11,459 women) | Population-based prospective cohort | Grønbaek et al., 2000 [98] |
For middle-aged women, moderate alcohol consumption decreased the risk of IHD. (Women who consumed 5–14 g alcohol/d had a RR of 0.6; 15–24 g/d RR 0.6; ≥25 g/d RR 0.4.) | 87,526 women | Population-based prospective cohort | Stampfer et al., 1988 [96] |
Moderate intake of wine was associated with a significant reduction in cardiovascular events including cardiovascular death, non-fatal MI and nonfatal strokes: HR, 0.87 (95% CI, 0.76–0.99). Risk of cardiovascular events was significantly reduced by 13% with wine consumption up to 0.5 L/d (defined as moderate consumption). | 11,248 patients with recent myocardial infarction (MI) (9601 men; 1647 women) | Multicenter open-label prospective study | Levantesi et al., 2013 [99] |
5.2. Low-to-Moderate Wine Consumption and Type 2 Diabetes
Wine/Alcohol Consumption and Type 2 Diabetes (T2D) | Number of Subjects | Study Design | References |
---|---|---|---|
Compared with lifetime abstainers, the relative risk (RR) for type 2 diabetes among men was most protective when consuming 22 g/day alcohol (RR 0.87) and became deleterious at just over 60 g/day alcohol (1.01 [0.71–1.44]). Among women, consumption of 24 g/day alcohol was most protective (0.60) and became deleterious at about 50 g/day alcohol (1.02) [0.83–1.26]). | 20 cohort studies | Meta-analysis | Baliunas et al., 2009 [105] |
Fasting plasma glucose is lower among drinkers compared to abstainers (97.6 ± 18.2 vs. 118.4 ± 29.6 mg/dL; p < 0.02). HDL cholesterol is significantly higher among drinkers compared to abstainers (46.9 ± 10.9 vs. 39.5 ± 9.0 mg/dL; p < 0.001). | 101 moderate red wine drinkers and 104 abstainers | Case–control study | Rochitte et al., 2014 [106] |
Compared with T2D patients who reported no alcohol consumption, those who reported moderate consumption had fewer cardiovascular events (adjusted hazard ratio [aHR] 0.83; 95% CI 0.72–0.95; p = 0.008), fewer microvascular complications (aHR 0.85; 95% CI 0.73–0.99; p = 0.03) and lower all-cause mortality (aHR 0.87; 96% CI 0.75–1.00; p = 0.05). The benefits were particularly evident in T2D participants who drank predominantly wine (cardiovascular events aHR 0.78, 95% CI 0.63–0.95, p = 0.01; all-cause mortality aHR 0.77, 95% CI 0.62–0.95, p = 0.02). | 3314 patients with type 2 diabetes (T2D) who died or had CV problems during a 5 year follow up | Prospective cohort study | Blomster et al., 2014 [109] |
5.3. Low-to-Moderate Wine Consumption and Neurodegenerative Diseases
Wine/Alcohol Consumption and Neurodegenerative Diseases | Number of Subjects | Study Design | References |
---|---|---|---|
Subjects drinking 3 to 4 standard glasses of wine per day (>250 and up to 500 mL), categorized as moderate drinkers, the crude odds ratio (OR) was 0.18 for incident dementia (p < 0.01) and 0.25 for Alzheimer’s disease (p < 0.03), compared to the non-drinkers. In the 922 mild drinkers (<1 to 2 glasses per day) there was a negative association only with AD, after adjustment (OR = 0.55; p < 0.05) vs non-drinkers. | 922 mild drinkers, 318 moderate drinkers and 971 non drinkers | Population-based prospective study | Letenneur, 2004 [112] |
The pooled RR for the effect of wine consumption on cognitive decline was 0.72 (95% CI 0.63–0.80; I2 = 82.4%; τ2: 0.0154). Using the Hartung–Knapp–Sidik–Jonkman method, the RR was 0.65 (95% CI 0.52–0.79; I2 = 94,531%; τ2: 0.057). | 12 studies ranging from 360 to 10,308 subjects | Meta-analysis | Luceron-Lucas-Torres, 2022 [113] |
Intake of wine on a monthly, weekly or daily basis was associated with a lower risk of stroke compared with no wine intake (monthly: relative risk [RR], 0.83; 95% CI, 0.69 to 0.98; weekly: RR, 0.59; 95% CI, 0.45 to 0.77; daily: RR, 0.70; 95% CI, 0.46 to 1.00). There was no protective association between intake of beer or spirits on risk of stroke. | 13,329 eligible men and women, aged 45 to 84 years, participating in the Copenhagen City Heart Study | Prospective cohort study | Truelsen et al., 1998 [114] |
Light–moderate alcohol drinkers had better MMSE (Mini Mental State Exanination) performance than abstainers (p < 0.05) and heavy drinkers (p < 0.01) 2 years after MCI diagnosis. | 176 patients with mild cognitive impairment (MCI) | Prospective cohort study | Xu et al., 2009 [120] |
5.4. Low-to-Moderate Wine Consumption and Cancer
Wine/Alcohol Consumption and Cancer | Number of Subjects | Study Design | References |
---|---|---|---|
In comparison with life-time abstainers, consumption of alcohol less than 10 g/day was associated with an average 11% [95% confidence interval (CI) = 7–14%] reduction in the risk of total mortality, while intake > 20 g/day was associated with a 13% (95% CI = 7–20%) increase in the risk of total mortality. With regard to cancer, drinking up to 10 g/day was not associated with either mortality risk reduction or increase, while alcohol intake > 20 g/day was associated with a 22% (95% CI = 10–35%) increased risk of mortality. | 142,960 individuals (mean age 50 ± 13 years, 53.9% men) | Prospective observational multicenter population-based study | Di Castelnuovo et al., 2022 [133] |
Compared to a Mediterranean diet score (MDS) of 0–3, the ORs for breast cancer were 0.86 (95% confidence interval, CI, 0.76–0.98) for a MDS of 4–5 and 0.82 (95% CI, 0.71–0.95) for a MDS of 6–9 (p for trend = 0.008). The exclusion of the ethanol component (mostly from wine) from the MDS did not materially modify the ORs (e.g., OR = 0.81, 95% CI, 0.70–0.95, for MDS ≥ 6). | 3034 breast cancer cases and 3392 controls | Hospital-based case–control study | Turatti et al., 2018 [135] |
Using men who did not consume red wine as the reference, no linear trend was observed between red wine consumption and prostate cancer in the full analytic cohort (p-trend = 0.57). | 3348 cases of prostate cancer diagnosed among 45,433 eligible participants | Prospective cohort study | Sutcliffe et al., 2007 [132] |
An inverse association between moderate red wine intake and risk of CRC was not found. The hazard ratio for consuming ≥ 1 drink /day (average = 2 drinks/day) was 1.16, 95% confidence intervals 0.56–2.40. There was no linear dose-response. | 176 colorectal cancer patients diagnosed among 43,483 participants | Prospective cohort study | Chao et al., 2010 [131] |
There was no clear association between lung cancer and consumption of beer, red wine, white wine or liquor at ≥1 drink/day. Alcohol intake at age 30 was not associated with lung cancer risk. | 580 lung cancer cases diagnosed among 66,186 participants | Prospective cohort study | Chao et al., 2011 [130] |
5.5. Low-to-Moderate Wine Consumption and Longevity
Wine/Alcohol Consumption and Longevity | Number of Subjects | Study Design | References |
---|---|---|---|
Compared with non-drinkers, light drinkers who avoided wine had a relative risk for death from all causes of 0.90 (95% CI, 0.82 to 0.99) and those who drank wine had a relative risk of 0.66 (CI, 0. 55 to 0.77). | 13,064 men and 11,459 women, 20 to 98 years of age | Pooled cohort studies | Gronbaek et al., 1995 [95] |
For each 2-point increment in a 0–9 score of adherence to the Mediterranean alcohol drinking pattern (MADP), a 25% relative risk reduction in mortality was found. | 18,394 participants followed up to 12 years | Prospective cohort study | Gea et al., 2014 [102] |
The pooled relative mortality risks were 0.90 (95% confidence interval: 0.81, 0.99) for 1–29 g/day of alcohol, 1.19 (95% confidence interval: 0.89, 1.58) for 30–59 g/day and 1.52 (95% confidence interval: 0.78, 2.98) for 60 or more g/day compared with abstention. | 9 cohort studies 62,950 participants and 10,490 deaths | Meta-analysis | Jayasekara et al., 2014 [137] |
Stable drinkers showed a U-shaped all-cause mortality, with relative risks of 1.29 (95% confidence interval [CI] = 1.13–1.48) for non-drinkers (<1 drink per week) and 1.32 (1.15–1.53) for heavy drinkers (>13 drinks per week) compared with light drinkers (1 to 6 drinks per week) For coronary heart disease mortality, stable nondrinkers had a relative risk of 1.32 (0.97–1.79) compared with stable light drinkers and those who had reduced their drinking from light to none increased their risk (1.40; 1.00–1.95), and those who had increased from nondrinking to light drinking reduced their relative risk ratio (0.71; 0.44–1.14). | 6644 men and 8010 women, age 25 to 98 years, who had attended at least two health surveys with a 5-year interval between them | Longitudinal study | Gronbaek et al., 2004 [138] |
6. The Mediterranean Way of Drinking: Wine in Moderation
7. The Impact of Alcohol Consumption on Human Health
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global alcohol Action Plan 2022–2030 to Strengthen Implementation of the Global Strategy to Reduce the Harmful Use of Alcohol—First Draft. Available online: https://www.who.int/publications/m/item/global-action-plan-on-alcohol-1st-draft (accessed on 18 November 2022).
- Giacosa, A.; Barale, R.; Bavaresco, L.; Faliva, M.A.; Gerbi, V.; La Vecchia, C.; Negri, E.; Opizzi, A.; Perna, S.; Pezzotti, M.; et al. Mediterranean Way of Drinking and Longevity. Crit. Rev. Food Sci. Nutr. 2016, 56, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Dickersin, K.; Smith, G.D. Problems and Limitations in Conducting Systematic Reviews. In Systematic Reviews in Health Care; BMJ Publishing Group: London, UK, 2008; pp. 43–68. [Google Scholar]
- Castellarin, S.D.; Bavaresco, L.; Falginella, L.; Van Zeller Gonçalves, M.I.; Di Gaspero, G. Phenolics in Grape Berry and Key Antioxidants. In The Biochemistry of the Grape Berry; Gerós, H., Chavez, M.M., Delrot, S., Eds.; Bentham e Books; Bentham Science: Sharjah, United Arab Emirates, 2012; pp. 89–110. [Google Scholar]
- Gómez-Plaza, E.; Gil-Muñoz, R. Biochemistry of Wine and Beer. Biomolecules 2021, 11, 59. [Google Scholar] [CrossRef] [PubMed]
- Lucini, L.; Baccolo, G.; Rouphael, Y.; Colla, G.; Bavaresco, L.; Trevisan, M. Chitosan treatment elicited defence mechanisms, pentacyclic triterpenoids and stilbene accumulation in grape (Vitis vinifera L.) bunches. Phytochemistry 2018, 156, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alonso, R.; Berli, F.J.; Fontana, A.; Piccoli, P.; Bottini, R. Abscisic Acid’s Role in the Modulation of Compounds that Contribute to Wine Quality. Plants 2021, 10, 938. [Google Scholar] [CrossRef]
- Campayo, A.; Serrano de la Hoz, K.; García-Martínez, M.M.; Salinas, M.R.; Alonso, G.L. Spraying Ozonated Water on Bobal Grapevines: Effect on Wine Quality. Biomolecules 2020, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Paladines-Quezada, D.F.; Moreno-Olivares, J.D.; Fernández-Fernández, J.I.; Bleda-Sánchez, J.A.; Martínez-Moreno, A.; Gil-Muñoz, R. Elicitors and Pre-Fermentative Cold Maceration: Effects on Polyphenol Concentration in Monastrell Grapes and Wines. Biomolecules 2019, 9, 671. [Google Scholar] [CrossRef] [Green Version]
- Erte, E.; Vural, N.; Mehmetoğlu, Ü.; Güvenç, A. Optimization of an abiotic elicitor (ultrasound) treatment conditions on trans-resveratrol production from Kalecik Karası. J. Food Sci. Technol. 2021, 58, 2121–2132. [Google Scholar] [CrossRef]
- Bavaresco, L.; Mattivi, F.; De Rosso, M.; Flamini, R. Effects of elicitors, viticultural factors, and enological practices on resveratrol and stilbenes in grapevine and wine. Mini Rev. Med. Chem. 2012, 12, 1366–1381. [Google Scholar] [CrossRef]
- Lubin, B.R.; Inbar, N.; Pinkus, A.; Stanevsky, M.; Cohen, J.; Rahimi, O.; Anker, Y.; Shoseyov, O.; Drori, E. Ecogeographic conditions dramatically affect trans-resveratrol and other major phenolics’ levels in wine at a semi-arid area. Plants 2022, 11, 629. [Google Scholar] [CrossRef]
- Gatto, P.; Vrhovsek, U.; Muth, J.; Segala, C.; Romualdi, C.; Fontana, P.; Pruefer, D.; Stefanini, M.; Moser, C.; Mattivi, F.; et al. Ripening and genotype control stilbene accumulation in healthy grapes. J. Agric. Food Chem. 2008, 56, 11773–11785. [Google Scholar] [CrossRef]
- Keskin, N.; Kunter, B.; Çelik, H. Clonal trans-resveratrol potential in the ripened grapes of Vitis vinifera L. cv. «Kalecik Karasi». Erwerbs-Obstbau 2020, 62, 581–585. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Pszczòlkowski, P.; Cañon, P.; Taquichiri, M.; Peñarrieta, J.M. UV-B ratiation as a factor that deserves further research in Bolivian viticulture: A review. S. Afr. J. Enol. Vitic. 2021, 42, 201–212. [Google Scholar] [CrossRef]
- Martins, V.; Billet, K.; Garcia, A.; Lanoue, A.; Gerós, H. Exogenous calcium deflects grape berry metabolism towards the production of more stilbenoids and less anthocyanins. Food Chem. 2020, 313, 126123. [Google Scholar] [CrossRef]
- Moreno, D.; Alarcón, M.V.; Uriarte, D.; Mancha, L.A.; Valdés, M.E. Vine Irrigation through Two Shoot Densities in Flavonoid and Non-Flavonoid Compounds in ‘Tempranillo’ Grapes. Plants 2022, 11, 1378. [Google Scholar] [CrossRef] [PubMed]
- Vrhovsek, U.; Wendelin, S.; Eder, R. Effects of various vinification techniques on the concentration of cis-and trans-resveratrol and resveratrol glucoside isomers in wine. Am. J. Enol. Vitic. 1997, 48, 214–219. [Google Scholar] [CrossRef]
- Rompkovksi, C.; Agustini, B.C.; Deffert, F.; Stadtlober, M.G.A.; Brand, D.; da Silva, G.A.; Bonfim, T.M.B. Microbial dynamics in industrial-scale wine fermentation employing. J. Food Sci. Technol. 2022, 59, 1570–1576. [Google Scholar] [CrossRef]
- Pezet, R.; Cuenat, P. Resveratrol in wine: Extraction from skin during fermentation and post fermentation standing of must from Gamay grapes. Am. J. Enol. Vitic. 2006, 47, 287–290. [Google Scholar]
- Gambuti, A.; Strollo, D.; Ugliano, M.; Lecce, L.; Moio, L. trans-Resveratrol, quercetin, (+)-catechin, and (-)-epicatechin content in south Italian monovarietal wines: Relationship with maceration time and marc pressing during winemaking. J. Agric. Food Chem. 2004, 52, 5747–5751. [Google Scholar] [CrossRef]
- Threlfall, R.T.; Morris, J.R.; Mauromoustakos, A. Effect of variety, ultraviolet light exposure, and enological methods on the trans-resveratrol level of wine. Am. J. Enol. Vitic. 1999, 50, 57–64. [Google Scholar] [CrossRef]
- Jeandet, P.; Bessis, R.; Sbaghi, M.; Meunier, P.; Trollat, P. Resveratrol content of wines of different ages: Relationship with fungal disease pressure in the vineyard. Am. J. Enol. Vitic. 1995, 46, 1–4. [Google Scholar]
- Roldán, A.; Palacios, V.; Caro, I.; Pérez, L. Evolution of resveratrol and piceid contents during the industrial winemaking process of sherry wine. J. Agric. Food Chem. 2010, 58, 4268–4273. [Google Scholar] [CrossRef] [PubMed]
- Naiker, M.; Anderson, S.; Johnson, J.B.; Mani, J.S.; Eakening, L.; Bowry, V. Loss of trans-resveratrol during storage and ageing of red wines. Aust. J. Grape Wine Res. 2020, 26, 385–387. [Google Scholar] [CrossRef]
- Cantos, E.; Espín, J.C.; Fernández, M.J.; Oliva, J.; Tomás-Barberán, F.A. Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines. J. Agric. Food Chem. 2003, 51, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Kilmartin, P.A.; Oberholster, A. Grape harvesting and effects on wine composition. In Managing Wine Quality, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 705–726. [Google Scholar]
- Mansour, G.; Ghanem, C.; Mercenaro, L.; Nassif, N.; Hassoun, G.; Del Caro, A. Effects of altitude on the chemical composition of grapes and wine: A review. OENO One 2022, 56, 227–239. [Google Scholar] [CrossRef]
- Reynolds, A.G. Viticultural and vineyard management practices and their effects on grape and wine quality. In Managing Wine Quality, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 443–539. [Google Scholar]
- Weaver, S.R.; Rendeiro, C.; McGettrick, H.M.; Philp, A.; Lucas, S.J.E. Fine wine or sour grapes? A systematic review and meta-analysis of the impact of red wine polyphenols on vascular health. Eur. J. Nutr. 2021, 60, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Visioli, F.; Panaite, S.A.; Tomé-Carneiro, J. Wine’s Phenolic Compounds and Health: A Pythagorean View. Molecules 2020, 25, 4105. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; González-Manzano, S.; González-Paramás, A.M. White wine polyphenols and health. In White Wine Technology; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Albu, C.; Radu, L.E.; Radu, G.L. Assessment of Melatonin and Its Precursors Content by a HPLC-MS/MS Method from Different Romanian Wines. ACS Omega 2020, 5, 27254–27260. [Google Scholar] [CrossRef]
- Viegas, O.; Esteves, C.; Rocha, J.; Melo, A.; Ferreira, I.M.P.L. Simultaneous determination of melatonin and trans-resveratrol in wine by dispersive liquid-liquid microextraction followed by HPLC-FLD. Food Chem. 2021, 339, 128091. [Google Scholar] [CrossRef]
- Mercolini, L.; Saracino, M.A.; Bugamelli, F.; Ferranti, A.; Malaguti, M.; Hrelia, S.; Raggi, M.A. HPLC-F analysis of melatonin and resveratroll isomers in wine using an SPE procedure. J. Sep. Sci. 2008, 31, 1007–1014. [Google Scholar] [CrossRef]
- Minzer, S.; Estruch, R.; Casas, R. Wine Intake in the Framework of a Mediterranean Diet and Chronic Non-Communicable Diseases: A Short Literature Review of the Last 5 Years. Molecules 2020, 25, 5045. [Google Scholar] [CrossRef]
- Forman, H.J.; Davies, K.J.; Ursini, F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014, 66, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Domínguez, R.; Jáuregui, O.; Mena, P.; Hanhineva, K.; Tinahones, F.J.; Angelino, D.; Andrés-Lacueva, C. Quantifying the human diet in the crosstalk between nutrition and health by multi-targeted metabolomics of food and microbiota-derived metabolites. Int. J. Obes. 2020, 44, 2372–2381. [Google Scholar] [CrossRef] [PubMed]
- Gorelik, S.; Ligumsky, M.; Kohen, R.; Kanner, J. The stomach as a “bioreactor”: When red meat meets red wine. J. Agric. Food Chem. 2008, 56, 5002–5007. [Google Scholar] [CrossRef] [PubMed]
- Timmers, P.R.H.J.; Wilson, J.F.; Joshi, P.K.; Deelen, J. Multivariate genomic scan implicates novel loci and haem metabolism in human ageing. Nat. Commun. 2020, 11, 3570. [Google Scholar] [CrossRef]
- Zhou, J.; Zheng, Q.; Chen, Z. The Nrf2 Pathway in Liver Diseases. Front. Cell Dev. Biol. 2022, 10, 826204. [Google Scholar] [CrossRef]
- Malaguti, M.; Angeloni, C.; Hrelia, S. Nutraceutical Bioactive Compounds Promote Healthspan Counteracting Cardiovascular Diseases. J. Am. Coll. Nutr. 2015, 34 (Suppl. S1), 22–27. [Google Scholar] [CrossRef]
- Hrelia, P.; Sita, G.; Ziche, M.; Ristori, E.; Marino, A.; Cordaro, M.; Molteni, R.; Spero, V.; Malaguti, M.; Morroni, F.; et al. Common Protective Strategies in Neurodegenerative Disease: Focusing on Risk Factors to Target the Cellular Redox System. Oxid. Med. Cell Longev. 2020, 2020, 8363245. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Y.; Liu, Y.; Cao, S. Natural Nrf2 Activators from Juices, Wines, Coffee, and Cocoa. Beverages 2020, 6, 68. [Google Scholar] [CrossRef]
- Smith, R.E.; Tran, K.; Smith, C.C.; McDonald, M.; Shejwalkar, P.; Hara, K. The Role of the Nrf2/ARE Antioxidant System in Preventing Cardiovascular Diseases. Diseases 2016, 4, 34. [Google Scholar] [CrossRef]
- Haunschild, R.; Marx, W. On Health Effects of Resveratrol in Wine. Int. J. Environ. Res. Public Health 2022, 19, 3110. [Google Scholar] [CrossRef]
- Harikumar, K.B.; Aggarwal, B.B. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle 2008, 7, 1020–1035. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Zhou, J.; Zhao, C.N.; Gan, R.Y.; Li, H.B. Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods 2020, 9, 340. [Google Scholar] [CrossRef]
- Vang, O.; Ahmad, N.; Baile, C.A.; Baur, J.A.; Brown, K.; Csiszar, A.; Das, D.K.; Delmas, D.; Gottfried, C.; Lin, H.Y.; et al. What is new for an old molecule? Systematic review and recommendations on the use of resveratrol. PLoS ONE 2011, 6, e19881. [Google Scholar] [CrossRef] [Green Version]
- Athar, M.; Back, J.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms. Arch. Biochem. Biophys. 2009, 486, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, P.; Courtois, A.; Atgié, C.; Richard, T.; Krisa, S. In the shadow of resveratrol: Biological activities of epsilon-viniferin. J. Physiol. Biochem. 2022, 78, 465–484. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Valls-Fonayet, J.; Richard, T.; Cantos-Villara, E. A rapid quantification of stilbene content in wine by ultra-high pressure liquid chromatography—Mass spectrometry. Food Control 2020, 108, 106821. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.G.; Ryu, S.Y.; Cho, M.H.; Lee, J. Resveratrol oligomers inhibit biofilm formation of Escherichia coli O157:H7 and Pseudomonas aeruginosa. J. Nat. Prod. 2014, 77, 168–172. [Google Scholar] [CrossRef]
- Vitaglione, P.; Sforza, S.; Galaverna, G.; Ghidini, C.; Caporaso, N.; Vescovi, P.P.; Fogliano, V.; Marchelli, R. Bioavailability of trans-resveratrol from red wine in humans. Mol. Nutr. Food Res. 2005, 49, 495–504. [Google Scholar] [CrossRef]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug. Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.M.; Yan, J.; Soleas, G.J. Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clin. Biochem. 2003, 36, 79–87. [Google Scholar] [CrossRef]
- Cappetta, D.; Esposito, G.; Piegari, E.; Russo, R.; Ciuffreda, L.P.; Rivellino, A.; Berrino, L.; Rossi, F.; De Angelis, A.; Urbanek, K. SIRT1 activation attenuates diastolic dysfunction by reducing cardiac fibrosis in a model of anthracycline cardiomyopathy. Int. J. Cardiol. 2016, 205, 99–110. [Google Scholar] [CrossRef]
- Liu, Z.H.; Zhang, Y.; Wang, X.; Fan, X.F.; Li, X.; Gong, Y.S.; Han, L.P. SIRT1 activation attenuates cardiac fibrosis by endothelial-to-mesenchymal transition. Biomed. Pharmacother. 2019, 118, 109227. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- Ji, S.B.; Park, S.Y.; Bae, S.; Seo, H.J.; Kim, S.E.; Lee, G.M.; Wu, Z.; Liu, K.H. Comprehensive Investigation of Stereoselective Food Drug Interaction Potential of Resveratrol on Nine P450 and Six UGT Isoforms in Human Liver Microsomes. Pharmaceutics 2021, 13, 1419. [Google Scholar] [CrossRef]
- Parodi-Rullán, R.M.; Chapa-Dubocq, X.R.; Javadov, S. Acetylation of Mitochondrial Proteins in the Heart: The Role of SIRT3. Front. Physiol. 2018, 9, 1094. [Google Scholar] [CrossRef] [Green Version]
- Kampoli, A.M.; Tousoulis, D.; Papageorgiou, N.; Antoniades, C.; Androulakis, E.; Tsiamis, E.; Latsios, G.; Stefanadis, C. Matrix metalloproteinases in acute coronary syndromes: Current perspectives. Curr. Top. Med. Chem. 2012, 12, 1192–1205. [Google Scholar] [CrossRef]
- Li, H.; Xia, N.; Förstermann, U. Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 2012, 26, 102–110. [Google Scholar] [CrossRef]
- Ceni, E.; Mello, T.; Galli, A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J. Gastroenterol. 2014, 20, 17756–17772. [Google Scholar] [CrossRef] [PubMed]
- Lind, P.A.; Eriksson, C.J.; Wilhelmsen, K.C. The role of aldehyde dehydrogenase-1 (ALDH1A1) polymorphisms in harmful alcohol consumption in a Finnish population. Hum. Genom. 2008, 3, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Vasiliou, V.; Nebert, D.W. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum. Genom. 2005, 2, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Myojin, T.; Li, K.; Kurita, A.; Seto, M.; Motoyama, A.; Liu, X.; Satoh, A.; Munemasa, S.; Murata, Y.; et al. A Major Intestinal Catabolite of Quercetin Glycosides, 3-Hydroxyphenylacetic Acid, Protects the Hepatocytes from the Acetaldehyde-Induced Cytotoxicity through the Enhancement of the Total Aldehyde Dehydrogenase Activity. Int. J. Mol. Sci. 2022, 23, 1762. [Google Scholar] [CrossRef] [PubMed]
- Moskaug, J.; Carlsen, H.; Myhrstad, M.C.; Blomhoff, R. Polyphenols and glutathione synthesis regulation. Am. J. Clin. Nutr. 2005, 81, 277S–283S. [Google Scholar] [CrossRef] [PubMed]
- Matsufuji, Y.; Yamamoto, K.; Yamauchi, K.; Mitsunaga, T.; Hayakawa, T.; Nakagawa, T. Novel physiological roles for glutathione in sequestering acetaldehyde to confer acetaldehyde tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2013, 97, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Kay, C.D.; Holub, B.J. The postprandial effects of dietary antioxidants in humans. Curr. Atheroscler. Rep. 2003, 5, 452–458. [Google Scholar] [CrossRef]
- Ceriello, A.; Taboga, C.; Tonutti, L.; Quagliaro, L.; Piconi, L.; Bais, B.; Da Ros, R.; Motz, E. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: Effects of short- and long-term simvastatin treatment. Circulation 2002, 106, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Markoski, M.M.; Garavaglia, J.; Oliveira, A.; Olivaes, J.; Marcadenti, A. Molecular Properties of Red Wine Compounds and Cardiometabolic Benefits. Nutr. Metab. Insights 2016, 9, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Lassaletta, A.D.; Chu, L.M.; Elmadhun, N.Y.; Burgess, T.A.; Feng, J.; Robich, M.P.; Sellke, F.W. Cardioprotective effects of red wine and vodka in a model of endothelial dysfunction. J. Surg. Res. 2012, 178, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Garrido-Urbani, S.; Meguenani, M.; Montecucco, F.; Imhof, B.A. Immunological aspects of atherosclerosis. Semin. Immunopathol. 2014, 36, 73–91. [Google Scholar] [CrossRef] [Green Version]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, L.; Di Pierro, D.; Bigioni, M.; Sodi, V.; Galvano, F.; Cianci, R.; La Fauci, L.; De Lorenzo, A. Is antioxidant plasma status in humans a consequence of the antioxidant food content influence? Eur. Rev. Med. Pharmacol. Sci. 2007, 11, 185–192. [Google Scholar]
- Rodrigo, R.; Bosco, C.; Herrera, P.; Rivera, G. Amelioration of myoglobinuric renal damage in rats by chronic exposure to flavonol-rich red wine. Nephrol. Dial Transplant. 2004, 19, 2237–2244. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, M.; Runge, M.S.; Faraci, F.M.; Heistad, D.D. MnSOD deficiency increases endothelial dysfunction in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 2331–2336. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, L.; Cioccoloni, G.; Sinibaldi Salimei, P.; Ceravolo, I.; De Lorenzo, A.; Gratteri, S. Alcoholic Beverage and Meal Choices for the Prevention of Noncommunicable Diseases: A Randomized Nutrigenomic Trial. Oxid. Med. Cell. Longev. 2018, 2018, 5461436. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, S.W.; Patterson, C.; Knight-Lozano, C.A.; Burow, D.L.; Conklin, C.A.; Hu, Z.; Reuf, J.; Horaist, C.; Lebovitz, R.; Hunter, G.C.; et al. Mitochondrial integrity and function in atherogenesis. Circulation 2002, 106, 544–549. [Google Scholar] [CrossRef]
- Kasdallah-Grissa, A.; Mornagui, B.; Aouani, E.; Hammami, M.; El May, M.; Gharbi, N.; Kamoun, A.; El-Fazaâ, S. Resveratrol, a red wine polyphenol, attenuates ethanol-induced oxidative stress in rat liver. Life Sci. 2007, 80, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Werner, T. Cluster analysis and promoter modelling as bioinformatics tools for the identification of target genes from expression array data. Pharmacogenomics 2001, 2, 25–36. [Google Scholar] [CrossRef]
- Yamamoto, H.; Schoonjans, K.; Auwerx, J. Sirtuin functions in health and disease. Mol. Endocrinol. 2007, 21, 1745–1755. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Nguyen, M.; Qin, F.X.; Tong, Q. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007, 6, 505–514. [Google Scholar] [CrossRef]
- Di Renzo, L.; Carraro, A.; Valente, R.; Iacopino, L.; Colica, C.; De Lorenzo, A. Intake of red wine in different meals modulates oxidized LDL level, oxidative and inflammatory gene expression in healthy people: A randomized crossover trial. Oxid. Med. Cell. Longev. 2014, 2014, 681318. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Kim, D.W.; Park, J.H.; Kim, S.J.; Lee, C.H.; Yong, J.I.; Ryu, E.J.; Cho, S.B.; Yeo, H.J.; Hyeon, J.; et al. PEP-1-SIRT2 inhibits inflammatory response and oxidative stress-induced cell death via expression of antioxidant enzymes in murine macrophages. Free Radic. Biol. Med. 2013, 63, 432–445. [Google Scholar] [CrossRef]
- Zheng, Y.; Le, V.; Cheng, Z.; Xie, S.; Li, H.; Tian, J.; Liu, J. Development of rapid and highly sensitive HSPA1A promoter-driven luciferase reporter system for assessing oxidative stress associated with low-dose photodynamic therapy. Cell Stress Chaperones 2013, 18, 203–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, S.S.; Cantó, C. The molecular targets of resveratrol. Biochim. Biophys. Acta 2015, 1852, 1114–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukamal, K.J.; Conigrave, K.M.; Mittleman, M.A.; Camargo, C.A.; Stampfer, M.J.; Willett, W.C.; Rimm, E.B. Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men. N. Engl. J. Med. 2003, 348, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L. Wine phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Cordova, A.C.; Sumpio, B.E. Polyphenols are medicine: Is it time to prescribe red wine for our patients? Int. J. Angiol. 2009, 18, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Rimm, E.B.; Giovannucci, E.L.; Willett, W.C.; Colditz, G.A.; Ascherio, A.; Rosner, B.; Stampfer, M.J. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet 1991, 338, 464–468. [Google Scholar] [CrossRef]
- Yano, K.; Rhoads, G.G.; Kagan, A. Coffee, alcohol and risk of coronary heart disease among Japanese men living in Hawaii. N. Engl. J. Med. 1977, 297, 405–409. [Google Scholar] [CrossRef]
- Corrao, G.; Rubbiati, L.; Bagnardi, V.; Zambon, A.; Poikolainen, K. Alcohol and coronary heart disease: A meta-analysis. Addiction 2000, 95, 1505–1523. [Google Scholar] [CrossRef]
- Grønbaek, M.; Deis, A.; Sørensen, T.I.; Becker, U.; Schnohr, P.; Jensen, G. Mortality associated with moderate intakes of wine, beer, or spirits. BMJ 1995, 310, 1165–1169. [Google Scholar] [CrossRef] [Green Version]
- Stampfer, M.J.; Colditz, G.A.; Willett, W.C.; Speizer, F.E.; Hennekens, C.H. A prospective study of moderate alcohol consumption and the risk of coronary disease and stroke in women. N. Engl. J. Med. 1988, 319, 267–273. [Google Scholar] [CrossRef]
- Keil, U.; Chambless, L.E.; Döring, A.; Filipiak, B.; Stieber, J. The relation of alcohol intake to coronary heart disease and all-cause mortality in a beer-drinking population. Epidemiology 1997, 8, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Grønbaek, M.; Becker, U.; Johansen, D.; Gottschau, A.; Schnohr, P.; Hein, H.O.; Jensen, G.; Sørensen, T.I. Type of alcohol consumed and mortality from all causes, coronary heart disease, and cancer. Ann. Intern. Med. 2000, 133, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Levantesi, G.; Marfisi, R.; Mozaffarian, D.; Franzosi, M.G.; Maggioni, A.; Nicolosi, G.L.; Schweiger, C.; Silletta, M.; Tavazzi, L.; Tognoni, G.; et al. Wine consumption and risk of cardiovascular events after myocardial infarction: Results from the GISSI-Prevenzione trial. Int. J. Cardiol. 2013, 163, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Cachofeiro, V.; Millán, J.; Lahera, V.; Nieto, M.; Martin, R.; Bello, E.; Alvarez-Sala, L.; Nieto, M. Red wine intake but not other alcoholic beverages increases total antioxidant capacity and improves pro-inflammatory profile after an oral fat diet in healthy volunteers. Revista Clínica Española 2015, 215, 486–494. [Google Scholar] [CrossRef]
- Gea, A.; Bes-Rastrollo, M.; Toledo, E.; Garcia-Lopez, M.; Beunza, J.J.; Estruch, R.; Martinez-Gonzalez, M.A. Mediterranean alcohol-drinking pattern and mortality in the SUN (Seguimiento Universidad de Navarra) Project: A prospective cohort study. Br. J. Nutr. 2014, 111, 1871–1880. [Google Scholar] [CrossRef] [Green Version]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Minno, G.D.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [Green Version]
- Haseeb, S.; Alexander, B.; Baranchuk, A. Wine and Cardiovascular Health: A Comprehensive Review. Circulation 2017, 136, 1434–1448. [Google Scholar] [CrossRef]
- Baliunas, D.O.; Taylor, B.J.; Irving, H.; Roerecke, M.; Patra, J.; Mohapatra, S.; Rehm, J. Alcohol as a risk factor for type 2 diabetes: A systematic review and meta-analysis. Diabetes Care 2009, 32, 2123–2132. [Google Scholar] [CrossRef] [Green Version]
- Rochitte, C.E.; Laurindo, F.R. Coronary artery plaque burden and calcium scores in healthy men adhering to long-term wine drinking or alcohol abstinence. Braz. J. Med. Biol. Res. 2014, 47, 697–705. [Google Scholar]
- Chiva-Blanch, G.; Urpi-Sarda, M.; Ros, E.; Valderas-Martinez, P.; Casas, R.; Arranz, S.; Guillén, M.; Lamuela-Raventós, R.M.; Llorach, R.; Andres-Lacueva, C.; et al. Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: A randomized clinical trial. Clin. Nutr. 2013, 32, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, S.A.; Lund, A.C.; Veierød, M.B.; Carlsen, M.H.; Blomhoff, R.; Andersen, L.F.; Ursin, G. Food items contributing most to variation in antioxidant intake; a cross-sectional study among Norwegian women. BMC Public Health 2014, 14, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blomster, J.I.; Zoungas, S.; Chalmers, J.; Li, Q.; Chow, C.K.; Woodward, M.; Mancia, G.; Poulter, N.; Williams, B.; Harrap, S.; et al. The relationship between alcohol consumption and vascular complications and mortality in individuals with type 2 diabetes. Diabetes Care 2014, 37, 1353–1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gepner, Y.; Golan, R.; Harman-Boehm, I.; Henkin, Y.; Schwarzfuchs, D.; Shelef, I.; Durst, R.; Kovsan, J.; Bolotin, A.; Leitersdorf, E.; et al. Effects of Initiating Moderate Alcohol Intake on Cardiometabolic Risk in Adults With Type 2 Diabetes: A 2-Year Randomized, Controlled Trial. Ann. Intern Med. 2015, 163, 569–579. [Google Scholar] [CrossRef]
- Gupta, S.; Warner, J. Alcohol-related dementia: A 21st-century silent epidemic? Br. J. Psychiatry 2008, 193, 351–353. [Google Scholar] [CrossRef] [Green Version]
- Letenneur, L. Risk of dementia and alcohol and wine consumption: A review of recent results. Biol. Res. 2004, 37, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Lucerón-Lucas-Torres, M.; Cavero-Redondo, I.; Martínez-Vizcaíno, V.; Saz-Lara, A.; Pascual-Morena, C.; Álvarez-Bueno, C. Association Between Wine Consumption and Cognitive Decline in Older People: A Systematic Review and Meta-Analysis of Longitudinal Studies. Front. Nutr. 2022, 9, 863059. [Google Scholar] [CrossRef]
- Truelsen, T.; Gronbaek, M.; Schnohr, P.; Boysen, G. Intake of beer, wine, and spirits and risk of stroke: The copenhagen city heart study. Stroke 1998, 29, 2467–2472. [Google Scholar] [CrossRef] [Green Version]
- Cerhan, J.R.; Folsom, A.R.; Mortimer, J.A.; Shahar, E.; Knopman, D.S.; McGovern, P.G.; Hays, M.A.; Crum, L.D.; Heiss, G. Correlates of cognitive function in middle-aged adults. Atherosclerosis Risk in Communities (ARIC) Study Investigators. Gerontology 1998, 44, 95–105. [Google Scholar] [CrossRef]
- Ngandu, T.; Helkala, E.L.; Soininen, H.; Winblad, B.; Tuomilehto, J.; Nissinen, A.; Kivipelto, M. Alcohol drinking and cognitive functions: Findings from the Cardiovascular Risk Factors Aging and Dementia (CAIDE) Study. Dement. Geriatr. Cogn. Disord. 2007, 23, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Espeland, M.A.; Coker, L.H.; Wallace, R.; Rapp, S.R.; Resnick, S.M.; Limacher, M.; Powell, L.H.; Messina, C.R.; Women’s Health Initiative Study of Cognitive Aging. Association between alcohol intake and domain-specific cognitive function in older women. Neuroepidemiology 2006, 27, 1–12. [Google Scholar] [CrossRef]
- Duffy, J.C. Alcohol consumption and all-cause mortality. Int. J. Epidemiol. 1995, 24, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Pinder, R.M.; Sandler, M. Alcohol, wine and mental health: Focus on dementia and stroke. J. Psychopharmacol. 2004, 18, 449–456. [Google Scholar] [CrossRef]
- Xu, G.; Liu, X.; Yin, Q.; Zhu, W.; Zhang, R.; Fan, X. Alcohol consumption and transition of mild cognitive impairment to dementia. Psychiatry Clin. Neurosci. 2009, 63, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.A.; Neafsey, E.J.; Mukamal, K.J.; Gray, M.O.; Parks, D.A.; Das, D.K.; Korthuis, R.J. Alcohol in moderation, cardioprotection, and neuroprotection: Epidemiological considerations and mechanistic studies. Alcohol. Clin. Exp. Res. 2009, 33, 206–219. [Google Scholar] [CrossRef] [Green Version]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Alcohol consumption and ethyl carbamate. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 96, 3–1383.
- The Third Expert Report: World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Continuous Update Project Expert Report. Available online: Dietandcancerreport.org (accessed on 20 December 2022).
- Centers for Disease Control and Prevention (CDC) of United States of America: Dietary Guidelines for Alcohol. Available online: https://www.cdc.gov/alcohol/fact-sheets/moderate-drinking.htm (accessed on 20 December 2022).
- Clinton, S.K.; Giovannucci, E.L.; Hursting, S.D. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on Diet, Nutrition, Physical Activity, and Cancer: Impact and Future Directions. J. Nutr. 2020, 150, 663–671. [Google Scholar] [CrossRef]
- ECL. Association of European Cancer League: The European Code Against Cancer. Available online: https://www.cancer.eu/cancer-prevention-the-european-code-against-cancer/ (accessed on 20 December 2022).
- Scoccianti, C.; Cecchini, M.; Anderson, A.S.; Berrino, F.; Boutron-Ruault, M.C.; Espina, C.; Key, T.J.; Leitzmann, M.; Norat, T.; Powers, H.; et al. European Code against Cancer 4th Edition: Alcohol drinking and cancer. Cancer Epidemiol. 2016, 45, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Bradamante, S.; Barenghi, L.; Villa, A. Cardiovascular protective effects of resveratrol. Cardiovasc. Drug. Rev. 2004, 22, 169–188. [Google Scholar] [CrossRef]
- Aluyen, J.K.; Ton, Q.N.; Tran, T.; Yang, A.E.; Gottlieb, H.B.; Bellanger, R.A. Resveratrol: Potential as anticancer agent. J. Diet. Suppl. 2012, 9, 45–56. [Google Scholar] [CrossRef]
- Chao, C.; Li, Q.; Zhang, F.; White, E. Alcohol consumption and risk of lung cancer in the VITamins And Lifestyle Study. Nutr. Cancer 2011, 63, 880–888. [Google Scholar] [CrossRef]
- Chao, C.; Haque, R.; Caan, B.J.; Poon, K.Y.; Tseng, H.F.; Quinn, V.P. Red wine consumption not associated with reduced risk of colorectal cancer. Nutr. Cancer 2010, 62, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, S.; Giovannucci, E.; Leitzmann, M.F.; Rimm, E.B.; Stampfer, M.J.; Willett, W.C.; Platz, E.A. A prospective cohort study of red wine consumption and risk of prostate cancer. Int. J. Cancer 2007, 120, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Di Castelnuovo, A.; Costanzo, S.; Bonaccio, M.; McElduff, P.; Linneberg, A.; Salomaa, V.; Männistö, S.; Moitry, M.; Ferrières, J.; Dallongeville, J.; et al. Alcohol intake and total mortality in 142 960 individuals from the MORGAM Project: A population-based study. Addiction 2022, 117, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Giacosa, A.; Barale, R.; Bavaresco, L.; Gatenby, P.; Gerbi, V.; Janssens, J.; Johnston, B.; Kas, K.; La Vecchia, C.; Mainguet, P.; et al. Cancer prevention in Europe: The Mediterranean diet as a protective choice. Eur. J. Cancer Prev. 2013, 22, 90–95. [Google Scholar] [CrossRef]
- Turati, F.; Carioli, G.; Bravi, F.; Ferraroni, M.; Serraino, D.; Montella, M.; Giacosa, A.; Toffolutti, F.; Negri, E.; Levi, F.; et al. Mediterranean Diet and Breast Cancer Risk. Nutrients 2018, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Doll, R.; Peto, R.; Boreham, J.; Sutherland, I. Mortality in relation to alcohol consumption: A prospective study among male British doctors. Int. J. Epidemiol. 2005, 34, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Jayasekara, H.; English, D.R.; Room, R.; MacInnis, R.J. Alcohol consumption over time and risk of death: A systematic review and meta-analysis. Am. J. Epidemiol. 2014, 179, 1049–1059. [Google Scholar] [CrossRef] [Green Version]
- Grønbaek, M.; Johansen, D.; Becker, U.; Hein, H.O.; Schnohr, P.; Jensen, G.; Vestbo, J.; Sørensen, T.I. Changes in alcohol intake and mortality: A longitudinal population-based study. Epidemiology 2004, 15, 222–228. [Google Scholar] [CrossRef]
- Mazucanti, C.H.; Cabral-Costa, J.V.; Vasconcelos, A.R.; Andreotti, D.Z.; Scavone, C.; Kawamoto, E.M. Longevity Pathways (mTOR, SIRT, Insulin/IGF-1) as Key Modulatory Targets on Aging and Neurodegeneration. Curr. Top. Med. Chem. 2015, 15, 2116–2138. [Google Scholar] [CrossRef]
- Morselli, E.; Maiuri, M.C.; Markaki, M.; Megalou, E.; Pasparaki, A.; Palikaras, K.; Criollo, A.; Galluzzi, L.; Malik, S.A.; Vitale, I.; et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell. Death Dis. 2010, 1, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for The Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ditano-Vázquez, P.; Torres-Peña, J.D.; Galeano-Valle, F.; Pérez-Caballero, A.I.; Demelo-Rodríguez, P.; Lopez-Miranda, J.; Katsiki, N.; Delgado-Lista, J.; Alvarez-Sala-Walther, L.A. The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Nutrients 2019, 11, 2833. [Google Scholar] [CrossRef] [Green Version]
- Golan, R.; Gepner, Y.; Shai, I. Wine and Health-New Evidence. Eur. J. Clin. Nutr. 2019, 72, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, T.; Zhao, J.; Panwar, S.; Roemer, A.; Naimi, T.; Chikritzhs, T. Do “Moderate” Drinkers Have Reduced Mortality Risk? A Systematic Review and Meta-Analysis of Alcohol Consumption and All-Cause Mortality. J. Stud. Alcohol. Drugs 2016, 77, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, M.M.; Rehm, J.; Klipstein-Grobusch, K.; Boeing, H.; Schütze, M.; Drogan, D.; Overvad, K.; Tjønneland, A.; Halkjær, J.; Fagherazzi, G.; et al. The association of pattern of lifetime alcohol use and cause of death in the European prospective investigation into cancer and nutrition (EPIC) study. Int. J. Epidemiol. 2013, 42, 1772–1790. [Google Scholar] [CrossRef] [Green Version]
- Collaborators, G.A. Population-level risks of alcohol consumption by amount, geography, age, sex, and year: A systematic analysis for the Global Burden of Disease Study 2020. Lancet 2022, 400, 185–235. [Google Scholar] [CrossRef]
- Department of Error. Lancet 2022, 400, 358. [CrossRef]
- WHO. Alcohol. Available online: https://www.who.int/news-room/fact-sheets/detail/alcohol (accessed on 20 December 2022).
- Deluca, P.; Coulton, S.; Alam, M.F.; Boniface, S.; Cohen, D.; Donoghue, K.; Gilvarry, E.; Kaner, E.; Maconochie, I.; McArdle, P.; et al. Brief interventions to prevent excessive alcohol use in adolescents at low-risk presenting to Emergency Departments: Three-arm, randomised trial of effectiveness and cost-effectiveness. Int. J. Drug Policy 2021, 93, 103113. [Google Scholar] [CrossRef]
- Ryan, S.A.; Kokotailo, P.; Committee on Substance Use and Prevention; Camenga, D.R.; Patrick, S.W.; Plumb, J.; Quigley, J.; Walker-Harding, L. Alcohol Use by Youth. Pediatrics 2019, 144, e20191357. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P. The Impact of Alcoholic Beverages on Human Health. Nutrients 2021, 13, 4417. [Google Scholar] [CrossRef] [PubMed]
- Santos-Buelga, C.; González-Manzano, S.; González-Paramás, A.M. Wine, Polyphenols, and Mediterranean Diets. What Else Is There to Say? Molecules 2021, 26, 5537. [Google Scholar] [CrossRef] [PubMed]
- Tamargo, A.; Cueva, C.; Silva, M.; Molinero, N.; Miralles, B.; Bartolomé, B.; Moreno-Arribas, M.V. Gastrointestinal co-digestion of wine polyphenols with glucose/whey proteins affects their bioaccessibility and impact on colonic microbiota. Food Res. Int. 2022, 155, 111010. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrelia, S.; Di Renzo, L.; Bavaresco, L.; Bernardi, E.; Malaguti, M.; Giacosa, A. Moderate Wine Consumption and Health: A Narrative Review. Nutrients 2023, 15, 175. https://doi.org/10.3390/nu15010175
Hrelia S, Di Renzo L, Bavaresco L, Bernardi E, Malaguti M, Giacosa A. Moderate Wine Consumption and Health: A Narrative Review. Nutrients. 2023; 15(1):175. https://doi.org/10.3390/nu15010175
Chicago/Turabian StyleHrelia, Silvana, Laura Di Renzo, Luigi Bavaresco, Elisabetta Bernardi, Marco Malaguti, and Attilio Giacosa. 2023. "Moderate Wine Consumption and Health: A Narrative Review" Nutrients 15, no. 1: 175. https://doi.org/10.3390/nu15010175
APA StyleHrelia, S., Di Renzo, L., Bavaresco, L., Bernardi, E., Malaguti, M., & Giacosa, A. (2023). Moderate Wine Consumption and Health: A Narrative Review. Nutrients, 15(1), 175. https://doi.org/10.3390/nu15010175