Reconsidering the Tolerable Upper Levels of Zinc Intake among Infants and Young Children: A Systematic Review of the Available Evidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Management
2.2. Statistical Analyses
3. Results
3.1. Overall Findings
3.2. Copper-Related Outcomes
3.2.1. Serum or Plasma Copper Outcomes
3.2.2. Serum or Plasma Ceruloplasmin Outcomes
3.2.3. Erythrocyte Superoxide Dismutase Outcomes (ESOD)
3.3. Iron-Related Outcomes
3.3.1. Serum or Plasma Ferritin Outcomes
3.3.2. Whole Blood Hemoglobin Outcomes
3.3.3. Serum Transferrin Receptors
3.4. Lipid Outcomes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Zinc Nutrition Consultative Group (IZiNCG); Brown, K.H.; Rivera, J.A.; Bhutta, Z.; Gibson, R.S.; King, J.C.; Lonnerdal, B.; Ruel, M.T.; Sandtrom, B.; Wasantwisut, E.; et al. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, S99–S203. [Google Scholar] [PubMed]
- Institute of Medicine (USA); Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; Institute of Medicine: Washington, DC, USA, 2001. [Google Scholar]
- World Health Organization (WHO); Food and Agricultural Organization of the United Nations (FAO). Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004; pp. 1–341. [Google Scholar]
- Scientific Committee on Food; Scientific Panel on Dietetic Products Nutrition and Allergies. Tolerable Upper Intake Levels for Vitamins and Minerals; European Food Safety Authority (EFSA): Parma, Italy, 2006. [Google Scholar]
- Institute of Medicine (USA); Food and Nutrition Board. Dietary Reference Intakes: A Risk Assessment Model for Establishing Upper Intake Levels for Nutrients; National Academies Press: Washington, DC, USA, 1998. [Google Scholar]
- Institute of Medicine (USA); Subcommittee on Interpretation and Uses of Dietary Reference Intakes; Institute of Medicine (USA); Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. DRI Dietary Reference Intakes: Applications in Dietary Assessment; National Academies Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Dekker, L.H.; Villamor, E. Zinc supplementation in children is not associated with decreases in hemoglobin concentrations. J. Nutr. 2010, 140, 1035–1040. [Google Scholar] [CrossRef] [Green Version]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Black, M.R.; Medeiros, D.M.; Brunett, E.; Welke, R. Zinc supplements and serum lipids in young adult white males. Am. J. Clin. Nutr. 1988, 47, 970–975. [Google Scholar] [CrossRef]
- Freeland-Graves, J.H.; Friedman, B.J.; Han, W.H.; Shorey, R.L.; Young, R. Effect of zinc supplementation on plasma high-density lipoprotein cholesterol and zinc. Am. J. Clin. Nutr. 1982, 35, 988–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatto, L.M.; Samman, S. The effect of zinc supplementation on plasma lipids and low-density lipoprotein oxidation in males. Free. Radic. Biol. Med. 1995, 19, 517–521. [Google Scholar] [CrossRef]
- Hooper, P.L.; Visconti, L.; Garry, P.J.; Johnson, G.E. Zinc lowers high-density lipoprotein-cholesterol levels. JAMA 1980, 244, 1960–1961. [Google Scholar] [CrossRef]
- Whittaker, P. Iron and zinc interactions in humans. Am. J. Clin. Nutr. 1998, 68, 442S–446S. [Google Scholar] [CrossRef]
- Nielsen, F.H.; Milne, D.B. A moderately high intake compared to a low intake of zinc depresses magnesium balance and alters indices of bone turnover in postmenopausal women. Eur. J. Clin. Nutr. 2004, 58, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Hotz, C.; DeHaene, J.; Woodhouse, L.R.; Villalpando, S.; Rivera, J.A.; King, J.C. Zinc absorption from zinc oxide, zinc sulfate, zinc oxide + EDTA, or sodium-zinc EDTA does not differ when added as fortificants to maize tortillas. J. Nutr. 2005, 135, 1102–1105. [Google Scholar] [CrossRef] [Green Version]
- Lonnerdal, B. Trace element absorption in infants as a foundation to setting upper limits for trace elements in infant formulas. J. Nutr. 1989, 119, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
- Lonnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1378S–1383S. [Google Scholar] [CrossRef] [PubMed]
- Tran, C.D.; Miller, L.V.; Krebs, N.F.; Lei, S.; Hambidge, K.M. Zinc absorption as a function of the dose of zinc sulfate in aqueous solution. Am. J. Clin. Nutr. 2004, 80, 1570–1573. [Google Scholar] [CrossRef] [Green Version]
- Gruys, E.; Toussaint, M.J.; Niewold, T.A.; Koopmans, S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 2005, 6, 1045–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walravens, P.A.; Hambidge, K.M. Growth of infants fed a zinc supplemented formula. Am. J. Clin. Nutr. 1976, 29, 1114–1121. [Google Scholar] [CrossRef]
- Lind, T.; Lonnerdal, B.; Stenlund, H.; Ismail, D.; Seswandhana, R.; Ekstrom, E.C.; Persson, L.A. A community-based randomized controlled trial of iron and zinc supplementation in Indonesian infants: Interactions between iron and zinc. Am. J. Clin. Nutr. 2003, 77, 883–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, T.; Lonnerdal, B.; Stenlund, H.; Gamayanti, I.L.; Ismail, D.; Seswandhana, R.; Persson, L.A. A community-based randomized controlled trial of iron and zinc supplementation in Indonesian infants: Effects on growth and development. Am. J. Clin. Nutr. 2004, 80, 729–736. [Google Scholar] [CrossRef]
- Arsenault, J.E.; Brown, K.H. Zinc intake of US preschool children exceeds new dietary reference intakes. Am. J. Clin. Nutr. 2003, 78, 1011–1017. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; Catellier, D.J.; Jun, S.; Dwyer, J.T.; Jacquier, E.F.; Anater, A.S.; Eldridge, A.L. Total Usual Nutrient Intakes of US Children (Under 48 Months): Findings from the Feeding Infants and Toddlers Study (FITS) 2016. J. Nutr. 2018, 148, 1557S–1566S. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol 2014, 14, 135. [Google Scholar] [CrossRef] [Green Version]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol 2005, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veenemans, J.; Milligan, P.; Prentice, A.M.; Schouten, L.R.; Inja, N.; van der Heijden, A.C.; de Boer, L.C.; Jansen, E.J.; Koopmans, A.E.; Enthoven, W.T.; et al. Effect of supplementation with zinc and other micronutrients on malaria in Tanzanian children: A randomised trial. PLoS Med. 2011, 8, e1001125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baqui, A.H.; Walker, C.L.; Zaman, K.; El Arifeen, S.; Chowdhury, H.R.; Wahed, M.A.; Black, R.E.; Caulfield, L.E. Weekly iron supplementation does not block increases in serum zinc due to weekly zinc supplementation in Bangladeshi infants. J. Nutr. 2005, 135, 2187–2191. [Google Scholar] [CrossRef] [Green Version]
- Bertinato, J.; Simpson, J.R.; Sherrard, L.; Taylor, J.; Plouffe, L.J.; Van Dyke, D.; Geleynse, M.; Dam, Y.Y.; Murphy, P.; Knee, C.; et al. Zinc supplementation does not alter sensitive biomarkers of copper status in healthy boys. J. Nutr. 2013, 143, 284–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandari, N.; Bahl, R.; Taneja, S.; Strand, T.; Molbak, K.; Ulvik, R.J.; Sommerfelt, H.; Bhan, M.K. Substantial reduction in severe diarrheal morbidity by daily zinc supplementation in young north Indian children. Pediatrics 2002, 109, e86. [Google Scholar] [CrossRef] [Green Version]
- Brooks, W.A.; Santosham, M.; Naheed, A.; Goswami, D.; Wahed, M.A.; Diener-West, M.; Faruque, A.S.; Black, R.E. Effect of weekly zinc supplements on incidence of pneumonia and diarrhoea in children younger than 2 years in an urban, low-income population in Bangladesh: Randomised controlled trial. Lancet 2005, 366, 999–1004. [Google Scholar] [CrossRef]
- Brown, K.H.; Lopez de Romana, D.; Arsenault, J.E.; Peerson, J.M.; Penny, M.E. Comparison of the effects of zinc delivered in a fortified food or a liquid supplement on the growth, morbidity, and plasma zinc concentrations of young Peruvian children. Am. J. Clin. Nutr. 2007, 85, 538–547. [Google Scholar] [CrossRef] [Green Version]
- Caulfield, L.E.; Zavaleta, N.; Chen, P.; Colombo, J.; Kannass, K. Mineral status of non-anemic Peruvian infants taking an iron and copper syrup with or without zinc from 6 to 18 months of age: A randomized controlled trial. Nutrition 2013, 29, 1336–1341. [Google Scholar] [CrossRef] [Green Version]
- Hambidge, K.M.; Chavez, M.N.; Brown, R.M.; Walravens, P.A. Zinc nutritional status of young middle-income children and effects of consuming zinc-fortified breakfast cereals. Am. J. Clin. Nutr. 1979, 32, 2532–2539. [Google Scholar] [CrossRef] [Green Version]
- Heinig, M.J.; Brown, K.H.; Lonnerdal, B.; Dewey, K.G. Zinc supplementation does not affect growth, morbidity, or motor development of US term breastfed infants at 4–10 mo of age. Am. J. Clin. Nutr. 2006, 84, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishna, K.V.; Hemalatha, R.; Geddam, J.J.; Kumar, P.A.; Balakrishna, N.; Shatrugna, V. Effectiveness of zinc supplementation to full term normal infants: A community based double blind, randomized, controlled, clinical trial. PLoS ONE 2013, 8, e61486. [Google Scholar] [CrossRef]
- Rosado, J.L.; Lopez, P.; Kordas, K.; Garcia-Vargas, G.; Ronquillo, D.; Alatorre, J.; Stoltzfus, R.J. Iron and/or zinc supplementation did not reduce blood lead concentrations in children in a randomized, placebo-controlled trial. J. Nutr. 2006, 136, 2378–2383. [Google Scholar] [CrossRef] [PubMed]
- Ruz, M.; Castillo-Duran, C.; Lara, X.; Codoceo, J.; Rebolledo, A.; Atalah, E. A 14-mo zinc-supplementation trial in apparently healthy Chilean preschool children. Am. J. Clin. Nutr. 1997, 66, 1406–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sazawal, S.; Malik, P.; Jalla, S.; Krebs, N.; Bhan, M.K.; Black, R.E. Zinc supplementation for four months does not affect plasma copper concentration in infants. Acta Paediatr. 2004, 93, 599–602. [Google Scholar] [CrossRef]
- Tielsch, J.M.; Khatry, S.K.; Stoltzfus, R.J.; Katz, J.; LeClerq, S.C.; Adhikari, R.; Mullany, L.C.; Black, R.; Shresta, S. Effect of daily zinc supplementation on child mortality in southern Nepal: A community-based, cluster randomised, placebo-controlled trial. Lancet 2007, 370, 1230–1239. [Google Scholar] [CrossRef] [Green Version]
- Walravens, P.A.; Krebs, N.F.; Hambidge, K.M. Linear growth of low income preschool children receiving a zinc supplement. Am. J. Clin. Nutr. 1983, 38, 195–201. [Google Scholar] [CrossRef]
- Wuehler, S.E.; Sempertegui, F.; Brown, K.H. Dose-response trial of prophylactic zinc supplements, with or without copper, in young Ecuadorian children at risk of zinc deficiency. Am. J. Clin. Nutr. 2008, 87, 723–733. [Google Scholar] [CrossRef] [Green Version]
- De Brito, N.J.; Rocha, E.D.; de Araujo Silva, A.; Costa, J.B.; Franca, M.C.; das Gracas Almeida, M.; Brandao-Neto, J. Oral zinc supplementation decreases the serum iron concentration in healthy schoolchildren: A pilot study. Nutrients 2014, 6, 3460–3473. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Kim, H.J.; Cho, J.M.; Oh, S.H.; Lee, B.H.; Kim, G.H.; Choi, J.H.; Kim, K.M.; Yoo, H.W. Diagnostic Value of Ceruloplasmin in the Diagnosis of Pediatric Wilson’s Disease. Pediatric Gastroenterol. Hepatol. Nutr. 2015, 18, 187–192. [Google Scholar] [CrossRef]
- Bates, C.J.; Evans, P.H.; Dardenne, M.; Prentice, A.; Lunn, P.G.; Northrop-Clewes, C.A.; Hoare, S.; Cole, T.J.; Horan, S.J.; Longman, S.C.; et al. A trial of zinc supplementation in young rural Gambian children. Br. J. Nutr. 1993, 69, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, M.; Ajami, M.; Abdollahi, Z.; Kalantari, N.; Houshiarrad, A.; Fozouni, F.; Fallahrokni, A.; Mazandarani, F.S. Zinc supplementation is an effective and feasible strategy to prevent growth retardation in 6 to 24 month children: A pragmatic double blind, randomized trial. Heliyon 2019, 5, e02581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alarcon, K.; Kolsteren, P.W.; Prada, A.M.; Chian, A.M.; Velarde, R.E.; Pecho, I.L.; Hoeree, T.F. Effects of separate delivery of zinc or zinc and vitamin A on hemoglobin response, growth, and diarrhea in young Peruvian children receiving iron therapy for anemia. Am. J. Clin. Nutr. 2004, 80, 1276–1282. [Google Scholar] [CrossRef] [Green Version]
- Becquey, E.; Ouedraogo, C.T.; Hess, S.Y.; Rouamba, N.; Prince, L.; Ouedraogo, J.B.; Vosti, S.A.; Brown, K.H. Comparison of Preventive and Therapeutic Zinc Supplementation in Young Children in Burkina Faso: A Cluster-Randomized, Community-Based Trial. J. Nutr. 2016, 146, 2058–2066. [Google Scholar] [CrossRef] [Green Version]
- Berger, J.; Ninh, N.X.; Khan, N.C.; Nhien, N.V.; Lien, D.K.; Trung, N.Q.; Khoi, H.H. Efficacy of combined iron and zinc supplementation on micronutrient status and growth in Vietnamese infants. Eur. J. Clin. Nutr. 2006, 60, 443–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, R.C.; Kupka, R.; Manji, K.; McDonald, C.M.; Aboud, S.; Erhardt, J.G.; Gosselin, K.; Kisenge, R.; Liu, E.; Fawzi, W.; et al. Zinc and multivitamin supplementation have contrasting effects on infant iron status: A randomized, double-blind, placebo-controlled clinical trial. Eur. J. Clin. Nutr. 2018, 72, 130–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkhuizen, M.A.; Wieringa, F.T.; West, C.E.; Martuti, S.; Muhilal. Effects of iron and zinc supplementation in Indonesian infants on micronutrient status and growth. J. Nutr. 2001, 131, 2860–2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahmida, U.; Rumawas, J.S.; Utomo, B.; Patmonodewo, S.; Schultink, W. Zinc-iron, but not zinc-alone supplementation, increased linear growth of stunted infants with low haemoglobin. Asia Pac. J. Clin. Nutr 2007, 16, 301–309. [Google Scholar]
- Lopez de Romana, D.; Salazar, M.; Hambidge, K.M.; Penny, M.E.; Peerson, J.M.; Krebs, N.F.; Brown, K.H. Longitudinal measurements of zinc absorption in Peruvian children consuming wheat products fortified with iron only or iron and 1 of 2 amounts of zinc. Am. J. Clin. Nutr. 2005, 81, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Rosado, J.L.; Lopez, P.; Munoz, E.; Martinez, H.; Allen, L.H. Zinc supplementation reduced morbidity, but neither zinc nor iron supplementation affected growth or body composition of Mexican preschoolers. Am. J. Clin. Nutr. 1997, 65, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Soofi, S.; Cousens, S.; Iqbal, S.P.; Akhund, T.; Khan, J.; Ahmed, I.; Zaidi, A.K.; Bhutta, Z.A. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial. Lancet 2013, 382, 29–40. [Google Scholar] [CrossRef]
- Tielsch, J.M.; Khatry, S.K.; Stoltzfus, R.J.; Katz, J.; LeClerq, S.C.; Adhikari, R.; Mullany, L.C.; Shresta, S.; Black, R.E. Effect of routine prophylactic supplementation with iron and folic acid on preschool child mortality in southern Nepal: Community-based, cluster-randomised, placebo-controlled trial. Lancet 2006, 367, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Wasantwisut, E.; Winichagoon, P.; Chitchumroonchokchai, C.; Yamborisut, U.; Boonpraderm, A.; Pongcharoen, T.; Sranacharoenpong, K.; Russameesopaphorn, W. Iron and zinc supplementation improved iron and zinc status, but not physical growth, of apparently healthy, breast-fed infants in rural communities of northeast Thailand. J. Nutr. 2006, 136, 2405–2411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieringa, F.T.; Dijkhuizen, M.A.; West, C.E.; Thurnham, D.I.; Muhilal; Van der Meer, J.W. Redistribution of vitamin A after iron supplementation in Indonesian infants. Am. J. Clin. Nutr. 2003, 77, 651–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlotkin, S.; Arthur, P.; Schauer, C.; Antwi, K.Y.; Yeung, G.; Piekarz, A. Home-fortification with iron and zinc sprinkles or iron sprinkles alone successfully treats anemia in infants and young children. J. Nutr. 2003, 133, 1075–1080. [Google Scholar] [CrossRef]
- Hess, S.Y.; Abbeddou, S.; Jimenez, E.Y.; Some, J.W.; Vosti, S.A.; Ouedraogo, Z.P.; Guissou, R.M.; Ouedraogo, J.B.; Brown, K.H. Small-quantity lipid-based nutrient supplements, regardless of their zinc content, increase growth and reduce the prevalence of stunting and wasting in young burkinabe children: A cluster-randomized trial. PLoS ONE 2015, 10, e0122242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olney, D.K.; Pollitt, E.; Kariger, P.K.; Khalfan, S.S.; Ali, N.S.; Tielsch, J.M.; Sazawal, S.; Black, R.; Allen, L.H.; Stoltzfus, R.J. Combined iron and folic acid supplementation with or without zinc reduces time to walking unassisted among Zanzibari infants 5- to 11-mo old. J. Nutr. 2006, 136, 2427–2434. [Google Scholar] [CrossRef]
- Owusu-Agyei, S.; Newton, S.; Mahama, E.; Febir, L.G.; Ali, M.; Adjei, K.; Tchum, K.; Alhassan, L.; Moleah, T.; Tanumihardjo, S.A. Impact of vitamin A with zinc supplementation on malaria morbidity in Ghana. Nutr. J. 2013, 12, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penny, M.E.; Marin, R.M.; Duran, A.; Peerson, J.M.; Lanata, C.F.; Lonnerdal, B.; Black, R.E.; Brown, K.H. Randomized controlled trial of the effect of daily supplementation with zinc or multiple micronutrients on the morbidity, growth, and micronutrient status of young Peruvian children. Am. J. Clin. Nutr. 2004, 79, 457–465. [Google Scholar] [CrossRef]
- Richard, S.A.; Zavaleta, N.; Caulfield, L.E.; Black, R.E.; Witzig, R.S.; Shankar, A.H. Zinc and iron supplementation and malaria, diarrhea, and respiratory infections in children in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2006, 75, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Sazawal, S.; Dhingra, U.; Dhingra, P.; Dutta, A.; Deb, S.; Kumar, J.; Devi, P.; Prakash, A. Efficacy of high zinc biofortified wheat in improvement of micronutrient status, and prevention of morbidity among preschool children and women-a double masked, randomized, controlled trial. Nutr. J. 2018, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Shankar, A.H.; Genton, B.; Baisor, M.; Paino, J.; Tamja, S.; Adiguma, T.; Wu, L.; Rare, L.; Bannon, D.; Tielsch, J.M.; et al. The influence of zinc supplementation on morbidity due to Plasmodium falciparum: A randomized trial in preschool children in Papua New Guinea. Am. J. Trop. Med. Hyg. 2000, 62, 663–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.C.; Makdani, D.; Hegar, A.; Rao, D.; Douglass, L.W. Vitamin A and zinc supplementation of preschool children. J. Am. Coll. Nutr. 1999, 18, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Taneja, S.; Bhandari, N.; Rongsen-Chandola, T.; Mahalanabis, D.; Fontaine, O.; Bhan, M.K. Effect of zinc supplementation on morbidity and growth in hospital-born, low-birth-weight infants. Am. J. Clin. Nutr. 2009, 90, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Chimhashu, T.; Malan, L.; Baumgartner, J.; van Jaarsveld, P.J.; Galetti, V.; Moretti, D.; Smuts, C.M.; Zimmermann, M.B. Sensitivity of fatty acid desaturation and elongation to plasma zinc concentration: A randomised controlled trial in Beninese children. Br. J. Nutr 2018, 119, 610–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Population; WHO/NMH/NHD/MNM/11.2. In VMNIS; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Sandstrom, B.; Davidsson, L.; Cederblad, A.; Lonnerdal, B. Oral iron, dietary ligands and zinc absorption. J. Nutr. 1985, 115, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Sian, L.; Hambidge, K.M.; Westcott, J.L.; Miller, L.V.; Fennessey, P.V. Influence of a meal and incremental doses of zinc on changes in zinc absorption. Am. J. Clin. Nutr. 1993, 58, 533–536. [Google Scholar] [CrossRef]
- Lo, N.B.; Aaron, G.J.; Hess, S.Y.; Dossou, N.I.; Guiro, A.T.; Wade, S.; Brown, K.H. Plasma zinc concentration responds to short-term zinc supplementation, but not zinc fortification, in young children in Senegal. Am. J. Clin. Nutr. 2011, 93, 1348–1355. [Google Scholar] [CrossRef]
- Aaron, G.J.; Ba Lo, N.; Hess, S.Y.; Guiro, A.T.; Wade, S.; Brown, K.H. Plasma zinc concentration increases within 2 weeks in healthy Senegalese men given liquid supplemental zinc, but not zinc-fortified wheat bread. J. Nutr. 2011, 141, 1369–1374. [Google Scholar] [CrossRef] [Green Version]
IOM [2] | IZiNCG [1] | EFSA [4] | WHO/FAO [3] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age Range | EAR † | RDA * | NOAEL UL ‡ | EAR † ^mix/unref | RDA * ^mix/unref | NOAEL UL ‡ | Age Range | NOAEL UL ‡‡ | Age Range | Ref wt 2 kg | NR ^^h/m/L Avail. | RNI ^^h/m/L Avail. | LOAEL UL ‡‡ |
0–6 m | - | 2 | 4 | - | - | - | - | - | 0–3 m | - | - | 1.1/2.8/6.6 | - |
3–6 m | 6 | 0.5/1.2/2.9 | - | ||||||||||
6–12 m | - | 1.7/2.8/5.6 | - | ||||||||||
7–11 m | 2.5 | 3 | 5 | 3/4 | 4/5 | 6 | - | - | 7–12 m | 9 | - | 2.5/4.1/8.4 | 13 |
1–3 y | 2/2 | 3/3 | 8 | 1–3 y | 7 | 1–3 y | 12 | 1.7/2.8/5.5 | 2.4/4.1/8.3 | 23 | |||
3–6 y | 3/4 | 4/5 | 14 | 3–6 y | 17 | 1.9/3.2/6.5 | 23 | ||||||
4–6 y | 10 | 4–6 y | - | 2.9/4.8/9.6 | |||||||||
4–8 y | 4.0 | 8 | 12 | ||||||||||
7–10 y | 10 | 6–10 y | 25 | 2.3/3.7/7.5 | 28 | ||||||||
7–9 y | 3.3/5.6/11.2 | ||||||||||||
9–13 y | 7.0 | 8 | 23 | 5/7 | 6/9 | 26 | 11–14 y | 18 | |||||
Male/Female | |||||||||||||
10–18 y F | 4.3/7.2/14.4 | ||||||||||||
10–18 y M | 5.1/8.6/17.1 | ||||||||||||
10–12 y F | 47 | 3.2/5.3/10.7 | 32 | ||||||||||
10–12 y M | 49 | 3.9/6.5/13.1 | 34 | ||||||||||
12–15 y F | 47 | 3.0/5.0/10.1 | 36 | ||||||||||
12–15 y M | 49 | 3.7/6.2/12.4 | 40 | ||||||||||
14–18 y F | 7.3 | 9 | 34 | 7/9 | 9/11 | 39 | 15–17 y | 22 | 15–18 y F | 47 | 2.6/4.4/8.8 | 38 | |
14–18 y M | 8.5 | 11 | 34 | 8/11 | 10/14 | 44 | 15–18 y M | 49 | 3.0/5.0/10.0 | 48 |
Ages 2 | Serum or Plasma Copper | Serum Ceruloplasmin | ESOD | Serum Ferritin | Hemoglobin | Serum Transferrin Receptor | Lipids | Dose Ranges of Studies by Age 3 (mg) |
---|---|---|---|---|---|---|---|---|
0–5 months | 1 | 0 | 0 | 2 | 1 | 0 | 1 | 4–5 |
6–12 months | 11 | 0 | 1 | 20 | 25 | 6 | 1 | 2.3–10 |
1–3 years | 3 | 1 | 2 | 11 | 18 | 2 | 0 | 0.9–20 |
4–6 years | 5 | 0 | 0 | 5 | 9 | 0 | 1 | 1.2–21.4 |
7+ years | 3 | 4 | 3 | 1 | 3 | 0 | 1 | 2.8–17.1 |
Total | 23 | 5 | 6 | 39 | 56 | 8 | 4 | 0.9–21.4 |
Intervention Group | Zinc + Iron | Iron | Zinc | Placebo |
---|---|---|---|---|
Study: | ||||
Baqui [29] | 8.0 a | 3.7 a | 6.4 a | 0 a |
Berger [50] | 35.8 b | 41.5 b | 0 a | 0 a |
Dijkhuizen [52] | 12.3 b | 22.5 b | −2.3 a | 0 a |
Lind [21] 2 | 18.4 b | 32.6 c | −0.6 a | 0 a |
Rosado 1997 [55] | 20.7 | 24.0 | −3.2 | 0 a |
Rosado 2006 [38] | 25.2 b | 37.4 b | −2.1 a | 0 a |
Wasantwisut [58] | 26.5 b | 45.4 c | 0.2 a | 0 a |
Weiringa [59] | 16.5 b | 23.0 b | −4.2 a | 0 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuehler, S.; Lopez de Romaña, D.; Haile, D.; McDonald, C.M.; Brown, K.H. Reconsidering the Tolerable Upper Levels of Zinc Intake among Infants and Young Children: A Systematic Review of the Available Evidence. Nutrients 2022, 14, 1938. https://doi.org/10.3390/nu14091938
Wuehler S, Lopez de Romaña D, Haile D, McDonald CM, Brown KH. Reconsidering the Tolerable Upper Levels of Zinc Intake among Infants and Young Children: A Systematic Review of the Available Evidence. Nutrients. 2022; 14(9):1938. https://doi.org/10.3390/nu14091938
Chicago/Turabian StyleWuehler, Sara, Daniel Lopez de Romaña, Demewoz Haile, Christine M. McDonald, and Kenneth H. Brown. 2022. "Reconsidering the Tolerable Upper Levels of Zinc Intake among Infants and Young Children: A Systematic Review of the Available Evidence" Nutrients 14, no. 9: 1938. https://doi.org/10.3390/nu14091938
APA StyleWuehler, S., Lopez de Romaña, D., Haile, D., McDonald, C. M., & Brown, K. H. (2022). Reconsidering the Tolerable Upper Levels of Zinc Intake among Infants and Young Children: A Systematic Review of the Available Evidence. Nutrients, 14(9), 1938. https://doi.org/10.3390/nu14091938