Long-Term Cola Intake Does Not Cause Evident Pathological Alterations in the Femoral Bone Microstructure: An Animal Study in Adult Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Procedures
2.2. Macroscopic Indicators
2.3. Micro-Computed Tomography
2.4. Histomorphometry
2.5. Bone Mechanical Properties
2.6. Statistical Analysis
3. Results
3.1. Macroscopic Indicators
3.2. Micro-Computed Tomography
3.3. Histomorphometry
3.4. Bone Mechanical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, V.S.; Schulze, M.B.; Hu, F.B. Intake of Sugar-Sweetened Beverages and Weight Gain: A Systematic Review. Am. J. Clin. Nutr. 2006, 84, 274–288. [Google Scholar] [CrossRef]
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Shi, P.; Lim, S.; Andrews, K.G.; Engell, R.E.; Ezzati, M.; Mozaffarian, D.; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, Regional, and National Consumption of Sugar-Sweetened Beverages, Fruit Juices, and Milk: A Systematic Assessment of Beverage Intake in 187 Countries. PLoS ONE 2015, 10, e0124845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhedaide, A.; Soliman, M.M.; Salah-Eldin, A.-E.; Ismail, T.A.; Alshehiri, Z.S.; Attia, H.F. Chronic Effects of Soft Drink Consumption on the Health State of Wistar Rats: A Biochemical, Genetic and Histopathological Study. Mol. Med. Rep. 2016, 13, 5109–5117. [Google Scholar] [CrossRef] [Green Version]
- Berkey, C.S.; Rockett, H.R.H.; Field, A.E.; Gillman, M.W.; Colditz, G.A. Sugar-Added Beverages and Adolescent Weight Change. Obes. Res. 2004, 12, 778–788. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; McKee, M.; Galea, G.; Stuckler, D. Relationship of Soft Drink Consumption to Global Overweight, Obesity, and Diabetes: A Cross-National Analysis of 75 Countries. Am. J. Public Health 2013, 103, 2071–2077. [Google Scholar] [CrossRef] [PubMed]
- Tahmassebi, J.F.; BaniHani, A. Impact of Soft Drinks to Health and Economy: A Critical Review. Eur. Arch. Paediatr. Dent. 2020, 21, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, E.A.; Flack, K.D.; Davy, B.M. Beverage Consumption and Adult Weight Management: A Review. Eat. Behav. 2009, 10, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, K.L.; Morita, K.; Qiao, N.; Hannan, M.T.; Cupples, L.A.; Kiel, D.P. Colas, but Not Other Carbonated Beverages, Are Associated with Low Bone Mineral Density in Older Women: The Framingham Osteoporosis Study. Am. J. Clin. Nutr. 2006, 84, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Martiniakova, M.; Babikova, M.; Mondockova, V.; Blahova, J.; Kovacova, V.; Omelka, R. The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022, 14, 523. [Google Scholar] [CrossRef]
- Ogur, R.; Uysal, B.; Ogur, T.; Yaman, H.; Oztas, E.; Ozdemir, A.; Hasde, M. Evaluation of the Effect of Cola Drinks on Bone Mineral Density and Associated Factors. Basic Clin. Pharmacol. Toxicol. 2007, 100, 334–338. [Google Scholar] [CrossRef]
- Newby, P.K.; Peterson, K.E.; Berkey, C.S.; Leppert, J.; Willett, W.C.; Colditz, G.A. Beverage Consumption Is Not Associated with Changes in Weight and Body Mass Index among Low-Income Preschool Children in North Dakota. J. Am. Diet. Assoc. 2004, 104, 1086–1094. [Google Scholar] [CrossRef]
- Sakurai, M.; Nakamura, K.; Miura, K.; Takamura, T.; Yoshita, K.; Nagasawa, S.Y.; Morikawa, Y.; Ishizaki, M.; Kido, T.; Naruse, Y.; et al. Sugar-Sweetened Beverage and Diet Soda Consumption and the 7-Year Risk for Type 2 Diabetes Mellitus in Middle-Aged Japanese Men. Eur. J. Nutr. 2014, 53, 251–258. [Google Scholar] [CrossRef]
- Sampasa-Kanyinga, H.; Hamilton, H.A.; Chaput, J.-P. Sleep Duration and Consumption of Sugar-Sweetened Beverages and Energy Drinks among Adolescents. Nutrition 2018, 48, 77–81. [Google Scholar] [CrossRef]
- García-Contreras, F.; Paniagua, R.; Avila-Díaz, M.; Cabrera-Muñoz, L.; Martínez-Muñiz, I.; Foyo-Niembro, E.; Amato, D. Cola Beverage Consumption Induces Bone Mineralization Reduction in Ovariectomized Rats. Arch. Med. Res. 2000, 31, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-A.; Yoo, J.-H. Associations between Cola Consumption and Bone Mineral Density in Korean Adolescents and Young Adults: A Cross-Sectional Study Using Data from the Korea National Health and Nutrition Examination Survey, 2008–2011. J. Nutr. Sci. 2020, 9, e56. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Morton, D.J.; Barrett-Connor, E.L. Carbonated Beverage Consumption and Bone Mineral Density among Older Women: The Rancho Bernardo Study. Am. J. Public Health 1997, 87, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Buccino, F.; Zagra, L.; Savadori, P.; Galluzzo, A.; Colombo, C.; Grossi, G.; Banfi, G.; Vergani, L.M. Mapping Local Mechanical Properties of Human Healthy and Osteoporotic Femoral Heads. Materialia 2021, 20, 101229. [Google Scholar] [CrossRef]
- Zimmermann, E.A.; Ritchie, R.O. Bone as a Structural Material. Adv. Healthc. Mater. 2015, 4, 1287–1304. [Google Scholar] [CrossRef]
- Zimmermann, E.A.; Busse, B.; Ritchie, R.O. The Fracture Mechanics of Human Bone: Influence of Disease and Treatment. Bonekey Rep. 2015, 4, 743. [Google Scholar] [CrossRef] [Green Version]
- Buccino, F.; Colombo, C.; Vergani, L.M. A Review on Multiscale Bone Damage: From the Clinical to the Research Perspective. Materials 2021, 14, 1240. [Google Scholar] [CrossRef] [PubMed]
- Justice, M.J.; Dhillon, P. Using the Mouse to Model Human Disease: Increasing Validity and Reproducibility. Dis. Model. Mech. 2016, 9, 101–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martiniakova, M.; Sarocka, A.; Kovacova, V.; Kapusta, E.; Goc, Z.; Gren, A.; Formicki, G.; Omelka, R. Antagonistic Impact of Acrylamide and Ethanol on Biochemical and Morphological Parameters Consistent with Bone Health in Mice. Animals 2020, 10, E1835. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeman, E. Clinical Review 137: Sexual Dimorphism in Skeletal Size, Density, and Strength. J. Clin. Endocrinol. Metab. 2001, 86, 4576–4584. [Google Scholar] [CrossRef]
- Callewaert, F.; Sinnesael, M.; Gielen, E.; Boonen, S.; Vanderschueren, D. Skeletal Sexual Dimorphism: Relative Contribution of Sex Steroids, GH-IGF1, and Mechanical Loading. J. Endocrinol. 2010, 207, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Mohan, S.; Yakar, S. Does the GH/IGF-1 Axis Contribute to Skeletal Sexual Dimorphism? Evidence from Mouse Studies. Growth Horm. IGF Res. 2016, 27, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Gautam, J.; Choudhary, D.; Khedgikar, V.; Kushwaha, P.; Singh, R.S.; Singh, D.; Tiwari, S.; Trivedi, R. Micro-Architectural Changes in Cancellous Bone Differ in Female and Male C57BL/6 Mice with High-Fat Diet-Induced Low Bone Mineral Density. Br. J. Nutr. 2014, 111, 1811–1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glatt, V.; Canalis, E.; Stadmeyer, L.; Bouxsein, M.L. Age-Related Changes in Trabecular Architecture Differ in Female and Male C57BL/6J Mice. J. Bone Miner. Res. 2007, 22, 1197–1207. [Google Scholar] [CrossRef]
- Martiniaková, M.; Omelka, R.; Grosskopf, B.; Sirotkin, A.V.; Chrenek, P. Sex-Related Variation in Compact Bone Microstructure of the Femoral Diaphysis in Juvenile Rabbits. Acta Vet. Scand. 2008, 50, 15. [Google Scholar] [CrossRef] [Green Version]
- Khosla, S.; Riggs, B.L.; Atkinson, E.J.; Oberg, A.L.; McDaniel, L.J.; Holets, M.; Peterson, J.M.; Melton, L.J. Effects of Sex and Age on Bone Microstructure at the Ultradistal Radius: A Population-Based Noninvasive in Vivo Assessment. J. Bone Miner. Res. 2006, 21, 124–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazakia, G.J.; Nirody, J.A.; Bernstein, G.; Sode, M.; Burghardt, A.J.; Majumdar, S. Age- and Gender-Related Differences in Cortical Geometry and Microstructure: Improved Sensitivity by Regional Analysis. Bone 2013, 52, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Sims, N.A.; Dupont, S.; Krust, A.; Clement-Lacroix, P.; Minet, D.; Resche-Rigon, M.; Gaillard-Kelly, M.; Baron, R. Deletion of Estrogen Receptors Reveals a Regulatory Role for Estrogen Receptors-Beta in Bone Remodeling in Females but Not in Males. Bone 2002, 30, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Riggs, B.L.; Melton Iii, L.J.; Robb, R.A.; Camp, J.J.; Atkinson, E.J.; Peterson, J.M.; Rouleau, P.A.; McCollough, C.H.; Bouxsein, M.L.; Khosla, S. Population-Based Study of Age and Sex Differences in Bone Volumetric Density, Size, Geometry, and Structure at Different Skeletal Sites. J. Bone Miner. Res. 2004, 19, 1945–1954. [Google Scholar] [CrossRef] [PubMed]
- Otero-Losada, M.E.; Mc Loughlin, S.; Rodríguez-Granillo, G.; Müller, A.; Ottaviano, G.; Moriondo, M.; Cutrin, J.C.; Milei, J. Metabolic Disturbances and Worsening of Atherosclerotic Lesions in ApoE−/− Mice after Cola Beverages Drinking. Cardiovasc. Diabetol. 2013, 12, 57. [Google Scholar] [CrossRef]
- Celec, P.; Pálffy, R.; Gardlík, R.; Behuliak, M.; Hodosy, J.; Jáni, P.; Božek, P.; Šebeková, K. Renal and Metabolic Effects of Three Months of Decarbonated Cola Beverages in Rats. Exp. Biol. Med. 2010, 235, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.B.; Park, C.H.; Park, S. Effect of Cola Intake on Insulin Resistance in Moderate Fat-Fed Weaning Male Rats. J. Nutr. Biochem. 2002, 13, 727–733. [Google Scholar] [CrossRef]
- Van Wymelbeke, V.; Béridot-Thérond, M.-E.; de La Guéronnière, V.; Fantino, M. Influence of Repeated Consumption of Beverages Containing Sucrose or Intense Sweeteners on Food Intake. Eur. J. Clin. Nutr. 2004, 58, 154–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGartland, C.; Robson, P.J.; Murray, L.; Cran, G.; Savage, M.J.; Watkins, D.; Rooney, M.; Boreham, C. Carbonated Soft Drink Consumption and Bone Mineral Density in Adolescence: The Northern Ireland Young Hearts Project. J. Bone Miner. Res. 2003, 18, 1563–1569. [Google Scholar] [CrossRef]
- Ahn, H.; Park, Y.K. Sugar-Sweetened Beverage Consumption and Bone Health: A Systematic Review and Meta-Analysis. Nutr. J. 2021, 20, 41. [Google Scholar] [CrossRef]
- Conlisk, A.J.; Galuska, D.A. Is Caffeine Associated with Bone Mineral Density in Young Adult Women? Prev. Med. 2000, 31, 562–568. [Google Scholar] [CrossRef]
- Hegarty, V.M.; May, H.M.; Khaw, K.T. Tea Drinking and Bone Mineral Density in Older Women. Am. J. Clin. Nutr. 2000, 71, 1003–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawrot, P.; Jordan, S.; Eastwood, J.; Rotstein, J.; Hugenholtz, A.; Feeley, M. Effects of Caffeine on Human Health. Food Addit. Contam. 2003, 20, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Vartanian, L.R.; Schwartz, M.B.; Brownell, K.D. Effects of Soft Drink Consumption on Nutrition and Health: A Systematic Review and Meta-Analysis. Am. J. Public Health 2007, 97, 667–675. [Google Scholar] [CrossRef]
- Kemi, V.E.; Kärkkäinen, M.U.M.; Lamberg-Allardt, C.J.E. High Phosphorus Intakes Acutely and Negatively Affect Ca and Bone Metabolism in a Dose-Dependent Manner in Healthy Young Females. Br. J. Nutr. 2006, 96, 545–552. [Google Scholar] [PubMed]
- Kemi, V.E.; Rita, H.J.; Kärkkäinen, M.U.M.; Viljakainen, H.T.; Laaksonen, M.M.; Outila, T.A.; Lamberg-Allardt, C.J.E. Habitual High Phosphorus Intakes and Foods with Phosphate Additives Negatively Affect Serum Parathyroid Hormone Concentration: A Cross-Sectional Study on Healthy Premenopausal Women. Public Health Nutr. 2009, 12, 1885–1892. [Google Scholar] [CrossRef] [Green Version]
- Heaney, R.P.; Recker, R.R.; Watson, P.; Lappe, J.M. Phosphate and Carbonate Salts of Calcium Support Robust Bone Building in Osteoporosis. Am. J. Clin. Nutr. 2010, 92, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Rafferty, K.; Heaney, R.P. Nutrient Effects on the Calcium Economy: Emphasizing the Potassium Controversy. J. Nutr. 2008, 138, 166S–171S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaney, R.P. Effects of Caffeine on Bone and the Calcium Economy. Food Chem. Toxicol. 2002, 40, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Swain, J.; Brown, E.M.; Wyshak, G.; Albright, T.; Ravnikar, V.A.; Schiff, I. A Preliminary Report of the Short-Term Effect of Carbonated Beverage Consumption on Calcium Metabolism in Normal Women. Arch. Intern. Med. 1989, 149, 2517–2519. [Google Scholar] [CrossRef]
- Lloyd, T.; Johnson-Rollings, N.; Eggli, D.F.; Kieselhorst, K.; Mauger, E.A.; Cusatis, D.C. Bone Status among Postmenopausal Women with Different Habitual Caffeine Intakes: A Longitudinal Investigation. J. Am. Coll. Nutr. 2000, 19, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Packard, P.T.; Recker, R.R. Caffeine Does Not Affect the Rate of Gain in Spine Bone in Young Women. Osteoporos. Int. 1996, 6, 149–152. [Google Scholar] [CrossRef]
- Chen, X.; Whitford, G.M. Effects of Caffeine on Fluoride, Calcium and Phosphorus Metabolism and Calcified Tissues in the Rat. Arch. Oral. Biol. 1999, 44, 33–39. [Google Scholar] [CrossRef]
- Enlow, D.H.; Brown, S.O. A Comparative Histological Study of Fossil and Recent Bone Tissues. Part I. Tex. J. Sci. 1956, 8, 405–412. [Google Scholar]
- Piemontese, M.; Almeida, M.; Robling, A.G.; Kim, H.-N.; Xiong, J.; Thostenson, J.D.; Weinstein, R.S.; Manolagas, S.C.; O’Brien, C.A.; Jilka, R.L. Old Age Causes de Novo Intracortical Bone Remodeling and Porosity in Mice. JCI Insight 2017, 2, 93771. [Google Scholar] [CrossRef]
- Vidal, B.; Cascão, R.; Finnilä, M.A.J.; Lopes, I.P.; Saarakkala, S.; Zioupos, P.; Canhão, H.; Fonseca, J.E. Early Arthritis Induces Disturbances at Bone Nanostructural Level Reflected in Decreased Tissue Hardness in an Animal Model of Arthritis. PLoS ONE 2018, 13, e0190920. [Google Scholar] [CrossRef]
- Jafri, S.; Hendrix, K.; Cuevas, P.; Pilawski, I.; Helms, J. Examining the Morphological and Physiological Comparisons of OVX Murine Bone vs. Mini Pigs, Rats, and Humans. J. Stud. Res. 2021, 10. [Google Scholar] [CrossRef]
- Pazzaglia, U.E.; Zarattini, G.; Giacomini, D.; Rodella, L.; Menti, A.M.; Feltrin, G. Morphometric Analysis of the Canal System of Cortical Bone: An Experimental Study in the Rabbit Femur Carried Out with Standard Histology and Micro-CT. Anat. Histol. Embryol. 2010, 39, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, H.; Tsurumoto, T.; Maeda, J.; Saiki, K.; Okamoto, K.; Ogami-Takamura, K.; Kondo, H.; Tomita, M.; Yonekura, A.; Osaki, M. Investigating Interindividual Variations in Cortical Bone Quality: Analysis of the Morphotypes of Secondary Osteons and Their Population Densities in the Human Femoral Diaphysis. Anat. Sci. Int. 2019, 94, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Lefèvre, E.; Farlay, D.; Bala, Y.; Subtil, F.; Wolfram, U.; Rizzo, S.; Baron, C.; Zysset, P.; Pithioux, M.; Follet, H. Compositional and Mechanical Properties of Growing Cortical Bone Tissue: A Study of the Human Fibula. Sci. Rep. 2019, 9, 17629. [Google Scholar] [CrossRef] [Green Version]
- Burr, D.B.; Akkus, O. Bone Morphology and Organization. In Basic and Applied Bone Biology; Academic Press: Cambridge, MA, USA, 2014; pp. 3–25. ISBN 978-0-12-416015-6. [Google Scholar]
- Maes, C.; Kobayashi, T.; Selig, M.K.; Torrekens, S.; Roth, S.I.; Mackem, S.; Carmeliet, G.; Kronenberg, H.M. Osteoblast Precursors, but Not Mature Osteoblasts, Move into Developing and Fractured Bones along with Invading Blood Vessels. Dev. Cell 2010, 19, 329–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goring, A.; Sharma, A.; Javaheri, B.; Smith, R.C.; Kanczler, J.M.; Boyde, A.; Hesse, E.; Mahajan, S.; Olsen, B.R.; Pitsillides, A.A.; et al. Regulation of the Bone Vascular Network Is Sexually Dimorphic. J. Bone Miner. Res. 2019, 34, 2117–2132. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lei, M.; Jiang, Y.; Hao, H.; Chu, L.; Xu, J.; Luo, M.; Verfaillie, C.M.; Zweier, J.L.; Liu, Z. High Glucose Attenuates VEGF Expression in Rat Multipotent Adult Progenitor Cells in Association with Inhibition of JAK2/STAT3 Signalling. J. Cell Mol. Med. 2009, 13, 3427–3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pufe, T.; Claassen, H.; Scholz-Ahrens, K.E.; Varoga, D.; Drescher, W.; Franke, A.T.M.; Wruck, C.; Petersen, W.; Cellarius, C.; Schrezenmeir, J.; et al. Influence of Estradiol on Vascular Endothelial Growth Factor Expression in Bone: A Study in Göttingen Miniature Pigs and Human Osteoblasts. Calcif. Tissue Int. 2007, 80, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.; Herring, C.M.; Markel, T.A.; Crisostomo, P.R.; Wang, M.; Weil, B.; Lahm, T.; Meldrum, D.R. Deleterious Effects of Endogenous and Exogenous Testosterone on Mesenchymal Stem Cell VEGF Production. Am. J. Physiol. Integr. Comp. Physiol. 2008, 294, R1498–R1503. [Google Scholar] [CrossRef] [PubMed]
- Celec, P.; Behuliak, M. Behavioural and Endocrine Effects of Chronic Cola Intake. J. Psychopharmacol. 2010, 24, 1569–1572. [Google Scholar] [CrossRef]
- Ferrini, R.L.; Barrett-Connor, E. Caffeine Intake and Endogenous Sex Steroid Levels in Postmenopausal Women. The Rancho Bernardo Study. Am. J. Epidemiol. 1996, 144, 642–644. [Google Scholar] [CrossRef] [Green Version]
- Kotsopoulos, J.; Eliassen, A.H.; Missmer, S.A.; Hankinson, S.E.; Tworoger, S.S. Relationship between Caffeine Intake and Plasma Sex Hormone Concentrations in Premenopausal and Postmenopausal Women. Cancer 2009, 115, 2765–2774. [Google Scholar] [CrossRef] [Green Version]
- Schliep, K.C.; Schisterman, E.F.; Mumford, S.L.; Pollack, A.Z.; Zhang, C.; Ye, A.; Stanford, J.B.; Hammoud, A.O.; Porucznik, C.A.; Wactawski-Wende, J. Caffeinated Beverage Intake and Reproductive Hormones among Premenopausal Women in the BioCycle Study. Am. J. Clin. Nutr. 2012, 95, 488–497. [Google Scholar] [CrossRef] [Green Version]
- Ascenzi, M.-G.; Chin, J.; Lappe, J.; Recker, R. Non-Osteoporotic Women with Low-Trauma Fracture Present Altered Birefringence in Cortical Bone. Bone 2016, 84, 104–112. [Google Scholar] [CrossRef]
- Bernhard, A.; Milovanovic, P.; Zimmermann, E.A.; Hahn, M.; Djonic, D.; Krause, M.; Breer, S.; Püschel, K.; Djuric, M.; Amling, M.; et al. Micro-Morphological Properties of Osteons Reveal Changes in Cortical Bone Stability during Aging, Osteoporosis, and Bisphosphonate Treatment in Women. Osteoporos. Int. 2013, 24, 2671–2680. [Google Scholar] [CrossRef]
- Evans, F.G.; Vincentelli, R. Relations of the Compressive Properties of Human Cortical Bone to Histological Structure and Calcification. J. Biomech. 1974, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanyon, L.E.; Goodship, A.E.; Pye, C.J.; MacFie, J.H. Mechanically Adaptive Bone Remodelling. J. Biomech. 1982, 15, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Gibson, V.A.; Stover, S.M.; Gibeling, J.C.; Hazelwood, S.J.; Martin, R.B. Osteonal Effects on Elastic Modulus and Fatigue Life in Equine Bone. J. Biomech. 2006, 39, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, K.; Yin, Z.; Xie, Y. Roles of the Kidney in the Formation, Remodeling and Repair of Bone. J. Nephrol. 2016, 29, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rysz, J.; Franczyk, B.; Rokicki, R.; Gluba-Brzózka, A. The Influence of Dietary Interventions on Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Nutrients 2021, 13, 2065. [Google Scholar] [CrossRef]
- Cao, G.; González, J.; Müller, A.; Ottaviano, G.; Ambrosio, G.; Toblli, J.E.; Milei, J. Beneficial Effect of Moderate Exercise in Kidney of Rat after Chronic Consumption of Cola Drinks. PLoS ONE 2016, 11, e0152461. [Google Scholar] [CrossRef] [Green Version]
- Goff, E.; Buccino, F.; Bregoli, C.; McKinley, J.P.; Aeppli, B.; Recker, R.R.; Shane, E.; Cohen, A.; Kuhn, G.; Müller, R. Large-Scale Quantification of Human Osteocyte Lacunar Morphological Biomarkers as Assessed by Ultra-High-Resolution Desktop Micro-Computed Tomography. Bone 2021, 152, 116094. [Google Scholar] [CrossRef]
- Buccino, F.; Bagherifard, S.; D’Amico, L.; Zagra, L.; Banfi, G.; Tromba, G.; Vergani, L.M. Assessing the Intimate Mechanobiological Link between Human Bone Micro-Scale Trabecular Architecture and Micro-Damages. Eng. Fract. Mech. 2022, 270, 108582. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovacova, V.; Omelka, R.; Mondockova, V.; Londzin, P.; Conka, J.; Meliskova, V.; Folwarczna, J.; Celec, P.; Martiniakova, M. Long-Term Cola Intake Does Not Cause Evident Pathological Alterations in the Femoral Bone Microstructure: An Animal Study in Adult Mice. Nutrients 2023, 15, 583. https://doi.org/10.3390/nu15030583
Kovacova V, Omelka R, Mondockova V, Londzin P, Conka J, Meliskova V, Folwarczna J, Celec P, Martiniakova M. Long-Term Cola Intake Does Not Cause Evident Pathological Alterations in the Femoral Bone Microstructure: An Animal Study in Adult Mice. Nutrients. 2023; 15(3):583. https://doi.org/10.3390/nu15030583
Chicago/Turabian StyleKovacova, Veronika, Radoslav Omelka, Vladimira Mondockova, Piotr Londzin, Jozef Conka, Veronika Meliskova, Joanna Folwarczna, Peter Celec, and Monika Martiniakova. 2023. "Long-Term Cola Intake Does Not Cause Evident Pathological Alterations in the Femoral Bone Microstructure: An Animal Study in Adult Mice" Nutrients 15, no. 3: 583. https://doi.org/10.3390/nu15030583
APA StyleKovacova, V., Omelka, R., Mondockova, V., Londzin, P., Conka, J., Meliskova, V., Folwarczna, J., Celec, P., & Martiniakova, M. (2023). Long-Term Cola Intake Does Not Cause Evident Pathological Alterations in the Femoral Bone Microstructure: An Animal Study in Adult Mice. Nutrients, 15(3), 583. https://doi.org/10.3390/nu15030583