Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods Section
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Data Extraction
2.4. Risk of Bias
2.5. Data Analysis
3. Results
3.1. Search Outcomes
3.2. Study Characteristics
3.3. Methodological Quality of Included Studies
3.4. Effects of Interventions
3.4.1. Time to Exhaustion Runs
3.4.2. Endurance Time Trial Performance
4. Discussion
4.1. Effect of Caffeine Intake on Time to Exhaustion Runs
4.2. Effect of Caffeine Intake on Endurance Running Time Trials
4.3. Limitations and Future Lines of Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Search Strategies Used for the Four Databases Used in the Investigation
- MEDLINE (via OVID).
1 | (Caffedrine or caffeine or Coffeinum or coffee or caffein*).ab,ti | 46,031 |
2 | Coffee/ | 8042 |
3 | Caffeine/ | 24,875 |
4 | 1 or 2 or 3 | 51,853 |
5 | Marathon Running/ or Running/ | 22,700 |
6 | (run or runner or running or marathon).ab,ti. | 163,459 |
7 | (endurance or aerobic).ab,ti. | 127,679 |
8 | 5 or 6 or 7 | 287,903 |
9 | 4 and 8 | 1061 |
- SPORTDiscus (via EBSCO).
S1 | AB caffein* OR AB coffee OR AB coffeinum OR AB caffedrine | 4953 |
S2 | AB run OR AB runner OR AB running OR AB marathon | 96,403 |
S3 | AB endurance OR AB aerobic | 40,490 |
S4 | S2 OR S3 | 129,153 |
S5 | S1 AND S4 | 672 |
- Web of science.
#1 | (TS=(endurance)) OR TS=(aerobic) | 211,671 |
#2 | TS=(run) OR TS=(runner) OR TS=(running) or TS=(marathon) | 675,833 |
#3 | TS=(caffein*) OR TS=(coffee) OR TS=(coffeinum) OR TS=(caffedrine) | 78,451 |
#4 | #1 OR #2 | 871,860 |
#5 | #3 AND #4 | 2066 |
- Scopus.
(TITLE-ABS-KEY (run) OR TITLE-ABS-KEY (runner) OR TITLE-ABS-KEY (running) OR TITLE-ABS-KEY (marathon) OR TITLE-ABS-KEY (endurance) OR TITLE-ABS-KEY (aerobic)) AND (TITLE-ABS-KEY (coffee) OR TITLE-ABS-KEY (coffeinum) OR TITLE-ABS-KEY (caffedrine) OR TITLE-ABS-KEY (caffeine)) | 2394 |
Appendix B. Results of the Egger’s Linear Regression Test
Outcomes | Coef. | SE | 95% CI | t | p | Number of Trials |
---|---|---|---|---|---|---|
Time to Exhaustion | 0.856 | 1.69 | −2.90 to 4.61 | 0.51 | 0.622 | 12 |
Running Time Trials | −0.740 | 0.72 | −2.24 to 0.762 | −1.03 | 0.317 | 22 |
References
- Astorino, T.A.; Roberson, D.W. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sport. Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Grgic, J. Caffeine and exercise: What next? Sport. Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.K.; Green, J.M. Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sport. Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine and exercise: Metabolism, endurance and performance. Sport. Med. 2001, 31, 785–807. [Google Scholar] [CrossRef]
- Cristina-Souza, G.; Santos, P.S.; Santos-Mariano, A.C.; Coelho, D.B.; Rodacki, A.; DE-Oliveira, F.R.; Bishop, D.J.; Bertuzzi, R.; Lima-Silva, A.E. Caffeine increases endurance performance via changes in neural and muscular determinants of performance fatigability. Med. Sci. Sport. Exerc. 2022, 54, 1591–1603. [Google Scholar] [CrossRef]
- Rohloff, G.; Souza, D.B.; Ruiz-Moreno, C.; Del Coso, J.; Polito, M.D. Stimulus expectancy and stimulus response of caffeine on 4-km running performance: A randomized, double-blind, placebo-controlled and crossover study. Int. J. Exerc. Sci. 2022, 15, 645–654. [Google Scholar]
- Baguet, A.; Bourgois, J.; Vanhee, L.; Achten, E.; Derave, W. Important role of muscle carnosine in rowing performance. J. Appl. Physiol. 2010, 109, 1096–1101. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [Green Version]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sport. Med. 2019, 27, 238–256. [Google Scholar] [CrossRef]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sport. Nutr. 2021, 18, 5. [Google Scholar] [CrossRef] [PubMed]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sport. Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef]
- Souza, D.B.; Del Coso, J.; Casonatto, J.; Polito, M.D. Acute effects of caffeine-containing energy drinks on physical performance: A systematic review and meta-analysis. Eur. J. Nutr. 2017, 56, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J. Caffeine ingestion enhances Wingate performance: A meta-analysis. Eur. J. Sport Sci. 2018, 18, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sport. Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz-Lara, J.; Grgic, J.; Detanico, D.; Botella, J.; Jiménez, S.L.; Del Coso, J. Effects of acute caffeine intake on combat sports performance: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2022, 1–16. [Google Scholar] [CrossRef]
- Gomez-Bruton, A.; Marin-Puyalto, J.; Muñiz-Pardos, B.; Matute-Llorente, A.; Del Coso, J.; Gomez-Cabello, A.; Vicente-Rodriguez, G.; Casajus, J.A.; Lozano-Berges, G. Does acute caffeine supplementation improve physical performance in female team-sport athletes? Evidence from a systematic review and meta-analysis. Nutrients 2021, 13, 3663. [Google Scholar] [CrossRef]
- Costill, D.L.; Dalsky, G.P.; Fink, W.J. Effects of caffeine ingestion on metabolism and exercise performance. Med. Sci. Sport. 1978, 10, 155–158. [Google Scholar]
- Maughan, R.J. IOC Medical and Scientific Commission reviews its position on the use of dietary supplements by elite athletes. Br. J. Sport. Med. 2018, 52, 418–419. [Google Scholar] [CrossRef]
- Australian Sports Commission. Australian Institute of Sport Position Statement: Supplements and Sports Foods in High Performance Sport. Available online: https://www.ais.gov.au/nutrition/supplements/group_a (accessed on 6 November 2022).
- Paton, C.; Costa, V.; Guglielmo, L. Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J. Sport. Sci. 2015, 33, 1076–1083. [Google Scholar] [CrossRef]
- Schubert, M.M.; Astorino, T.A. A systematic review of the efficacy of ergogenic aids for improving running performance. J. Strength Cond. Res. 2013, 27, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.D.; Richardson, D.L.; Thie, J.; Taylor, R. Coffee ingestion enhances 1-mile running race performance. Int. J. Sport. Physiol. Perform. 2018, 13, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Hanson, N.J.; Martinez, S.C.; Byl, E.N.; Maceri, R.M.; Miller, M.G. Increased rate of heat storage, and no performance benefits, with caffeine ingestion before a 10-km run in hot, humid conditions. Int. J. Sport. Physiol. Perform. 2019, 14, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Manoel, F.A.; Kravchchyn, A.C.P.; Figueiredo, D.H.; Figueiredo, D.H.; Machado, F.A. Does isolated and combined acute supplementation of caffeine and carbohydrate feeding strategies modify 10-km running performance and pacing strategy? A randomized, crossover, double-blind, and placebo-controlled study. Arch. Med. Del Deporte 2021, 38, 185–191. [Google Scholar] [CrossRef]
- Marques, A.C.; Jesus, A.A.; Giglio, B.M.; Marini, A.C.; Lobo, P.C.B.; Mota, J.F.; Pimentel, G.D. Acute Caffeinated Coffee Consumption Does not Improve Time Trial Performance in an 800-m Run: A Randomized, Double-Blind, Crossover, Placebo-Controlled Study. Nutrients 2018, 10, 657. [Google Scholar] [CrossRef] [Green Version]
- Ardern, C.L.; Büttner, F.; Andrade, R.; Weir, A.; Ashe, M.C.; Holden, S.; Impellizzeri, F.M.; Delahunt, E.; Dijkstra, H.P.; Mathieson, S.; et al. Implementing the 27 PRISMA 2020 Statement items for systematic reviews in the sport and exercise medicine, musculoskeletal rehabilitation and sports science fields: The PERSiST (implementing Prisma in Exercise, Rehabilitation, Sport medicine and SporTs science) guidance. Br. J. Sport. Med. 2022, 56, 175–195. [Google Scholar]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Hurst, P.; Schipof-Godart, L.; Hettinga, F.; Roelands, B.; Beedie, C. Improved 1000-m running performance and pacing strategy with caffeine and placebo: A balanced placebo design study. Int. J. Sport. Physiol. Perform. 2019, 15, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Khcharem, A.; Souissi, M.; Atheymen, R.; Ben Mahmoud, L.; Sahnoun, Z. Effects of caffeine ingestion on 8-km run performance and cognitive function after 26 hours of sleep deprivation. Biol. Rhythm. Res. 2022, 53, 867–877. [Google Scholar] [CrossRef]
- Rohatgi, A. WebPlotDigitizer. Available online: https://automeris.io/WebPlotDigitizer/ (accessed on 20 October 2022).
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Elsevier Science: Burlington, MA, USA, 2013. [Google Scholar]
- Whalley, P.J.; Dearing, C.G.; Paton, C.D. The effects of different forms of caffeine supplement on 5-km running performance. Int. J. Sport. Physiol. Perform. 2019, 15, 390–394. [Google Scholar] [CrossRef]
- Bell, D.G.; McLellan, T.M.; Sabiston, C.M. Effect of ingesting caffeine and ephedrine on 10-km run performance. Med. Sci. Sport. Exerc. 2002, 34, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Follmann, D.; Elliott, P.; Suh, I.; Cutler, J. Variance imputation for overviews of clinical trials with continuous response. J. Clin. Epidemiol. 1992, 45, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Delleli, S.; Ouergui, I.; Messaoudi, H.; Trabelsi, K.; Ammar, A.; Glenn, J.M.; Chtourou, H. Acute effects of caffeine supplementation on physical performance, physiological responses, perceived exertion, and technical-tactical skills in combat sports: A systematic review and meta-analysis. Nutrients 2022, 14, 2996. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.G.; Brooks, M.B.; Cincotta, J.; Manjourides, J.D. Establishing a relationship between the effect of caffeine and duration of endurance athletic time trial events: A systematic review and meta-analysis. J. Sci. Med. Sport 2019, 22, 232–238. [Google Scholar] [CrossRef] [PubMed]
- López-González, L.M.; Sánchez-Oliver, A.J.; Mata, F.; Jodra, P.; Antonio, J.; Domínguez, R. Acute caffeine supplementation in combat sports: A systematic review. J. Int. Soc. Sport. Nutr. 2018, 15, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raya-Gonzalez, J.; Rendo-Urteaga, T.; Dominguez, R.; Castillo, D.; Rodriguez-Fernandez, A.; Grgic, J. Acute effects of caffeine supplementation on movement velocity in resistance exercise: A systematic review and meta-analysis. Sport. Med. 2020, 50, 717–729. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [Green Version]
- Cohen, B.S. Effects of caffeine ingestion on endurance racing in heat and humidity. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 358–363. [Google Scholar] [CrossRef]
- De Poli, R.D.A.B.; Eiji Miyagi, W.; Yuzo Nakamura, F.; Moura Zagatto, A. Caffeine Improved Time to Exhaustion But Did Not Change Alternative Maximal Accumulated Oxygen Deficit Estimated During a Single Supramaximal Running Bout. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 549–557. [Google Scholar] [CrossRef]
- Dittrich, N.; Serpa, M.C.; Lemos, E.C.; de Lucas, R.D.; Guglielmo, L.G.A. Effects of caffeine chewing gum on exercise tolerance and neuromuscular responses in well-trained runners. J. Strength Cond. Res. 2021, 35, 1671–1676. [Google Scholar] [CrossRef]
- Graham, T.E.; Spriet, L.L. Performance and metabolic responses to a high caffeine dose during prolonged exercise. J. Appl. Physiol. 1991, 71, 2292–2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, T.E.; Hibbert, E.; Sathasivam, P. Metabolic and exercise endurance effects of coffee and caffeine ingestion. J. Appl. Physiol. 1998, 85, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Kasper, A.M.; Cocking, S.; Cockayne, M.; Barnard, M.; Tench, J.; Parker, L.; McAndrew, J.; Langan-Evans, C.; Close, G.L.; Morton, J.P. Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted. Eur. J. Sport Sci. 2016, 16, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Khcharem, A.; Souissi, M.; Atheymen, R.; Souissi, W.; Sahnoun, Z. Acute caffeine ingestion improves 3-km run performance, cognitive function, and psychological state of young recreational runners. Pharmacol. Biochem. Behav. 2021, 207, 173219. [Google Scholar] [CrossRef]
- Khcharem, A.; Souissi, W.; Masmoudi, L.; Sahnoun, Z. Repeated low-dose caffeine ingestion during a night of total sleep deprivation improves endurance performance and cognitive function in young recreational runners: A randomized, double-blind, placebo-controlled study. Chronobiol. Int. 2022, 39, 1268–1276. [Google Scholar] [CrossRef]
- O’Rourke, M.P.; O’Brien, B.J.; Knez, W.; Paton, C.D. Caffeine has a small effect on 5-km running performance of well-trained and recreational runners. J. Sci. Med. Sport 2008, 11, 231–233. [Google Scholar] [CrossRef] [Green Version]
- Ping, W.C.; Keong, C.C.; Bandyopadhyay, A. Effects of acute supplementation of caffeine on cardiorespiratory responses during endurance running in a hot & humid climate. Indian J. Med. Res. 2010, 132, 36–41. [Google Scholar]
- Ramos-Campo, D.J.; Perez, A.; Avila-Gandia, V.; Perez-Pinero, S.; Rubio-Arias, J.A. Impact of Caffeine Intake on 800-m Running Performance and Sleep Quality in Trained Runners. Nutrients 2019, 11, 2040. [Google Scholar] [CrossRef] [Green Version]
- Borba, C.L.; Batista, J.S.F.; Novais, L.M.Q.; Silva, M.B.; Júnior, J.B.S.; Gentil, P.; Marini, A.C.B.; Giglio, B.M.; Pimentel, G.D. Acute caffeine and coconut oil intake, isolated or combined, does not improve running times of recreational runners: A randomized, placebo-controlled and crossover study. Nutrients 2019, 11, 1661. [Google Scholar] [CrossRef] [Green Version]
- Bridge, C.A.; Jones, M.A. The effect of caffeine ingestion on 8 km run performance in a field setting. J. Sport. Sci. 2006, 24, 433–439. [Google Scholar] [CrossRef]
- Higgins, S.; Straight, C.R.; Lewis, R.D. The Effects of Preexercise Caffeinated Coffee Ingestion on Endurance Performance: An Evidence-Based Review. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 221–239. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B.; Francis, G.T.; Abbiss, C.R.; Newton, M.J.; Nosaka, K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med. Sci. Sport. Exerc. 2007, 39, 1374–1379. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Lee, H.J.; Lee, S.J.; Kim, T.W. Blood dopamine level enhanced by caffeine in men after treadmill running. Chin. J. Physiol. 2019, 62, 279–284. [Google Scholar] [PubMed]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scand. J. Med. Sci. Sport. 2005, 15, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Gliottoni, R.C.; Meyers, J.R.; Arngrimsson, S.A.; Broglio, S.P.; Motl, R.W. Effect of caffeine on quadriceps muscle pain during acute cycling exercise in low versus high caffeine consumers. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Sitko, S.; Cirer-Sastre, R.; López-Laval, I. Time to exhaustion at estimated functional threshold power in road cyclists of different performance levels. J. Sci. Med. Sport 2022, 25, 783–786. [Google Scholar] [CrossRef]
- Jeukendrup, A.; Saris, W.H.; Brouns, F.; Kester, A.D. A new validated endurance performance test. Med. Sci. Sport. Exerc. 1996, 28, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Renfree, A.; Casado, A.; Pellejero, G.; Hanley, B. More Pace Variation and Pack Formation in Successful World-Class 10,000-m Runners Than in Less Successful Competitors. Int. J. Sport. Physiol. Perform. 2020, 15, 1369–1376. [Google Scholar] [CrossRef]
- Green, J.M.; Olenick, A.; Eastep, C.; Winchester, L. Caffeine effects on velocity selection and physiological responses during RPE production. Appl. Physiol. Nutr. Metab. 2016, 41, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- De Franca, E.; Xavier, A.P.; Dias, I.R.; de Souza, R.R.; Correa, S.C.; da Silva, M.A.R.; da Silva, C.A.R.; Martins, R.A.S.; Hirota, V.B.; dos Santos, R.V.T.; et al. Caffeine supplementation can make runners run further and improve pace strategy. RBNE Braz. J. Sport Nutr. 2017, 11, 813–825. [Google Scholar]
- Collomp, K.; Ahmaidi, S.; Chatard, J.C.; Audran, M.; Préfaut, C. Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 64, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on exercise testing: A meta-analysis. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 626–646. [Google Scholar] [CrossRef] [PubMed]
Parameters | Inclusion | Exclusion | Extraction |
---|---|---|---|
P | Healthy runners | Participants of other sports disciplines or non-athletic population | Number of participants, gender, training level and experience, age, daily caffeine intake, and anthropometric characteristics |
I | Caffeine | Caffeine intake in combination with other ergogenic aids | Dosage, the form of administration, and timing of ingestion |
C | Placebo | Trials without a true placebo/control situation | Components, dosage, the form of administration |
O | Endurance running performance | Any other form of endurance exercise different from running | Time to exhaustion trials and time trials |
S | Single- or double-blind randomized controlled trials published in peer-reviewed journals | Systematic reviews, conference abstracts, graduate student dissertations, and editorials | Experimental design, date of publication |
Author(s) Year Country | N (Male/Female) Age Body Mass | Running Experience | Caffeine Administration | Timing | Comparator | Running Conditions | Measures | Running Tests |
---|---|---|---|---|---|---|---|---|
Bell et al., 2002 Canada [35] | 12 (10/2) 33 ± 8 years 75 ± 11 kg | Recreational | 4 mg/kg in capsules | 60 min- pre-exercise | 300 mg dietary fiber capsules | Treadmill | 10 km time NS | TTP |
Borba et al., 2019 Brazil [53] | 13 (8/5) 28.46 ± 5.63 23.58 ± 3.90 kg/m2 | Recreational | 6 mg/kg in hot water | 60 min pre-exercise | Hot water | Track (400 m) | 1600 m runs NS | TTP |
Bonetti de Poli et al., 2016 Brazil [43] | 18 (18/0) 29 ± 7 years 72.1 ± 5.8 kg | Recreational | 6 mg/kg in capsules | 60 min pre-exercise | Dextrose capsules | Treadmill | TTE test ↑ | TTE |
Bridge and Jones 2006 United Kingdom [54] | 8 (8/0) 21.3 ± 1.2 years 69.3 ± 5.0 kg | Trained | 3 mg/kg in capsules | 60 min pre-exercise | Glucose capsules | Track (400 m) | 8 km time ↑ | TTP |
Clarke et al., 2018 United Kingdo [23] | 13 (13/0) 24 ± 6 years 69.3 ± 4.7 kg | Trained | 0.09 g/kg coffee (including 3 mg/kg) | 60 min pre-exercise | 1. Decaffeinated coffee in warm water 2. Warm water with coffee flavor and color | Indoor 200 m running track with banked curves | mile race ↑ | TTP |
Cohen et al., 1996 United States of America [42] | 7 (5/2) 33.29 ± 9.18 years NI | Trained | 1. 5 mg/kg in capsules 2. 9 mg/kg in capsules | 60 min pre-exercise | Baking flour capsules | Outdoor road | 21 km runs NS | TTP |
Dittrich et al., 2021 Brazil [44] | 12 (12/0) 31.3 ± 6.4 years 70.5 ± 6.6 kg | Trained | 300 mg in chewing gum | immediately pre-exercise | Noncaffeinated chewing gum | Treadmill | TTE test ↑ | TTE |
Graham and Spriet 1991 Canada [45] | 7 (6/1) 28.3 ± 5.63 years 67.2 ± 8.33 kg | Trained | 9 mg/kg in capsules | 60 min pre-exercise | 9 mg/kg dextrose capsules | Treadmill | TTE test ↑ | TTE |
Graham and Sathasivam 1998 Canada [46] | 9 (8/1) 21.1 ± 6.5 years 73.1 ± 5.5 kg | Recreational | 1. 4.5 mg/kg in capsules 2. regular coffee (including 4.5 mg/kg) 3. decaffeinated coffee plus 4.5.mg/kg in capsules | 60 min pre-exercise | 1. decaffeinated coffee 2. dextrose capsules | Treadmill | TTE test ↑ | TTE |
Hanson et al., 2019 USA [24] | 10 (6/4) 26 ± 9 years 72.1 ± 8.7 kg | Trained | 1. 3 mg/kg in a flavored water-based drink 2. 6 mg/kg in a flavored water-based drink | 60 min pre-exercise | Flavored water-based drink without caffeine | Treadmill | 10 km runs NS | TTP |
Kasper et al., 2016 Tunisia [47] | 8 (8/0) 22 ± 2 years 70.8 ± 8.1 kg | Recreational | 200 mg in capsules/ + carbohydrate mouth rinse | immediately pre-exercise | placebo capsules + carbohydrate rinse | Treadmill | TTE test ↑ | TTE |
Khcharem et al., 2021 Tunisia [48] | 13 (13/0) 21.3 ± 0.8 years 66.5 ± 7.8 kg | Recreational | 3 mg/kg in capsules | 90 min pre-exercise | 3 mg/kg sucrose capsules | Track (400 m) | 3 km runs ↑ | TTP |
Khcharem et al. a 2022 Tunisia [30] | 10 (10/0) 21.7 ± 1.1 66.7 ± 8.7 kg | Recreational | 5 mg/kg in capsules | 90 min pre-exercise | NI capsules | Track (400 m) | 8 km runs ↑ | TTP |
Khcharem et al. b 2022 Tunisia [49] | 12 (12/0) 21.7 ± 0.9 years 64.4 ± 9.4 kg | Recreational | 6 mg/kg in capsules | 90 min pre-exercise | 6 mg/kg sucrose capsules | Track (400 m) | TTE test ↑ | TTE |
Manoel et al., 2021 Brazil [25] | 15 (15/0) 25.2 ± 2.8 years 79.9 ± 7.7 kg | Recreational | 6 mg/kg in capsules | 60 min pre-exercise | Empty capsules | Track (400 m) | 10 km runs NS | TTP |
Marques et al., 2018 Brazil [26] | 12 (12/0) 23.50 ± 3.94 years 70.38 ± 8.41 kg | Recreational | 5.5 mg/kg in soluble coffee | 60 min pre-exercise | Decaffeinated coffee | Track (400 m) | 800 m run NS | TTP |
O’Rourke et al., 2008 Australia [50] | 15 (NI) 32.2 ± 8.8 years 68.9 ± 6.1 kg | Trained | 5 mg/kg in tablets | 60 min pre-exercise | 5 mg/kg sugar tablets | Track (400 m) | 5 km run ↑ | TTP |
Ping et al., 2010 Malaysia [51] | 9 (9/0) 25.4 + 6.9 years 57.6 + 8.4 kg | Recreational | 5 mg/kg in capsules | 60 in pre-exercise | 5 mg/kg placebo capsules | Treadmill | TTE test ↑ | TTE |
Ramos-Campo et al., 2019 Spain [52] | 15 (15/0) 23.7 ± 8.2 years 64.6 ± 9.8 kg | Trained | 6 mg/kg in capsules | 60 min pre-exercise | 6 mg/kg sucrose capsules | Track (400 m) | 800 m run NS | TTP |
Rohloff et al., 2022 Brazil [7] | 22 (22/0) 25.5 ± 8.4 years 75.0 ± 7.1 kg | Recreational | 4 mg/kg in capsules | 60 min pre-exercise | 4 mg/kg maltodextrin capsules | Treadmill | 4 km runs NS | TTP |
Whalley et al., 2019 New Zealand [34] | 14 (10/4) 40 ± 8 years 69 ± 11 kg | Recreational | 1. 200–300 mg in chewing gum 2. 200–300 mg in tablets 3. 200–300 mg in mouth strips | 15 min pre-exercise | 300 mg glucose powder capsule | Road | 5 km runs ↑ | TTP |
Subgroup | Grouping Criteria | Number of Studies | g | 95%CI | p | I2 |
---|---|---|---|---|---|---|
Training status | Recreational | 10 | −0.082 | [−0.190, 0.027] | 0.141 | 0% |
Trained | 12 | −0.140 | [−0.295, 0.014] | 0.075 | 0% | |
Distance | Middle-distance | 14 | −0.083 | [−0.187, 0.020] | 0.114 | 0% |
Long-distance | 8 | −0.151 | [−0.324, 0.023] | 0.089 | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Qiu, B.; Gao, J.; Del Coso, J. Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 148. https://doi.org/10.3390/nu15010148
Wang Z, Qiu B, Gao J, Del Coso J. Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis. Nutrients. 2023; 15(1):148. https://doi.org/10.3390/nu15010148
Chicago/Turabian StyleWang, Ziyu, Bopeng Qiu, Jie Gao, and Juan Del Coso. 2023. "Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis" Nutrients 15, no. 1: 148. https://doi.org/10.3390/nu15010148
APA StyleWang, Z., Qiu, B., Gao, J., & Del Coso, J. (2023). Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis. Nutrients, 15(1), 148. https://doi.org/10.3390/nu15010148