Nutritional Status in Chinese Patients with Obesity Following Sleeve Gastrectomy/Roux-en-Y Gastric Bypass: A Retrospective Multicenter Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Laboratory Analysis
2.3. Definitions of Anemia and Nutrition Deficiencies
2.4. Statistical Analysis
3. Results
3.1. SG and RYGB Are Comparatively Effective with Respect to Weight Loss and Glycemic Control for Patients with Obesity
3.2. Anemia
3.3. Bone Metabolism
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Zhou, B.; Zhao, Z.; Yang, L.; Zhang, M.; Jiang, Y.; Li, Y.; Zhou, M.; Wang, L.; Huang, Z.; et al. Body-mass index and obesity in urban and rural China: Findings from consecutive nationally representative surveys during 2004–2018. Lancet 2021, 398, 53–63. [Google Scholar] [CrossRef]
- Zeng, Q.; Li, N.; Pan, X.F.; Chen, L.; Pan, A. Clinical management and treatment of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 393–405. [Google Scholar] [CrossRef]
- Pan, X.F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef]
- Adams, T.D.; Davidson, L.E.; Litwin, S.E.; Kim, J.; Kolotkin, R.L.; Nanjee, M.N.; Gutierrez, J.M.; Frogley, S.J.; Ibele, A.R.; Brinton, E.A.; et al. Weight and Metabolic Outcomes 12 Years after Gastric Bypass. N. Engl. J. Med. 2017, 377, 1143–1155. [Google Scholar] [CrossRef]
- Peterli, R.; Wolnerhanssen, B.K.; Peters, T.; Vetter, D.; Kroll, D.; Borbely, Y.; Schultes, B.; Beglinger, C.; Drewe, J.; Schiesser, M.; et al. Effect of Laparoscopic Sleeve Gastrectomy vs. Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss in Patients with Morbid Obesity: The SM-BOSS Randomized Clinical Trial. JAMA 2018, 319, 255–265. [Google Scholar] [CrossRef]
- Salminen, P.; Helmio, M.; Ovaska, J.; Juuti, A.; Leivonen, M.; Peromaa-Haavisto, P.; Hurme, S.; Soinio, M.; Nuutila, P.; Victorzon, M. Effect of Laparoscopic Sleeve Gastrectomy vs. Laparoscopic Roux-en-Y Gastric Bypass on Weight Loss at 5 Years among Patients with Morbid Obesity: The SLEEVEPASS Randomized Clinical Trial. JAMA 2018, 319, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Henfridsson, P.; Laurenius, A.; Wallengren, O.; Beamish, A.J.; Dahlgren, J.; Flodmark, C.E.; Marcus, C.; Olbers, T.; Gronowitz, E.; Ellegard, L. Micronutrient intake and biochemistry in adolescents adherent or nonadherent to supplements 5 years after Roux-en-Y gastric bypass surgery. Surg. Obes. Relat. Dis. 2019, 15, 1494–1502. [Google Scholar] [CrossRef] [PubMed]
- de Cleva, R.; Cardia, L.; Riccioppo, D.; Kawamoto, M.; Kanashiro, N.; Santo, M.A. Anemia Before and After Roux-en-Y Gastric Bypass: Prevalence and Evolution on Long-Term Follow-up. Obes. Surg. 2019, 29, 2790–2794. [Google Scholar] [CrossRef] [PubMed]
- Tangalakis, L.L.; Tabone, L.; Spagnoli, A.; Muehlbauer, M.; Omotosho, P.; Torquati, A. Effects of Roux-en-Y Gastric Bypass on Osteoclast Activity and Bone Density in Morbidly Obese Patients with Type 2 Diabetes. Obes. Surg. 2020, 30, 290–295. [Google Scholar] [CrossRef]
- Johnson, L.M.; Ikramuddin, S.; Leslie, D.B.; Slusarek, B.; Killeen, A.A. Analysis of vitamin levels and deficiencies in bariatric surgery patients: A single-institutional analysis. Surg. Obes. Relat. Dis. 2019, 15, 1146–1152. [Google Scholar] [CrossRef]
- Kuin, C.; den Ouden, F.; Brandts, H.; Deden, L.; Hazebroek, E.; van Borren, M.; de Boer, H. Treatment of Severe Protein Malnutrition After Bariatric Surgery. Obes. Surg. 2019, 29, 3095–3102. [Google Scholar] [CrossRef]
- Kessler, Y.; Adelson, D.; Mardy-Tilbor, L.; Ben-Porat, T.; Szold, A.; Goitein, D.; Sakran, N.; Raziel, A.; Sherf-Dagan, S. Nutritional status following One Anastomosis Gastric Bypass. Clin. Nutr. 2020, 39, 599–605. [Google Scholar] [CrossRef] [PubMed]
- van der Beek, E.S.; Monpellier, V.M.; Eland, I.; Tromp, E.; van Ramshorst, B. Nutritional deficiencies in gastric bypass patients; incidence, time of occurrence and implications for post-operative surveillance. Obes. Surg. 2015, 25, 818–823. [Google Scholar] [CrossRef] [PubMed]
- von Drygalski, A.; Andris, D.A.; Nuttleman, P.R.; Jackson, S.; Klein, J.; Wallace, J.R. Anemia after bariatric surgery cannot be explained by iron deficiency alone: Results of a large cohort study. Surg. Obes. Relat. Dis. 2011, 7, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.; Rojas, P.; Basfi-Fer, K.; Carrasco, F.; Inostroza, J.; Codoceo, J.; Valencia, A.; Papapietro, K.; Csendes, A.; Ruz, M. Micronutrient Deficiencies in Morbidly Obese Women Prior to Bariatric Surgery. Obes. Surg. 2016, 26, 361–368. [Google Scholar] [CrossRef]
- Wolf, E.; Utech, M.; Stehle, P.; Busing, M.; Stoffel-Wagner, B.; Ellinger, S. Preoperative micronutrient status in morbidly obese patients before undergoing bariatric surgery: Results of a cross-sectional study. Surg. Obes. Relat. Dis. 2015, 11, 1157–1163. [Google Scholar] [CrossRef]
- Aigner, E.; Feldman, A.; Datz, C. Obesity as an emerging risk factor for iron deficiency. Nutrients 2014, 6, 3587–3600. [Google Scholar] [CrossRef]
- Aasheim, E.T.; Hofso, D.; Hjelmesaeth, J.; Birkeland, K.I.; Bohmer, T. Vitamin status in morbidly obese patients: A cross-sectional study. Am. J. Clin. Nutr. 2008, 87, 362–369. [Google Scholar] [CrossRef]
- Ma, R.C.; Chan, J.C. Type 2 diabetes in East Asians: Similarities and differences with populations in Europe and the United States. Ann. N. Y. Acad. Sci. 2013, 1281, 64–91. [Google Scholar] [CrossRef] [Green Version]
- Rubino, F.; Nathan, D.M.; Eckel, R.H.; Schauer, P.R.; Alberti, K.G.; Zimmet, P.Z.; Del Prato, S.; Ji, L.; Sadikot, S.M.; Herman, W.H.; et al. Delegates of the 2nd Diabetes Surgery S. Metabolic Surgery in the Treatment Algorithm for Type 2 Diabetes: A Joint Statement by International Diabetes Organizations. Diabetes Care 2016, 39, 861–877. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Ronghui, D.; Zhang, N.; Zhang, M.; Tu, Y.; Zhang, L.; Bao, Y.; Han, J.; Zhang, P.; Jia, W. Iron-Deficiency Anemia after Laparoscopic Roux-en-Y Gastric Bypass in Chinese Obese Patients with Type 2 Diabetes: A 2-Year Follow-Up Study. Obes. Surg. 2016, 26, 2705–2711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Chen, X.; Li, J.; Liu, Z.; Liu, W.; Zhang, J.; Zhou, Z. Anaemia and Related Nutritional Deficiencies in Chinese Patients with Obesity, 12 Months Following Laparoscopic Sleeve Gastrectomy. Diabetes Metab. Syndr. Obes. 2021, 14, 1575–1587. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Tabesh, M.R.; Maleklou, F.; Ejtehadi, F.; Alizadeh, Z. Nutrition, Physical Activity, and Prescription of Supplements in Pre- and Post-bariatric Surgery Patients: A Practical Guideline. Obes. Surg. 2019, 29, 3385–3400. [Google Scholar] [CrossRef]
- WHO. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity 2011. Available online: https://www.who.int/vmnis/indicators/haemoglobin/en/ (accessed on 1 May 2011).
- de Benoist, B. Conclusions of a WHO Technical Consultation on folate and vitamin B12 deficiencies. Food Nutr. Bull. 2008, 29, S238–S244. [Google Scholar] [CrossRef]
- Hardang, I.M.; Lilleholt, K.; Hagve, T.A. Anemia of chronic disease. Tidsskr Nor Laegeforen 2017, 137. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine S. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.A.; Melton, L.J., 3rd; Christiansen, C.; Johnston, C.C.; Khaltaev, N. The diagnosis of osteoporosis. J. Bone Miner. Res. 1994, 9, 1137–1141. [Google Scholar] [CrossRef]
- Ignat, M.; Vix, M.; Imad, I.; D’Urso, A.; Perretta, S.; Marescaux, J.; Mutter, D. Randomized trial of Roux-en-Y gastric bypass versus sleeve gastrectomy in achieving excess weight loss. Br. J. Surg. 2017, 104, 248–256. [Google Scholar] [CrossRef]
- Osland, E.; Yunus, R.M.; Khan, S.; Memon, B.; Memon, M.A. Weight Loss Outcomes in Laparoscopic Vertical Sleeve Gastrectomy (LVSG) Versus Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) Procedures: A Meta-Analysis and Systematic Review of Randomized Controlled Trials. Surg. Laparosc. Endosc. Percutan. Tech. 2017, 27, 8–18. [Google Scholar] [CrossRef]
- McTigue, K.M.; Wellman, R.; Nauman, E.; Anau, J.; Coley, R.Y.; Odor, A.; Tice, J.; Coleman, K.J.; Courcoulas, A.; Pardee, R.E.; et al. Comparing the 5-Year Diabetes Outcomes of Sleeve Gastrectomy and Gastric Bypass: The National Patient-Centered Clinical Research Network (PCORNet) Bariatric Study. JAMA Surg. 2020, 155, e200087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, B.; King, W.C.; Gourash, W.; Belle, S.H.; Hinerman, A.; Pomp, A.; Dakin, G.; Courcoulas, A.P. Long-term weight change and health outcomes for sleeve gastrectomy (SG) and matched Roux-en-Y gastric bypass (RYGB) participants in the Longitudinal Assessment of Bariatric Surgery (LABS) study. Surgery 2018, 164, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Lira, N.S.; Macedo, C.E.S.; Belo, G.M.; Santa-Cruz, F.; Siqueira, L.T.; Ferraz, A.A.B. Analysis of the lipid profile of patients submitted to sleeve gastrectomy and Roux-en-Y gastric bypass. Rev. Col. Bras. Cir. 2018, 45, e1967. [Google Scholar] [PubMed] [Green Version]
- Vix, M.; Diana, M.; Liu, K.H.; D’Urso, A.; Mutter, D.; Wu, H.S.; Marescaux, J. Evolution of glycolipid profile after sleeve gastrectomy vs. Roux-en-Y gastric bypass: Results of a prospective randomized clinical trial. Obes. Surg. 2013, 23, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.; Gangadharan, K.; Pitchumoni, C.S. Malnutrition in obesity before and after bariatric surgery. Dis. Mon. 2020, 66, 100866. [Google Scholar] [CrossRef] [PubMed]
- Bailly, L.; Schiavo, L.; Sebastianelli, L.; Fabre, R.; Pradier, C.; Iannelli, A. Anemia and Bariatric Surgery: Results of a National French Survey on Administrative Data of 306,298 Consecutive Patients Between 2008 and 2016. Obes. Surg. 2018, 28, 2313–2320. [Google Scholar] [CrossRef] [PubMed]
- Thurnham, D.I.; Northrop-Clewes, C.A. Inflammation and biomarkers of micronutrient status. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 458–463. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Liu, Z.; Zhou, Z. More than an Anti-diabetic Bariatric Surgery, Metabolic Surgery Alleviates Systemic and Local Inflammation in Obesity. Obes. Surg. 2018, 28, 3658–3668. [Google Scholar] [CrossRef]
- Tussing-Humphreys, L.M.; Nemeth, E.; Fantuzzi, G.; Freels, S.; Holterman, A.X.; Galvani, C.; Ayloo, S.; Vitello, J.; Braunschweig, C. Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity 2010, 18, 2010–2016. [Google Scholar] [CrossRef] [Green Version]
- Ganz, T. Molecular control of iron transport. J. Am. Soc. Nephrol. 2007, 18, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Asghar, A.; Sheikh, N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell. Immunol. 2017, 315, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Sala, P.; Belarmino, G.; Torrinhas, R.S.; Machado, N.M.; Fonseca, D.C.; Ravacci, G.R.; Ishida, R.K.; Guarda, I.F.; de Moura, E.G.; Sakai, P.; et al. Gastrointestinal Transcriptomic Response of Metabolic Vitamin B12 Pathways in Roux-en-Y Gastric Bypass. Clin. Transl. Gastroenterol. 2017, 8, e212. [Google Scholar] [CrossRef] [PubMed]
- Caron, M.; Hould, F.S.; Lescelleur, O.; Marceau, S.; Lebel, S.; Julien, F.; Simard, S.; Biertho, L. Long-term nutritional impact of sleeve gastrectomy. Surg. Obes. Relat. Dis. 2017, 13, 1664–1673. [Google Scholar] [CrossRef] [PubMed]
- Kornerup, L.S.; Hvas, C.L.; Abild, C.B.; Richelsen, B.; Nexo, E. Early changes in vitamin B12 uptake and biomarker status following Roux-en-Y gastric bypass and sleeve gastrectomy. Clin. Nutr. 2019, 38, 906–911. [Google Scholar] [CrossRef] [Green Version]
- Hsin, M.C.; Huang, C.K.; Tai, C.M.; Yeh, L.R.; Kuo, H.C.; Garg, A. A case-matched study of the differences in bone mineral density 1 year after 3 different bariatric procedures. Surg. Obes. Relat. Dis. 2015, 11, 181–185. [Google Scholar] [CrossRef]
- Tanaka, S.; Kuroda, T.; Saito, M.; Shiraki, M. Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos. Int. 2013, 24, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Villareal, D.T.; Fontana, L.; Weiss, E.P.; Racette, S.B.; Steger-May, K.; Schechtman, K.B.; Klein, S.; Holloszy, J.O. Bone mineral density response to caloric restriction-induced weight loss or exercise-induced weight loss: A randomized controlled trial. Arch. Intern. Med. 2006, 166, 2502–2510. [Google Scholar] [CrossRef] [PubMed]
- Melo, T.L.; Froeder, L.; Baia, L.D.C.; Heilberg, I.P. Bone turnover after bariatric surgery. Arch. Endocrinol. Metab. 2017, 61, 332–336. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.W. Bone metabolism after bariatric surgery. J. Bone Miner. Res. 2014, 29, 1507–1518. [Google Scholar] [CrossRef] [Green Version]
- Marengo, A.P.; Guerrero Perez, F.; San Martin, L.; Monseny, R.; Casajoana, A.; Valera, R.; Virgili, N.; Simo Servat, A.; Prats, A.; Gomez-Vaquero, C.; et al. Is Trabecular Bone Score Valuable in Bone Microstructure Assessment after Gastric Bypass in Women with Morbid Obesity? Nutrients 2017, 9, 1314. [Google Scholar] [CrossRef] [Green Version]
- Botella-Carretero, J.I.; Lafuente, C.; Montes-Nieto, R.; Balsa, J.; Vega-Pinero, B.; Garcia-Moreno, F.; Peromingo, R.; Galindo, J.; San-Millan, J.L.; Escobar-Morreale, H. Serum Bioavailable Vitamin D Concentrations and Bone Mineral Density in Women after Obesity Surgery. Obes. Surg. 2016, 26, 2732–2737. [Google Scholar] [CrossRef]
- Menegati, G.C.; de Oliveira, L.C.; Santos, A.L.; Cohen, L.; Mattos, F.; Mendonca, L.M.; Carneiro, J.R.; Farias, M.L.; Rosado, E.L. Nutritional Status, Body Composition, and Bone Health in Women after Bariatric Surgery at a University Hospital in Rio de Janeiro. Obes. Surg. 2016, 26, 1517–1524. [Google Scholar] [CrossRef]
- Yu, E.W.; Bouxsein, M.L.; Roy, A.E.; Baldwin, C.; Cange, A.; Neer, R.M.; Kaplan, L.M.; Finkelstein, J.S. Bone loss after bariatric surgery: Discordant results between DXA and QCT bone density. J. Bone Miner. Res. 2014, 29, 542–550. [Google Scholar] [CrossRef]
- Muschitz, C.; Kocijan, R.; Haschka, J.; Zendeli, A.; Pirker, T.; Geiger, C.; Muller, A.; Tschinder, B.; Kocijan, A.; Marterer, C.; et al. The Impact of Vitamin D, Calcium, Protein Supplementation, and Physical Exercise on Bone Metabolism after Bariatric Surgery: The BABS Study. J. Bone Miner. Res. 2016, 31, 672–682. [Google Scholar] [CrossRef] [PubMed]
- King, R.J.; Chandrajay, D.; Abbas, A.; Orme, S.M.; Barth, J.H. High-dose oral colecalciferol loading in obesity: Impact of body mass index and its utility prior to bariatric surgery to treat vitamin D deficiency. Clin. Obes. 2017, 7, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Scibora, L.M.; Ikramuddin, S.; Buchwald, H.; Petit, M.A. Examining the link between bariatric surgery, bone loss, and osteoporosis: A review of bone density studies. Obes. Surg. 2012, 22, 654–667. [Google Scholar] [CrossRef] [PubMed]
All | RYGB | SG | p-Value (RYGB vs. SG) | |
---|---|---|---|---|
N | 903 | 263 | 640 | / |
Age (years) | 31 (26–40) | 37 (29–47) | 30 (24–36) | <0.001 |
Sex (female/male) | 497/406 | 136/127 | 361/278 | 0.189 |
BMI (Kg/m2) | 37.7 (33.7–42.6) | 37.2 (31.2–42.6) | 38.0 (34.3–42.6) | 0.004 |
Waist circumference (cm) | 117 (107–129) | 115 (103–129) | 118 (108–130) | 0.006 |
Hip circumference (cm) | 119 (110–129) | 116 (105–128) | 120 (112–130) | <0.001 |
SBP (mmHg) | 134 (124–148) | 136 (123–149) | 133 (124–147) | 0.200 |
DBP (mmHg) | 84 (77–92) | 85 (77–93) | 84 (77–92) | 0.286 |
FPG (mmol/L) | 5.6 (4.9–7.2) | 6.4 (5.4–9.2) | 5.3 (4.8–6.5) | <0.001 |
HbA1c (%) | 6.0 (5.5–7.3) | 7.1 (5.9–8.5) | 5.8 (5.5–6.6) | <0.001 |
TG (mmol/L) | 1.8 (1.3–2.5) | 2.0 (1.4–2.8) | 1.7 (1.2–2.4) | <0.001 |
TC (mmol/L) | 4.6 (3.9–5.2) | 4.7 (4.1–5.4) | 4.5 (3.9–5.2) | 0.036 |
HDL-C (mmol/L) | 1.0 (0.8–1.1) | 1.0 (0.8–1.1) | 1.0 (0.8–1.1) | 0.094 |
LDL-C (mmol/L) | 2.8 (2.3–3.4) | 2.8 (2.3–3.3) | 2.8 (2.3–3.4) | 0.351 |
RYGB (n = 98) | SG (n = 98) | p-Value (RYGB vs. SG) | |
---|---|---|---|
Gender (female/male) | 52/46 | 60/38 | 0.312 |
Age (years) | 33 (28–42) | 33 (28–41) | 0.800 |
Preop BMI (kg/m2) | 38.6 ± 5.7 | 38.2 ± 5.8 | 0.929 |
1-year BMI (kg/m2) | 27.6 ± 3.6 *** | 26.7 ± 4.7 *** | 0.384 |
1-year EBMIL (%) | 81.2 (67.5–102.5) | 91.1 (72.0–128.4) | 0.127 |
Preop FPG (mmol/L) | 5.7 (5.0–6.6) | 5.5 (4.9–6.6) | 0.872 |
1-year FPG (mmol/L) | 4.9 (4.5–5.4) *** | 4.5 (4.2–5.0) *** | 0.684 |
Preop PPG (mmol/L) | 8.8 (7.0–12.2) | 8.8 (6.4–13.1) | 0.493 |
1-year PPG (mmol/L) | 4.7 (4.3–5.1) *** | 5.0 (4.1–5.6) *** | 0.303 |
Preop HbA1c (%) | 6.0 (5.6–6.7) | 5.9 (5.6–6.5) | 0.592 |
1-year HbA1c (%) | 5.3 (5.0–5.6) *** | 5.4 (5.1–5.6) *** | 0.620 |
Preop TG (mmol/L) | 1.9 (1.4–2.6) | 1.5 (1.2–2.2) | 0.088 |
1-year TG (mmol/L) | 0.8 (0.7–1.2) ** | 0.9 (0.7–1.2) *** | 0.638 |
Preop TC (mmol/L) | 4.7 ± 0.9 | 4.7 ± 0.9 | 0.918 |
1-year TC (mmol/L) | 4.1 ± 0.8 *** | 4.5 ± 1.1 | 0.063 |
Preop HDL-C (mmol/L) | 0.9 (0.8–1.1) | 1.0 (0.9–1.1) | 0.805 |
1-year HDL-C (mmol/L) | 1.4 (1.2–1.6) *** | 1.4 (1.1–1.6) *** | 0.876 |
Preop LDL-C (mmol/L) | 2.8 ± 0.7 | 3.0 ± 0.8 | 0.300 |
1-year LDL-C (mmol/L) | 2.2 ± 0.5 *** | 2.7 ± 1.0 | 0.008 |
Preop SBP (mmHg) | 136 (124–148) | 132 (122–145) | 0.157 |
1-year SBP (mmHg) | 117 (110–128) *** | 124 (110–127) | 0.782 |
Preop DBP (mmHg) | 86 (78–94) | 82 (75–90) | 0.156 |
1-year DBP (mmHg) | 75 (67–86) *** | 74 (68–80) * | 0.329 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Chen, X.; Liu, S.; Liu, W.; Zhu, D.; Li, X.; Qu, S.; Zhu, Z.; Zhang, J.; Zhou, Z. Nutritional Status in Chinese Patients with Obesity Following Sleeve Gastrectomy/Roux-en-Y Gastric Bypass: A Retrospective Multicenter Cohort Study. Nutrients 2022, 14, 1932. https://doi.org/10.3390/nu14091932
Zhang C, Chen X, Liu S, Liu W, Zhu D, Li X, Qu S, Zhu Z, Zhang J, Zhou Z. Nutritional Status in Chinese Patients with Obesity Following Sleeve Gastrectomy/Roux-en-Y Gastric Bypass: A Retrospective Multicenter Cohort Study. Nutrients. 2022; 14(9):1932. https://doi.org/10.3390/nu14091932
Chicago/Turabian StyleZhang, Chunlan, Xi Chen, Shiping Liu, Wei Liu, Dalong Zhu, Xiaoying Li, Shen Qu, Zhiming Zhu, Jingjing Zhang, and Zhiguang Zhou. 2022. "Nutritional Status in Chinese Patients with Obesity Following Sleeve Gastrectomy/Roux-en-Y Gastric Bypass: A Retrospective Multicenter Cohort Study" Nutrients 14, no. 9: 1932. https://doi.org/10.3390/nu14091932
APA StyleZhang, C., Chen, X., Liu, S., Liu, W., Zhu, D., Li, X., Qu, S., Zhu, Z., Zhang, J., & Zhou, Z. (2022). Nutritional Status in Chinese Patients with Obesity Following Sleeve Gastrectomy/Roux-en-Y Gastric Bypass: A Retrospective Multicenter Cohort Study. Nutrients, 14(9), 1932. https://doi.org/10.3390/nu14091932