E-Nose Discrimination of Almond Oils Extracted from Roasted Kernels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Oil Extraction
2.2. Analyses
2.2.1. Sensory Analysis
2.2.2. Volatile Compound Analysis (VOCs)
2.2.3. E-Nose
2.3. Statistical Analysis
3. Results and Discussion
3.1. Sensory Aroma of Almond Oils
3.2. Volatile Compounds of Almond Oils
3.3. Discrimination of Almond Oils with E-Nose
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Crops and Livestock Products. Retrieved 10 July 2022. Available online: http://www.fao.org/faostat/en/#data/QCL (accessed on 1 September 2022).
- Kamil, A.; Chen, C.Y.O. Health benefits of almonds beyond cholesterol reduction. J. Agric. Food Chem. 2012, 60, 6694–6702. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M.; Al Juhaimi, F.; Ghafoor, K.; Babiker, E.E.; Özcan, M.M. Characteristics of some almond kernel and oils. Sci. Hortic. 2020, 127, 330–333. [Google Scholar] [CrossRef]
- Özcan, M.M.; Matthäus, B.; Aljuhaimi, F.; Mohamed Ahmed, I.A.; Ghafoor, K.; Babiker, E.E.; Osman, M.A.; Gassem, M.A.; Alqah, H.A.S. Effect of almond genotypes on fatty acid composition, tocopherols and mineral contents and bioactive properties of sweet almond (Prunus amygdalus Batsch spp. dulce) kernel and oils. J. Food Sci. Technol. 2020, 57, 4182–4192. [Google Scholar] [CrossRef] [PubMed]
- Roncero, J.M.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Rabadán, A.; Pardo, J.E. Influence of Pressure Extraction Systems on the Performance, Quality and Composition of Virgin Almond Oil and Defatted Flours. Foods 2021, 10, 1049. [Google Scholar] [CrossRef] [PubMed]
- Yada, S.; Lapsley, K.; Huang, G. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J. Food Compos. Anal. 2011, 24, 469–480. [Google Scholar] [CrossRef]
- Rabadán, A.; Álvarez-Ortí, M.; Martínez, E.; Pardo-Giménez, A.; Zied, C.; Pardo, J.E. Effect of replacing traditional ingredients for oils and flours from nuts and seeds on the characteristics and consumer preferences of lamb meat burgers. LWT 2021, 136, 110307. [Google Scholar] [CrossRef]
- Roncero Heras, J.M.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Rabadán, A.; Pardo, J.E.; Roncero, A. A holistic approach to pressure almond oil Production. Brit. Food. J. 2022, in press. [CrossRef]
- Rabadán, A.; Pardo, J.E.; Gómez, R.; Álvarez-Ortí, M. Influence of temperature in the extraction of nut oils by means of screw pressing. LWT 2018, 93, 354–361. [Google Scholar] [CrossRef]
- Agila, A.; Barringer, S. Effect of Roasting Conditions on Color and Volatile Profile Including HMF Level in Sweet Almonds (Prunus dulcis). J. Food Sci. 2012, 77, C461–C468. [Google Scholar] [CrossRef]
- Margaria, C.; Plotto, A. Sensory Analysis. In Practical Analysis of Flavor and Fragrance Materials; Goodner, K., Rouseff, R., Eds.; John Wiley & Sons: Chichester, UK, 2011; pp. 173–198. [Google Scholar]
- De Cassia dos Santos Navarro da Silva, R.; Minim, V.P.R.; Simiqueli, A.A.; da Silva Moraes, L.E.; Gomide, A.I.; Minim, L.A. Optimized Descriptive Profile: A rapid methodology for sensory description. Food Qual. Prefer. 2012, 24, 190–200. [Google Scholar] [CrossRef]
- Lu, L.; Hu, Z.; Hu, X.; Li, D.; Tian, S. Electronic tongue and electronic nose for food quality and safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef]
- Kim, C.; Lee, K.K.; Kang, M.S.; Shin, D.-M.; Oh, J.-W.; Lee, C.-S.; Han, D.-W. Artificial olfactory sensor technology that mimics the olfactory mechanism: A comprehensive review. Biomater. Res. 2022, 26, 40. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Sahgal, N.; Magan, N.; Nychas, G.-J.E. Table olives volatile fingerprints: Potential of an electronic nose for quality discrimination. Sens. Actuators B Chem. 2008, 134, 902–907. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, W.; Lin, D.; Shen, Q.; Saleh, A.S.M. The changes in the volatile aldehydes formed during the deep-fat frying process. J. Food Sci. Technol. 2015, 52, 7683–7696. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, Y.; Zhu, Y.; Ben, A.; Qi, J. A novel strategy for discriminating different cultivation and screening odor and taste flavor compounds in Xinhui tangerine peel using E-nose, E-tongue, and chemometrics. Food Chem. 2022, 384, 132519. [Google Scholar] [CrossRef]
- Ruo-Chen, L.; Rong, L.; Ying, W.; Zi-Tao, J. Analysis of volatile odor compounds and aroma properties of European vinegar by the ultra-fast gas chromatographic electronic nose. J. Food Compos. Anal. 2022, 112, 104673. [Google Scholar] [CrossRef]
- Sánchez, R.; Boselli, E.; Fernández, A.; Arroyo, P.; Lozano, J.; Martín-Vertedor, D. Determination of the Masking Effect of the ‘Zapateria’ Defect in Flavoured Stuffed Olives Using E-Nose. Molecules 2022, 27, 4300. [Google Scholar] [CrossRef]
- Seesaard, T.; Wongchoosuk, C. Recent Progress in Electronic Noses for Fermented Foods and Beverages Applications. Fermentation 2022, 8, 302. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Li, C.; Xu, B. Insight into the effect of frozen storage on the changes in volatile aldehydes and alcohols of marinated roasted beef meat: Potential mechanisms of their formation. Food Chem. 2022, 385, 132629. [Google Scholar] [CrossRef]
- Cimato, A.; Dello Monaco, D.; Distante, C.; Epifani, M.; Siciliano, P.; Taurino, A.M.; Zuppa, M.; Sani, G. Analysis of single-cultivar extra virgin olive oils by means of an Electronic Nose and HS-SPME/GC/MS methods. Sens. Actuators B Chem. 2006, 114, 674–680. [Google Scholar] [CrossRef]
- Savarese, M.; Caporaso, N.; Parisini, C.; Paduano, A.; De Marco, E.; Sacchi, R. Application of an electronic nose for the evaluation of rancidity and shelf life in virgin olive oil. In Proceedings of the Electronic International Interdisciplinary Conference, Žilina, Slovak Republic, 2–6 September 2013; pp. 361–366. [Google Scholar]
- Messina, V.; Sancho, A.; Walsöe de Reca, N. Monitoring odour of heated extra-virgin olive oils from Arbequina and Manzanilla cultivars using an electronic nose. Eur. J. Lipid Sci. Technol. 2015, 117, 1295–1300. [Google Scholar] [CrossRef]
- Oates, M.J.; Fox, P.; Sánchez-Rodríguez, L.; Carbonell-Barrachina, A.A.; Ruiz-Canales, A. DFT based classification of olive oil type using a sinusoidally heated, low cost electronic nose. Comput. Electron. Agr. 2018, 155, 348–358. [Google Scholar] [CrossRef]
- Arslan, D.; Ok, S. Characterization of Turkish Olive Oils in Details. Food Rev. Int. 2020, 36, 168–192. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S. Digital Detection of Olive Oil Rancidity Levels and Aroma Profiles Using Near-Infrared Spectroscopy, a Low-Cost Electronic Nose and Machine Learning Modelling. Chemosensors 2022, 10, 159. [Google Scholar] [CrossRef]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Fernández, A.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. Electronic nose application for the discrimination of sterilization treatments applied to Californian-style black olive varieties. J. Sci. Food Agric. 2022, 102, 2232–2241. [Google Scholar] [CrossRef]
- IOC. Guide for the Selection, Training and Quality Control of Virgin Olive Oil Tasters—Qualification of Tasters, Panel Leaders and Trainers.; COI/T.20/Doc. No 14/Rev. 7; IOC: Madrid, Spain, 2021.
- López-López, A.; Cortés-Delgado, A.; de Castro, A.; Sánchez, A.H.; Montaño, A. Changes in volatile composition during the processing and storage of black ripe olives. Food Res. Int. 2019, 125, 108568. [Google Scholar] [CrossRef]
- Montaño, A.; Cortés-Delgado, A.; López-López, A.; Sánchez, A.H. Changes in the volatile composition of Spanish-style green table olives induced by pasteurisation treatment. Int. J. Food Sci. Technol. 2021, 56, 4444–4454. [Google Scholar] [CrossRef]
- Arroyo, P.; Meléndez, F.; Suárez, J.I.; Herrero, J.L.; Rodríguez, S.; Lozano, J. Electronic nose with digital gas sensors connected via bluetooth to a smartphone for air quality measurements. Sensors 2020, 20, 786. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, R.; Martín-Tornero, E.; Lozano, J.; Arroyo, P.; Meléndez, F.; Martín-Vertedor, D. Evaluation of the olfactory pattern of black olives stuffed with flavored hydrocolloids. LWT 2022, 163, 113556. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Barker, M.; Rayens, W. Partial least squares for discrimination. J. Chemometr. 2003, 17, 166–173. [Google Scholar] [CrossRef]
- European Union Commission. Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Communities L 1991, 248, 1–83. [Google Scholar]
- Di Guardo, M.; Farneti, B.; Khomenko, I.; Modica, G.; Mosca, A.; Distefano, G.; Bianco, L.; Troggio, M.; Sottile, F.; La Malfa, S.; et al. Genetic characterization of an almond germplasm collection and volatilome profiling of raw and roasted kernels. Hortic. Res.-England 2021, 8, 27. [Google Scholar] [CrossRef]
- Kwak, J.; Faranda, A.; Henkin, J.H.; Gallagher, M.; Preti, G.; McGovern, P.E. Volatile organic compounds released by enzymatic reactions in raw nonpareil almond kernel. Eur. Food Res. Technol. 2015, 241, 441–446. [Google Scholar] [CrossRef]
- Rodríguez, J.; Durán, C.; Reyes, A. Electronic nose for quality control of Colombian coffee through the detection of defects in “Cup Tests”. Sensors 2009, 10, 36–46. [Google Scholar] [CrossRef]
N | t30 | t45 | t60 | t90 | |
---|---|---|---|---|---|
Positive attribute | |||||
Almond | 1.1 ± 0.1 c | 6.1 ± 0.3 aA | 4.3 ± 0.2 bA | 4.5 ± 0.3 bA | n.d |
Toasted | n.d | 4.0 ± 0.3 aB | 2.3 ± 0.3 bB | 1.5 ± 0.3 bB | n.d |
Negative attribute | |||||
Burned | n.d | n.d | 3.1 ± 0.4 bA | 4.8 ± 0.3 bA | 7.2 ± 0.5 aA |
Dry smell | n.d | n.d | 2.9 ± 0.3 nsA | 3.9± 0.4 nsA | 4.8 ± 0.2 nsB |
Wood | n.d | n.d | n.d | n.d | 3.1 ± 0.3 |
Volatile Compounds | R.T. (min) | N | t30 | t45 | t60 | t90 |
---|---|---|---|---|---|---|
Aldehydes | ||||||
3-methyl-butanal | 2.8 | n.d. | 10.6 | 4.7 | 5.2 | 1.9 |
2-methyl-butanal | 3.0 | n.d. | 17.6 | 14.4 | 11.0 | 8.9 |
Hexanal | 6.7 | 13.2 | 3.4 | 2.7 | 1.9 | 1.4 |
3-Furaldehyde | 8.2 | n.d. | 4.0 | 8.8 | 9.1 | 9.4 |
Benzaldehyde | 14.8 | n.d. | 0.7 | 2.2 | 3.4 | 4.0 |
Benzene acetaldehyde | 19.2 | n.d. | 11.3 | 2.5 | 3.2 | 2.8 |
Alcohols | ||||||
dimethyl-silanediol | 3.6 | 6.6 | n.d. | n.d. | n.d. | n.d. |
3-methyl-1-butanol | 4.4 | 5.0 | 1.5 | 1.0 | 1.0 | 1.0 |
2-methyl-1-butanol | 4.5 | 4.4 | n.d. | n.d. | n.d. | n.d. |
1-Pentanol | 5.5 | n.d. | 0.7 | 0.9 | 0.8 | 1.0 |
2,3-Butanediol | 6.2 | 4.8 | 2.6 | 0.6 | 1.0 | 0.6 |
(S)-2-Methyl-1-butanol | 4.5 | 4.4 | n.d. | n.d. | n.d. | n.d. |
3-Furanmethanol | 9.4 | n.d. | 0.0 | 3.1 | 4.2 | 5.3 |
2-Furanmethanol | 9.4 | n.d. | 1.6 | 1.0 | 1.0 | 0.0 |
Eucalyptol | 18.3 | 0.5 | n.d. | n.d. | n.d. | n.d. |
1-Hexanol | 10.1 | 5.6 | 1.6 | 1.5 | 1.5 | 1.0 |
Ketones | ||||||
Acetoin | 3.7 | n.d. | 0.7 | 0.2 | n.d. | n.d. |
3-hydroxy-2-butanone | 3.7 | n.d. | n.d. | n.d. | 0.3 | 0.2 |
2-hydroxy-3-methyl-2-cyclopenten-1-one | 18.2 | n.d. | n.d. | 1.2 | 1.3 | 1.2 |
2,3-Butanedione | 10.0 | 0.0 | 0.0 | 1.0 | 1.5 | 1.4 |
Aromatic | ||||||
1-methyl-1H-pyrrole | 4.4 | n.d. | n.d. | 0.7 | 0.6 | 0.4 |
Pyrrole | 5.0 | n.d. | 1.6 | 3.8 | 3.3 | 3.5 |
Toluene | 5.3 | 38.8 | 1.1 | 1.0 | 1.0 | 1.0 |
Dihydro-2-methyl-3(2H)-Furanone | 7.0 | n.d. | n.d. | 1.2 | 1.4 | 1.3 |
4-methyl-pyrimidine | 7.7 | n.d. | 6.3 | 10.1 | 8.9 | 10.3 |
Ethylbenzene | 9.3 | 0.5 | n.d. | n.d. | n.d. | n.d. |
p-Xylene | 9.8 | 1.6 | 0.8 | n.d. | n.d. | n.d. |
o-Xylene | 9.8 | 1.9 | n.d. | n.d. | n.d. | n.d. |
1-Pyrrolidinebutyronitrile | 10.7 | n.d. | n.d. | 1.0 | 1.1 | 1.2 |
2,5-dimethyl-pyrazine | 12.1 | n.d. | 12.5 | 15.9 | 16.4 | 20.6 |
ethyl-pyrazine | 12.2 | n.d. | 8.2 | n.d. | n.d. | n.d. |
1-ethyl-2-methyl-benzene | 14.6 | 0.7 | n.d. | n.d. | n.d. | n.d. |
4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-/Cyclotetrasiloxane, octamethyl- | 15.8 | n.d. | 1.5 | 1.6 | 1.3 | 1.6 |
2-ethyl-6-methyl-pyrazine | 16.6 | n.d. | 1.4 | 4.3 | 6.9 | 7.5 |
2-ethyl-5-methyl-pyrazine | 16.9 | n.d. | 9.7 | 12.4 | 10.4 | 9.4 |
Pyrazinamide | 17.9 | n.d. | n.d. | 2.5 | 2.3 | 3.1 |
Terpene | ||||||
trans-.beta-Ocimene | 13.0 | 1.4 | n.d. | n.d. | n.d. | n.d. |
alpha-Pinene | 17.0 | 1.4 | n.d. | n.d. | n.d. | n.d. |
Limonene | 18.2 | 0.7 | 0.7 | n.d. | n.d. | n.d. |
Other compounds | ||||||
octamethyl-cyclotetrasiloxane | 15.8 | 8.5 | n.d. | n.d. | n.d. | n.d. |
Predicted Class | |||||
---|---|---|---|---|---|
Real Class | N | t30 | t45 | t60 | t90 |
N | 20.0 | 0 | 0 | 0 | 0 |
t30 | 0 | 20.0 | 0 | 0 | 0 |
t45 | 0 | 0 | 17.5 | 0 | 2.5 |
t60 | 0 | 0 | 2.5 | 15.0 | 2.5 |
t90 | 0 | 0 | 0 | 5.0 | 15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez-Ortí, M.; Pardo, J.E.; Cascos, G.; Sánchez, R.; Lozano, J.; Martín-Vertedor, D. E-Nose Discrimination of Almond Oils Extracted from Roasted Kernels. Nutrients 2023, 15, 130. https://doi.org/10.3390/nu15010130
Álvarez-Ortí M, Pardo JE, Cascos G, Sánchez R, Lozano J, Martín-Vertedor D. E-Nose Discrimination of Almond Oils Extracted from Roasted Kernels. Nutrients. 2023; 15(1):130. https://doi.org/10.3390/nu15010130
Chicago/Turabian StyleÁlvarez-Ortí, Manuel, José Emilio Pardo, Gema Cascos, Ramiro Sánchez, Jesús Lozano, and Daniel Martín-Vertedor. 2023. "E-Nose Discrimination of Almond Oils Extracted from Roasted Kernels" Nutrients 15, no. 1: 130. https://doi.org/10.3390/nu15010130
APA StyleÁlvarez-Ortí, M., Pardo, J. E., Cascos, G., Sánchez, R., Lozano, J., & Martín-Vertedor, D. (2023). E-Nose Discrimination of Almond Oils Extracted from Roasted Kernels. Nutrients, 15(1), 130. https://doi.org/10.3390/nu15010130