Body Composition of Young Women and the Consumption of Selected Nutrients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Estimating the Consumption of Nutrients
2.3. Body Composition Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Endalifer, M.L.; Diress, G. Epidemiology, predisposing factors, biomarkers, and prevention mechanism of obesity: A systematic review. J. Obes. 2020, 2020, 6134362. [Google Scholar] [CrossRef] [PubMed]
- WHO European Regional Obesity Report. 2022. Available online: https://apps.who.int/iris/bitstream/handle/10665/353747/9789289057738-eng.pdf (accessed on 30 October 2022).
- Czernichow, S.; Kengne, A.P.; Stamatakis, E.; Hamer, M.; Batty, G.D. Body mass index, waist circumference and waist-hip ratio: Which is the better discriminator of cardiovascular disease mortality risk?: Evidence from an individual-participant meta-analysis of 82 864 participants from nine cohort studies. Obes. Rev. 2011, 12, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.M.; Danaei, G.; Farzadfar, F.; Stevens, G.A.; Woodward, M.; Wormser, D.; Kaptoge, S.; Whitlock, G.; Qiao, Q.; Lewington, S.; et al. Global burden of metabolic risk factors of chronic diseases collaborating group; Asia-pacific cohort studies collaboration (APCSC); Diabetes Epidemiology: Collaborative Analysis Of Diagnostic Criteria In Europe (DECODE); Emerging Risk Factor Collaboration (ERFC); Prospective Studies Collaboration (PSC). The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: A pooled analysis. PLoS ONE 2013, 8, e65174. [Google Scholar] [CrossRef] [Green Version]
- Onyemaechi, N.O.; Anyanwu, G.E.; Obikili, E.N.; Onwuasoigwe, O.; Nwankwo, O.E. Impact of overweight and obesity on the musculoskeletal system using lumbosacral angles. Patient Prefer. Adherence 2016, 10, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. International Agency for Research on Cancer Handbook Working Group. Body fatness and cancer--viewpoint of the IARC Working Group. Body fatness and cancer–viewpoint of the IARC working group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.C.; Sawaya, A.L.; Wibaek, R.; Mwangome, M.; Poullas, M.S.; Yajnik, C.S.; Demaio, A. The double burden of malnutrition: Aetiological pathways and consequences for health. Lancet 2020, 395, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, R.M.; Seidell, J.C. Carbohydrate intake and obesity. Eur. J. Clin. Nutr. 2007, 61, S75–S99. [Google Scholar] [CrossRef] [Green Version]
- Przysławski, J.; Borawska, M.; Biernat, J. Metody Badań Sposobu Żywienia Osób Dorosłych (in Polish, Methods of Research on adult nutrition) [w:] Przewodnik Metodyczny Badań Sposobu Żywienia (in Polish, A Methodological Guide to Researching the Way of Nutrition). Gronowska-Senger, A. (red); PAN: Warsaw, Poland, 2013; pp. 89–94. [Google Scholar]
- Szponar, L.; Wolnicka, K.; Rychlik, E. Album Fotografii Produktów i Potraw (in Polish, Photo Album of Products and Dishes); National Food and Nutrition Institute IŻŻ: Warsaw, Poland, 2000. [Google Scholar]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Żywienia Dla Populacji Polski (in Polish, Nutrition Standards for the Polish Population); Narodowy Instytut Zdrowia Publicznego—Państwowy Zakład Higieny: Warsaw, Poland, 2020. [Google Scholar]
- Food Safety Authority (EFSA). Dietary Reference Values for Nutrients; Summary Report. 2019. Available online: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.e15121/full (accessed on 2 November 2022).
- A Healthy Lifestyle—WHO Recommendations. 2010. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 1 November 2022).
- Kuriyan, R. Body composition techniques. Indian J. Med. Res. 2018, 148, 648–658. [Google Scholar] [CrossRef]
- Kyle, U.G.; Schutz, Y.; Dupertuis, Y.M.; Pichard, C. Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. Nutrition 2003, 19, 597–604. [Google Scholar] [CrossRef]
- Taksler, G.B.; Elbel, B. Calorie labeling and consumer estimation of calories purchased. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 91. [Google Scholar] [CrossRef]
- Chernev, A.; Gal, D. Categorization effects in value judgments: Averaging bias in evaluating combinations of vices and virtues. J. Mark. Res. 2010, 47, 738–747. [Google Scholar] [CrossRef] [Green Version]
- Chernev, A. The Dieter’s Paradox. J. Consum. Psychol. 2011, 21, 178–183. [Google Scholar] [CrossRef]
- Forwood, S.E.; Ahern, A.; Hollands, G.J.; Fletcher, P.C.; Marteau, T.M. Underestimating calorie content when healthy foods are present: An averaging effect or a reference-dependent anchoring effect? PLoS ONE 2013, 8, e71475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asghari, G.; Mirmiran, P.; Yuzbashian, E.; Aziz, F. A systematic review of diet quality indices in relation to obesity. Br. J. Nutr. 2017, 117, 1055–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atakan, M.M.; Koşar, Ş.N.; Güzel, Y.; Tin, H.T.; Yan, X. The role of exercise, diet, and cytokines in preventing obesity and improving adipose tissue. Nutrients 2021, 13, 1459. [Google Scholar] [CrossRef] [PubMed]
- Freire, R. Scientific evidence of diets for weight loss: Different macronutrient composition, intermittent fasting, and popular diets. Nutrition 2020, 69, 110549. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Martinoli, R.; Vaia, F.; Di Renzo, L. Normal weight obese (NWO) women: An evaluation of a candidate new syndrome. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Somers, V.K.; Sochor, O.; Goel, K.; Lopez-Jimenez, F. The concept of normal weight obesity. Prog. Cardiovasc. Dis. 2014, 56, 426–433. [Google Scholar] [CrossRef]
- Čuta, M.; Bařicová, K.; Černý, D.; Sochor, O. Normal-weight obesity frequency in the Central European urban adult female population of Brno, Czech Republic. Cent. Eur. J. Pub. Health 2019, 27, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kyung, C.; Park, J.S.; Lee, S.P.; Kim, H.K.; Ahn, C.W.; Kim, K.R.; Kang, S. Normal-weight obesity is associated with increased risk of subclinical atherosclerosis. Cardiovasc. Diabetol. 2015, 14, 58. [Google Scholar] [CrossRef]
- Correa-Rodríguez, M.; González-Ruíz, K.; Rincón-Pabón, D.; Izquierdo, M.; García-Hermoso, A.; Agostinis-Sobrinho, C.; Sánchez-Capacho, N.; Roa-Cubaque, M.A.; Ramírez-Vélez, R. Normal-weight obesity is associated with increased cardiometabolic risk in young adults. Nutrients 2020, 12, 1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Ming, J.; Jia, A.; Yu, X.; Cai, J.; Jing, C.; Liu, C.; Ji, Q. Normal weight obesity and the risk of diabetes in Chinese people: A 9-year population-based cohort study. Sci. Rep. 2021, 11, 6090. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, Y.; Brooks, J.; Reider, C.; Fulgoni, V.L. 3rd. U.S. adults are not meeting recommended levels for fish and omega-3 fatty acid intake: Results of an analysis using observational data from NHANES 2003–2008. Nutr. J. 2014, 13, 31, Erratum in: Nutr. J. 2014, 13, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, N.A.; Leblanc, C.P. Dietary intake of DHA and EPA in a group of pregnant women in the Moncton Area. Can. J. Diet. Pract. Res. 2017, 78, 59–65. [Google Scholar] [CrossRef]
- Wierzejska, R.; Jarosz, M.; Wojda, B.; Siuba-Strzelińska, M. Dietary intake of DHA during pregnancy: A significant gap between the actual intake and current nutritional recommendations. Rocz Panstw Zakl Hig. 2018, 69, 381–386. [Google Scholar] [CrossRef]
- Sioen, I.; van Lieshout, L.; Eilander, A.; Fleith, M.; Lohner, S.; Szommer, A.; Petisca, C.; Eussen, S.; Forsyth, S.; Calder, P.C.; et al. Systematic review on n-3 and n-6 polyunsaturated fatty acid intake in European countries in light of the current recommendations - focus on specific population groups. Ann. Nutr. Metab. 2017, 70, 39–50. [Google Scholar] [CrossRef]
- Sioen, I.; Huybrechts, I.; Verbeke, W.; Camp, J.V.; De Henauw, S. n-6 and n-3 PUFA intakes of pre-school children in Flanders, Belgium. Br. J. Nutr. 2007, 98, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Vyncke, K.E.; Libuda, L.; De Vriendt, T.; Moreno, L.A.; Van Winckel, M.; Manios, Y.; Gottrand, F.; Molnar, D.; Vanaelst, B.; Sjöström, M.; et al. HELENA consortium Dietary fatty acid intake, its food sources and determinants in European adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Br. J. Nutr. 2012, 108, 2261–2273. [Google Scholar] [CrossRef] [Green Version]
- Ross, B.M.; Seguin, J.; Sieswerda, L.E. Omega-3 fatty acids as treatments for mental illness: Which disorder and which fatty acid? Lipids Health Dis. 2007, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Sublette, M.E.; Ellis, S.P.; Geant, A.L.; Mann, J.J. Meta-analysis of the effects of Eicosapentaenoic Acid (EPA) in clinical trials in depression. J. Clin. Psychiatry 2011, 72, 1577–1584. [Google Scholar] [CrossRef]
- Seljak, B.K.; Valenčič, E.; Hristov, H.; Hribar, M.; Lavriša, Ž.; Kušar, A.; Žmitek, K.; Krušič, S.; Gregorič, M.; Blaznik, U.; et al. Inadequate intake of dietary fibre in adolescents, adults, and elderlies: Results of slovenian representative SI. Menu study. Nutrients 2021, 27, 3826. [Google Scholar] [CrossRef] [PubMed]
- Azzolina, D.; Vedovelli, L.; Gallipoli, S.; French, M.; Ghidina, M.; Lamprecht, M.; Tsiountsioura, M.; Lorenzoni, G.; Gregori, D. Nutrients and caloric intake associated with fruits, vegetables, and legumes in the elderly European population. Nutrients 2020, 12, 2746. [Google Scholar] [CrossRef] [PubMed]
- Geurts, L.; Neyrinck, A.M.; Delzenne, N.M.; Knauf, C.; Cani, P.D. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: Novel insights into molecular targets and interventions using prebiotics. Benef. Microbes. 2014, 5, 3–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, S.V.; Hannon, B.A.; An, R.; Holscher, H.D. Effects of isolated soluble fiber supplementation on body weight, glycemia, and insulinemia in adults with overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2017, 106, 1514–1528. [Google Scholar] [CrossRef] [Green Version]
- Reiser, S.; Hallfrisch, J. Insulin sensitivity and adipose tissue weight of rats fed starch or sucrose diets ad libitum or in meals. J. Nutr. 1977, 107, 147–155. [Google Scholar] [CrossRef]
- Robertson, M.D.; Bickerton, A.S.; Dennis, A.L.; Vidal, H.; Frayn, K.N. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am. J. Clin. Nutr. 2005, 82, 559–567. [Google Scholar] [CrossRef]
- Keenan, M.J.; Zhou, J.; Hegsted, M.; Pelkman, C.; Durham, H.A.; Coulon, D.B.; Martin, R.J. Role of resistant starch in improving gut health, adiposity, and insulin resistance. Adv. Nutr. 2015, 6, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Avolio, E.; Gualtieri, P.; Romano, L.; Pecorella, C.; Ferraro, S.; Palma, G.; Di Renzo, L.; De Lorenzo, A. obesity and body composition in man and woman: Associated diseases and the new role of gut microbiota. Curr. Med. Chem. 2020, 27, 216–229. [Google Scholar] [CrossRef]
- Albala, C.; Ebbeling, C.B.; Cifuentes, M.; Lera, L.; Bustos, N.; Ludwig, D.S. Effects of replacing the habitual consumption of sugar-sweetened beverages with milk in Chilean children. Am. J. Clin. Nutr. 2008, 88, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Cadogan, J.; Eastell, R.; Jones, N.; Barker, M. Milk intake and bone mineral acquisition in adolescent girls: Randomised, controlled intervention trial. BMJ 1997, 315, 1255–1260. [Google Scholar] [CrossRef]
- Cohen, T.; Hazell, T.; Vanstone, C.; Rodd, C.; Weiler, H. A family-centered lifestyle intervention for obese six- to eight-year-old children: Results from a one-year randomized controlled trial conducted in Montreal, Canada. Can. J. Pub. Health 2016, 107, 453–460. [Google Scholar] [CrossRef]
- Lambourne, K.; Washburn, R.A.; Lee, J.; Betts, J.L.; Thomas, D.T.; Smith, B.K.; Gibson, C.A.; Sullivan, D.K.; Donnelly, J.E. A 6-month trial of resistance training with milk supplementation in adolescents: Effects on body composition. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Lappe, J.M.; McMahon, D.J.; Laughlin, A.; Hanson, C.; Desmangles, J.C.; Begley, M.; Schwartz, M. The effect of increasing dairy calcium intake of adolescent girls on changes in body fat and weight. Am. J. Clin. Nutr. 2017, 105, 1046–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deibert, P.; König, D.; Schmidt-Trucksaess, A.; Zaenker, K.S.; Frey, I.; Landmann, U.; Berg, A. Weight loss without losing muscle mass in pre-obese and obese subjects induced by a high-soy-protein diet. Int. J. Obes. 2004, 28, 1349–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghighat, N.; Ashtary-Larky, D.; Bagheri, R.; Wong, A.; Cheraghloo, N.; Moradpour, G.; Nordvall, M.; Asbaghi, O.; Moeinvaziri, N.; Amini, M.; et al. Effects of 6 months of soy-enriched high protein compared to eucaloric low protein snack replacement on appetite, dietary intake, and body composition in normal-weight obese women: A Randomized Controlled Trial. Nutrients 2021, 13, 2266. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Kou, T.; Wei, B.; Lu, X.; Liu, J.; Tian, H.; Zhang, W.; Liu, B.; Li, H.; Cui, W.; et al. Soy products ameliorate obesity-related anthropometric indicators in overweight or obese Asian and non-menopausal women: A meta-analysis of randomized controlled trials. Nutrients 2019, 11, 2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.T.; Timpson, N.J.; Dimou, N.; et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: The STROBE-MR Statement. JAMA 2021, 326, 1614–1621. [Google Scholar] [CrossRef]
- Johansson, G.; Wikman, A.; Ahrén, A.M.; Hallmans, G.; Johansson, I. Underreporting of energy intake in repeated 24-hour recalls related to gender, age, weight status, day of interview, educational level, reported food intake, smoking habits and area of living. Public Health Nutr. 2001, 4, 919–927. [Google Scholar] [CrossRef]
Parameter | Av. ± SD Min–Max | Med Q1–Q3 |
---|---|---|
Age (years) | 21.1 ± 1.5 18.0–26.0 | 20.0 20.0–22.0 |
Weight (kg) | 60.9 ± 10.4 38.8–104.8 | 59.5 53.6–66.4 |
Height (cm) | 167.3 ± 6.1 150.0–187.0 | 167.0 163.0–171.0 |
Energy and Components of Diet | EFSA Recommendation [12] | Nutrition Standards for the Polish Population [11] |
---|---|---|
Energy (kcal) | - | 2050–2300 |
% energy from protein | - | 15–20 |
% energy from fat | 20–35 | 20–35 |
% energy from LA | 4 | 4 |
% energy from ALA | 0.5 | 0.5 |
% energy from carbohydrate | 45–60 | 45–65 |
EPA + DHA (mg/day) | 250 | 250 |
Dietary fiber (g/day) | 25 | 25 |
Lactose (g/day) | - | - |
Starch (g/day) | - | - |
Parameter | Av. ± SD Min–Max | Med Q1–Q3 |
---|---|---|
Energy (kcal) | 1554 ± 509 583–4708 | 1480 1221–1810 |
Total protein (g) | 70.5 ± 19.5 27.5–146.0 | 69.0 56.2–81.8 |
Animal protein (g) | 46.9 ± 16.3 3.7–113.2 | 44.9 34.0–56.4 |
Plant protein (g) | 22.5 ± 8.0 5.9–88.0 | 21.7 17.4–26.9 |
Fat (g) | 48.2 ± 27.3 8.2–361.8 | 45.0 32.4–57.2 |
Total carbohydrates (g) | 217.8 ± 80.0 59.2–611.7 | 203.4 166.3–250.8 |
Saturated fatty acids (g) | 18.9 ± 12.4 2.1–168.1 | 16.9 12.5–22.9 |
Monounsaturated fatty acids (g) | 17.9 ± 10.3 2.8–117.6 | 16.4 11.4–21.6 |
LA (g) | 5.83 ± 3.66 1.52–43.02 | 5.03 3.61–7.13 |
% of energy from LA | 3.34 ± 1.46 1.21–11.87 | 3.05 2.36 -3.98 |
ALA (g) | 1.10 ± 0.90 0.13–9.58 | 0.84 0.55–1.30 |
% of energy from ALA | 0.63 ± 0.47 0.13–6.05 | 0.49 0.36–0.75 |
EPA + DHA (mg/d) | 198.4 ± 433.2 0.0–4523.9 | 57.3 29.1–131.8 |
PUFA (g) | 7.30 ± 4.37 1.76–49.03 | 6.32 4.64–8.92 |
Cholesterol (mg) | 252.7 ± 128.4 1.6–1125.1 | 234.6 165.0–313.3 |
Saccharose (g) | 35.5 ± 24.3 2.5–184.0 | 28.9 18.7–46.1 |
Lactose (g) | 9.02 ± 5.61 0.00–26.94 | 7.94 4.81–12.41 |
Starch (g) | 109.5 ± 39.2 16.1–300.4 | 107.6 83.7–133. 8 |
Dietary fiber (g) | 17.6 ± 7.3 3.0–54.1 | 16.3 13.0–20.6 |
LC-PUFA (g) | 0.223 ± 0.492 0.000–5.207 | 0.061 0.032–0.151 |
Absorbable carbohydrates (g) | 200.2 ± 74.9 54.5–574.4 | 187.7 153.0–231.7 |
% energy of the diet of digestible carbohydrates | 51.4 ± 8.1 16.6–73.47 | 51.4 46.1–56.5 |
% energy from protein | 18.7 ± 4.0 6.7–35.9 | 18.3 16.0–21.0 |
% energy from fat | 27.3 ± 7.4 10.6–75.1 | 27.0 22.7–31.5 |
% energy from carbohydrates | 51.7 ± 8.1 17.0–73.6 | 51.6 46.4–56.9 |
Energy and Components of Diet | Percentage of People with Sufficient Intake (%) | Percentage of People with Insufficient Intake (%) |
---|---|---|
Energy | 14.2% | 85.8% |
% energy from protein | 66.5% | 33.5% |
% energy from fat | 70.9% | 29.1% |
% energy from LA | 24.1% | 75.9% |
% energy from ALA | 47.9% | 52.1% |
EPA + DHA | 16.5% | 83.5% |
% energy from carbohydrate | 69.9% | 30.1% |
Dietary fiber | 12.1% | 87.9% |
Parameter (Unit) | Av. ± SD Min–Max | Med. Q1–Q3 |
---|---|---|
BMI (kg/m2) | 21.71 ± 3.21 15.30–38.04 | 21.05 19.57–23.2 |
Body fat mass (kg) | 16.82 ± 6.58 4.00–49.60 | 15.55 12.10–19.80 |
Fat-free mass (kg) | 55.8 ± 23.1 5.0–40.7 | 43.55 40.30–47.30 |
PBF (%) | 26.9 ± 6.3 9.2–48.5 | 26.5 22.4–31.0 |
VFA (cm3) | 44.07 ± 5.40 30.20–61.20 | 52.3 40.7–67.0 |
FS | 73.0 ± 4.9 54.0–88.0 | 73.0 70.0–76.0 |
Lean mass of right arm (%) | 95.59 ± 14.23 61.79–148.60 | 94.55 86.00–103.90 |
Lean mass of left arm (%) | 93.79 ± 14.53 59.50–148.20 | 92.72 84.28–101.70 |
Lean mass of trunk (%) | 95.64 ± 8.94 74.80 -132.60 | 94.60 89.20–101.00 |
Lean mass of left leg (%) | 100.64 ± 8.81 76.70–131.60 | 100.20 95.00-106.20 |
Lean mass of right leg (%) | 100.72 ± 8.91 77.2–133.80 | 100.4 94.95–106.32 |
Basal Metabolic Rate (kcal) | 1321.8 ± 116.7 1023.2–1691.7 | 1310.5 1241.0–1391.0 |
Energy and Components of Diet | Body Mass Index | Percent Body Fat | Visceral Fat Area | Fitness Score | ||||
---|---|---|---|---|---|---|---|---|
p Value | R Spearman | p Value | R Spearman | p Value | R Spearman | p Value | R Spearman | |
Energy (kcal) | <0.0001 | –0.24 | <0.000 | –0.21 | <0.0001 | –0.18 | - | - |
% energy from protein | <0.0001 | 0.17 | 0.021 | 0.11 | 0.024 | 0.10 | - | - |
% energy from plant protein | 0.037 | –0.10 | 0.029 | – 0.10 | - | - | - | - |
% energy from animal protein | - | - | 0.044 | 0.10 | - | - | - | - |
Lactose (g) | - | - | - | - | - | - | 0.022 | 0.11 |
Starch (g) | <0.0001 | –0.25 | <0.0001 | –0.24 | <0.0001 | –0.18 | - | - |
Dietary fiber (g) | 0.010 | –0.12 | 0.0003 | –0.17 | 0.0001 | –0.18 | 0.041 | 0.09 |
Energy And Components of Diet | Group 1 | Group 2 | Group 3 | |
---|---|---|---|---|
Med. Q1–Q3 | Med. Q1–Q3 | Med. Q1–Q3 | p Value | |
Energy (kcal) | 1884.0 1598.1–2206.1 | 1514.3 1284.7–1837 | 1369.0 1148.0–1707.0 | <0.0001 |
% energy from protein | 17.0 15.8–18.1 | 18.0 15.8–24.0 | 19.0 16.7–21.7 | 0.003 |
% energy from plant protein | 5.69 5.41–6.55 | 5.71 5.02–6.56 | 5.79 5.08–6.53 | --- |
% energy from animal protein | 10.1 9.13–12.2 | 12.1 9.75–14.3 | 13.0 10.4–15.8 | 0.001 |
Starch (g) | 141.7 117.9–161.9 | 110.9 90.0–137.1 | 99.5 75.6–123.1 | <0.0001 |
Dietary fiber (g) | 16.8 14.9–24.2 | 16.8 13.4–21.1 | 15.2 12.0–19.6 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpińska, E.; Moskwa, J.; Puścion-Jakubik, A.; Naliwajko, S.K.; Soroczyńska, J.; Markiewicz-Żukowska, R.; Socha, K. Body Composition of Young Women and the Consumption of Selected Nutrients. Nutrients 2023, 15, 129. https://doi.org/10.3390/nu15010129
Karpińska E, Moskwa J, Puścion-Jakubik A, Naliwajko SK, Soroczyńska J, Markiewicz-Żukowska R, Socha K. Body Composition of Young Women and the Consumption of Selected Nutrients. Nutrients. 2023; 15(1):129. https://doi.org/10.3390/nu15010129
Chicago/Turabian StyleKarpińska, Elżbieta, Justyna Moskwa, Anna Puścion-Jakubik, Sylwia Katarzyna Naliwajko, Jolanta Soroczyńska, Renata Markiewicz-Żukowska, and Katarzyna Socha. 2023. "Body Composition of Young Women and the Consumption of Selected Nutrients" Nutrients 15, no. 1: 129. https://doi.org/10.3390/nu15010129
APA StyleKarpińska, E., Moskwa, J., Puścion-Jakubik, A., Naliwajko, S. K., Soroczyńska, J., Markiewicz-Żukowska, R., & Socha, K. (2023). Body Composition of Young Women and the Consumption of Selected Nutrients. Nutrients, 15(1), 129. https://doi.org/10.3390/nu15010129