Greater Adherence to Dietary Guidelines Associated with Reduced Risk of Cardiovascular Diseases in Chinese Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Ascertainment of Diseases
2.4. Data Collection
2.5. Dietary Intake Assessment
2.6. Calculation of Diet Quality Scores
2.6.1. Chinese Healthy Eating Index (CHEI)
2.6.2. Healthy Eating Index (HEI)-2015
2.6.3. Conversion of Collected Data
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Participants in the Percentage Distribution for Each Component
3.3. Total Risk Score and Stratified Analysis
3.4. Association of Each Component Score with CVD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wang, L.; Gao, P.; Zhang, M.; Huang, Z.; Zhang, D.; Deng, Q.; Li, Y.; Zhao, Z.; Qin, X.; Jin, D.; et al. Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013. JAMA 2017, 317, 2515–2523. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S103–S123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haffner, S.J.; Cassells, H. Hyperglycemia as a cardiovascular risk factor. Am. J. Med. 2003, 115, 6–11. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S46–S60. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Liu, Y.J.; Cai, L.B.; Xu, F.R.; Xie, T.; He, Q.Q. Fruit and vegetable consumption and risk of cardiovascular disease: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 1650–1663. [Google Scholar] [CrossRef]
- Mellen, P.B.; Walsh, T.F.; Herrington, D.M. Whole grain intake and cardiovascular disease: A meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 283–290. [Google Scholar] [CrossRef]
- Rimm, E.B.; Appel, L.J.; Chiuve, S.E.; Djoussé, L.; Engler, M.B.; Kris-Etherton, P.M.; Mozaffarian, D.; Siscovick, D.S.; Lichtenstein, A.H. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. Circulation 2018, 138, e35–e47. [Google Scholar] [CrossRef]
- Zhong, V.W.; Van Horn, L.; Greenland, P.; Carnethon, M.R.; Ning, H.; Wilkins, J.T.; Lloyd-Jones, D.M.; Allen, N.B. Associations of Processed Meat, Unprocessed Red Meat, Poultry, or Fish Intake With Incident Cardiovascular Disease and All-Cause Mortality. JAMA Intern. Med. 2020, 180, 503–512. [Google Scholar] [CrossRef]
- Smyth, A.; O’Donnell, M.; Mente, A.; Yusuf, S. Dietary sodium and cardiovascular disease. Curr. Hypertens. Rep. 2015, 17, 559. [Google Scholar] [CrossRef]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulos, D.; Lagiou, P. Dietary patterns and mortality. Br. J. Nutr. 2001, 85, 133–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvaniti, F.; Panagiotakos, D.B. Healthy indexes in public health practice and research: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Mertens, E.; Markey, O.; Geleijnse, J.M.; Lovegrove, J.A.; Givens, D.I. Adherence to a healthy diet in relation to cardiovascular incidence and risk markers: Evidence from the Caerphilly Prospective Study. Eur. J. Nutr. 2018, 57, 1245–1258. [Google Scholar] [CrossRef] [Green Version]
- Neelakantan, N.; Naidoo, N.; Koh, W.P.; Yuan, J.M.; van Dam, R.M. The Alternative Healthy Eating Index Is Associated with a Lower Risk of Fatal and Nonfatal Acute Myocardial Infarction in a Chinese Adult Population. J. Nutr. 2016, 146, 1379–1386. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Moorthy, M.V.; Demler, O.V.; Hu, F.B.; Ridker, P.M.; Chasman, D.I.; Mora, S. Assessment of Risk Factors and Biomarkers Associated With Risk of Cardiovascular Disease Among Women Consuming a Mediterranean Diet. JAMA Netw. Open 2018, 1, e185708. [Google Scholar] [CrossRef] [Green Version]
- Esposito, K.; Maiorino, M.I.; Ciotola, M.; Di Palo, C.; Scognamiglio, P.; Gicchino, M.; Petrizzo, M.; Saccomanno, F.; Beneduce, F.; Ceriello, A.; et al. Effects of a Mediterranean-style diet on the need for antihyperglycemic drug therapy in patients with newly diagnosed type 2 diabetes: A randomized trial. Ann. Intern. Med. 2009, 151, 306–314. [Google Scholar] [CrossRef]
- Campbell, A.P. DASH Eating Plan: An Eating Pattern for Diabetes Management. Diabetes Spectr. 2017, 30, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, R. Vegetarian Diets in the Prevention and Management of Diabetes and Its Complications. Diabetes Spectr. 2017, 30, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Schap, T.; Kuczynski, K.; Hiza, H. Healthy Eating Index-Beyond the Score. J. Acad. Nutr. Diet. 2017, 117, 519–521. [Google Scholar] [CrossRef]
- American Diabetes Association. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S125–S150. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, F.; Dong, R.; Chen, J.; He, G.; Li, S.; Chen, B. The Development of a Chinese Healthy Eating Index and Its Application in the General Population. Nutrients 2017, 9, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.S.; Lay, S.; Yu, H.N.; Shen, S.R. Dietary Guidelines for Chinese Residents (2016): Comments and comparisons. J. Zhejiang Univ. Sci. B 2016, 17, 649–656. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture. Dietary Guidelines for Americans 2015–2020, 8th ed.; U.S. Department of Health and Human Services; U.S. Department of Agriculture: Washington, DC, USA, 2015.
- Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26, S5–S20. [Google Scholar] [CrossRef] [Green Version]
- China Society of Cardiology of Chinese Medical Association; Editorial Board of Chinese Journal of Cardiology. [Guideline for diagnosis and treatment of patients with ST-elevation myocardial infarction]. Zhonghua Xin Xue Guan Bing Za Zhi 2010, 38, 675–690. [Google Scholar]
- Chinese Society of Cardiology of Chinese Medical Association; Editorial Board of Chinese Journal of Cardiology. [Guideline for diagnosis and treatment of patients with unstable angina and non-ST-segment elevation myocardial infarction]. Zhonghua Xin Xue Guan Bing Za Zhi 2007, 35, 295–304. [Google Scholar]
- Rao, M. China Guideline for Cerebrovascular Disease Prevention and Treatment; People’s Medical Publishing House: Beijing, China, 2007; p. 145. [Google Scholar]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.J.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Kirk, S.F.; Cramm, C.L.; Price, S.L.; Penney, T.L.; Jarvie, L.; Power, H. BMI: A vital sign for patients and health professionals. Can. Nurse 2009, 105, 25–28. [Google Scholar]
- Whitworth, J.A. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J. Hypertens. 2003, 21, 1983–1992. [Google Scholar]
- Joint committee issued Chinese guideline for the management of dyslipidemia in adults. [2016 Chinese guideline for the management of dyslipidemia in adults]. Zhonghua Xin Xue Guan Bing Za Zhi 2016, 44, 833–853.
- Zhang, C.; Ho, S.C. Validity and reproducibility of a food frequency Questionnaire among Chinese women in Guangdong province. Asia Pac. J. Clin. Nutr. 2009, 18, 240–250. [Google Scholar] [PubMed]
- Bowman, S.A.; Clemens, J.C.; Friday, J.E.; Lynch, K.L.; Moshfegh, A.J. Food Patterns Equivalents Database 2013–14: Methodology and User Guide; U.S. Department of Agriculture: Beltsville, MD, USA, 2017.
- Yang, Y.; Wang, G.; Pan, X. China Food Composition, 2nd ed.; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Yuan, Y.; Li, F.; Wu, H.; Wang, Y.; Chen, J.; He, G.; Li, S.; Chen, B. Evaluation of the Validity and Reliability of the Chinese Healthy Eating Index. Nutrients 2018, 10, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reedy, J.; Lerman, J.L.; Krebs-Smith, S.M.; Kirkpatrick, S.I.; Pannucci, T.E.; Wilson, M.M.; Subar, A.F.; Kahle, L.L.; Tooze, J.A. Evaluation of the Healthy Eating Index-2015. J. Acad. Nutr. Diet. 2018, 118, 1622–1633. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; Xavier, D.; Liu, L.; Zhang, H.; Chin, S.L.; Rao-Melacini, P.; Rangarajan, S.; Islam, S.; Pais, P.; McQueen, M.J.; et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study. Lancet 2010, 376, 112–123. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Bogensberger, B.; Hoffmann, G. Diet Quality as Assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension Score, and Health Outcomes: An Updated Systematic Review and Meta-Analysis of Cohort Studies. J. Acad. Nutr. Diet. 2018, 118, 74–100. [Google Scholar] [CrossRef] [Green Version]
- Becerra-Tomás, N.; Blanco, M.S.; Viguiliouk, E.; Khan, T.; Kendall, C.; Kahleova, H.; Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Mediterranean diet, cardiovascular disease and mortality in diabetes: A systematic review and meta-analysis of prospective cohort studies and randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 1207–1227. [Google Scholar] [CrossRef]
- Liu, G.; Guasch-Ferré, M.; Hu, Y.; Li, Y.; Hu, F.B.; Rimm, E.B.; Manson, J.E.; Rexrode, K.M.; Sun, Q. Nut Consumption in Relation to Cardiovascular Disease Incidence and Mortality Among Patients With Diabetes Mellitus. Circ. Res. 2019, 124, 920–929. [Google Scholar] [CrossRef]
- He, M.; Van Dam, R.M.; Rimm, E.; Hu, F.B.; Qi, L. Whole-grain, cereal fiber, bran, and germ intake and the risks of all-cause and cardiovascular disease-specific mortality among women with type 2 diabetes mellitus. Circulation 2010, 121, 2162–2168. [Google Scholar] [CrossRef] [Green Version]
- Antonio, J.P.; Sarmento, R.A.; De Almeida, J.C. Diet Quality and Glycemic Control in Patients with Type 2 Diabetes. J. Acad. Nutr. Diet. 2019, 119, 652–658. [Google Scholar] [CrossRef]
- Huffman, F.G.; Zarini, G.G.; McNamara, E.; Nagarajan, A. The Healthy Eating Index and the Alternate Healthy Eating Index as predictors of 10-year CHD risk in Cuban Americans with and without type 2 diabetes. Public Health Nutr. 2011, 14, 2006–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daneshzad, E.; Larijani, B.; Azadbakht, L. Diet quality indices and cardiovascular diseases risk factors among diabetic women. J. Sci. Food Agric. 2019, 99, 5926–5933. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.; Masulli, M.; Calabrese, I.; Rivellese, A.A.; Bonora, E.; Signorini, S.; Perriello, G.; Squatrito, S.; Buzzetti, R.; Sartore, G.; et al. Impact of a Mediterranean Dietary Pattern and Its Components on Cardiovascular Risk Factors, Glucose Control, and Body Weight in People with Type 2 Diabetes: A Real-Life Study. Nutrients 2018, 10, 1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babio, N.; Balanza, R.; Basulto, J.; Bulló, M.; Salas-Salvadó, J. Dietary fibre: Influence on body weight, glycemic control and plasma cholesterol profile. Nutr. Hosp. 2010, 25, 327–340. [Google Scholar]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Basora-Gallisá, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracia, E.; López-Sabater, M.C.; Escoda, R.; et al. Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J. Epidemiol. Community Health 2009, 63, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Aburto, N.J.; Ziolkovska, A.; Hooper, L.; Elliott, P.; Cappuccio, F.P.; Meerpohl, J.J. Effect of lower sodium intake on health: Systematic review and meta-analyses. BMJ 2013, 346, f1326. [Google Scholar] [CrossRef] [Green Version]
- Archundia, H.M.; Subhan, F.B.; Chan, C.B. Dietary Patterns and Cardiovascular Disease Risk in People with Type 2 Diabetes. Curr Obes. Rep. 2017, 6, 405–413. [Google Scholar] [CrossRef]
- Dinu, M.; Pagliai, G.; Angelino, D.; Rosi, A.; Dall’Asta, M.; Bresciani, L.; Ferraris, C.; Guglielmetti, M.; Godos, J.; Del, B.C.; et al. Effects of Popular Diets on Anthropometric and Cardiometabolic Parameters: An Umbrella Review of Meta-Analyses of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 815–833. [Google Scholar] [CrossRef]
- Michaëlsson, K.; Baron, J.A.; Byberg, L.; Höijer, J.; Larsson, S.C.; Svennblad, B.; Melhus, H.; Wolk, A.; Warensjö, L.E. Combined associations of body mass index and adherence to a Mediterranean-like diet with all-cause and cardiovascular mortality: A cohort study. PLoS Med. 2020, 17, e1003331. [Google Scholar] [CrossRef]
- Shan, Z.; Li, Y.; Baden, M.Y.; Bhupathiraju, S.N.; Wang, D.D.; Sun, Q.; Rexrode, K.M.; Rimm, E.B.; Qi, L.; Willett, W.C.; et al. Association Between Healthy Eating Patterns and Risk of Cardiovascular Disease. JAMA Intern. Med. 2020, 180, 1090–1100. [Google Scholar] [CrossRef]
- Paeratakul, S.; Popkin, B.M.; Kohlmeier, L.; Hertz-Picciotto, I.; Guo, X.; Edwards, L.J. Measurement error in dietary data: Implications for the epidemiologic study of the diet-disease relationship. Eur. J. Clin. Nutr. 1998, 52, 722–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Case a (n = 419) | Control b (n = 419) | p-Value |
---|---|---|---|
Age (y) | 62.1 (9.7) | 62.1 (9.5) | 0.940 |
Sex, n (%) | -- | ||
Female | 184 (43.9) | 184 (43.9) | |
Male | 235 (56.1) | 235 (56.1) | |
BMI (kg/m2) | 24.37 (3.26) | 23.79 (3.47) | 0.013 |
Smoker (%) | 0.282 | ||
Yes | 131 (31.3) | 115 (27.4) | |
No | 287 (68.7) | 304 (72.6) | |
Alcohol consumption, n (%) | 0.751 | ||
No Intake (0 g/d) | 375 (89.5) | 370 (88.3) | |
Low Intake (0~15 g/d) | 39 (9.3) | 45 (10.7) | |
High Intake (>15 g/d) | 5 (1.2) | 4 (1.0) | |
Tea drinking, n (%) | 188 (44.9) | 220 (52.5) | 0.027 |
Physical activity (MET-h/d) c | 25.56 (23.93, 27.65) | 26.05 (24.38, 28.46) | 0.015 |
Marital status, married, n (%) | 396 (94.5) | 401 (95.7) | 0.423 |
Education level, n (%) | 0.002 | ||
<Middle school | 163 (39.4) | 148 (35.4) | |
Middle/High school | 132 (31.9) | 102 (24.4) | |
≥College | 119 (28.7) | 168 (40.2) | |
Hypertension, n (%) | 313 (75.2) | 206 (49.5) | <0.001 |
Dyslipidemia, n (%) | 234 (61.7) | 230 (57.1) | 0.184 |
T2D duration (y) | 7.1 (6.21) | 8.96 (6.74) | <0.001 |
Antidiabetic medication use, n (%) | 375 (97.9) | 408 (99.5) | 0.043 |
Medical nutrition therapy knowledge, n (%) | 128 (30.5) | 187 (44.6) | <0.001 |
CHEI d | 65.34 (9.48) | 71.31 (9.05) | <0.001 |
HEI-2015 e | 54.03 (6.09) | 57.77 (6.79) | <0.001 |
Total Energy (kcal/d) c,f | 1393.40 (1187.10, 1696.15) | 1439.00 (1241.70, 1703.70) | 0.160 |
Components | CHEI a | p-Value | Components | HEI-2015 b | p-Value | ||
---|---|---|---|---|---|---|---|
Case c | Control d | Case | Control | ||||
Total Grains * | - | Whole Grains * | <0.001 | ||||
0.0% (0 point) | 0 (0.0) | 0 (0.0) | 0.0% (0 point) | 328 (78.3) | 265 (63.2) | ||
0.1~49.9% | 0 (0.0) | 0 (0.0) | 0.1~49.9% | 57 (13.6) | 87 (20.8) | ||
50.0~99.9% | 0 (0.0) | 0 (0.0) | 50.0~99.9% | 6 (1.4) | 25 (6.0) | ||
100.0% (full points) | 419 (100.0) | 419 (100.0) | 100.0% (full points) | 28 (6.7) | 42 (10.0) | ||
Whole Grains & Mixed Beans * | <0.001 | Refined Grains # | 0.120 | ||||
0.0% (0 point) | 110 (26.3) | 67 (16.0) | 0.0% (0 point) | 297 (70.9) | 317 (75.6) | ||
0.1~49.9% | 201 (48.0) | 171 (40.8) | 0.1~49.9% | 103 (24.6) | 79 (18.9) | ||
50.0~99.9% | 32 (7.6) | 55 (13.1) | 50.0~99.9% | 19 (4.5) | 23 (5.5) | ||
100.0% (full points) | 76 (18.1) | 126 (30.1) | 100.0% (full points) | 0 (0.0) | 0 (0.0) | ||
Total Vegetables # | 0.002 | Total Vegetables # | 0.001 | ||||
0.0% (0 point) | 0 (0.0) | 0 (0.0) | 0.0% (0 point) | 0 (0.0) | 0 (0.0) | ||
0.1~49.9% | 18 (4.3) | 5 (1.2) | 0.1~49.9% | 6 (1.4) | 1 (0.2) | ||
50.0~99.9% | 77 (18.4) | 56 (13.4) | 50.0~99.9% | 30 (7.2) | 11 (2.6) | ||
100.0% (full points) | 324 (77.3) | 358 (85.4) | 100.0% (full points) | 383 (91.4) | 407 (97.1) | ||
Dark Vegetables # | <0.001 | Total Fruits * | <0.001 | ||||
0.0% (0 point) | 2 (0.5) | 0 (0.0) | 0.0% (0 point) | 70 (16.7) | 31 (7.4) | ||
0.1~49.9% | 26 (6.2) | 8 (1.9) | 0.1~49.9% | 295 (70.4) | 280 (66.8) | ||
50.0~99.9% | 99 (23.6) | 79 (18.9) | 50.0~99.9% | 37 (8.8) | 76 (18.1) | ||
100.0% (full points) | 292 (69.7) | 332 (79.2) | 100.0% (full points) | 17 (4.1) | 32 (7.6) | ||
Tubers # | 0.010 | Whole Fruits * | <0.001 | ||||
0.0% (0 point) | 5 (1.2) | 4 (1.0) | 0.0% (0 point) | 67 (16.0) | 30 (7.2) | ||
0.1~49.9% | 146 (34.8) | 106 (25.3) | 0.1~49.9% | 193 (46.1) | 159 (37.9) | ||
50.0~99.9% | 140 (33.4) | 144 (34.4) | 50.0~99.9% | 105 (25.1) | 123 (29.4) | ||
100.0% (full points) | 128 (30.5) | 165 (39.4) | 100.0% (full points) | 54 (12.9) | 107 (25.5) | ||
Dairy * | <0.001 | Dairy # | 0.001 | ||||
0.0% (0 point) | 272 (64.9) | 194 (46.3) | 0.0% (0 point) | 79 (18.9) | 44 (10.5) | ||
0.1~49.9% | 61 (14.6) | 76 (18.1) | 0.1~49.9% | 313 (74.7) | 330 (78.8) | ||
50.0~99.9% | 39 (9.3) | 63 (15.0) | 50.0~99.9% | 27 (6.4) | 44 (10.5) | ||
100.0% (full points) | 47 (11.2) | 86 (20.5) | 100.0% (full points) | 0 (0.0) | 1 (0.2) | ||
Soybeans * | 0.001 | Greens & Beans # | 0.113 | ||||
0.0% (0 point) | 55 (13.1) | 51 (12.2) | 0.0% (0 point) | 0 (0.0) | 0 (0.0) | ||
0.1~49.9% | 221 (52.7) | 174 (41.5) | 0.1~49.9% | 4 (1.0) | 1 (0.2) | ||
50.0~99.9% | 78 (18.6) | 89 (21.2) | 50.0~99.9% | 9 (2.1) | 3 (0.7) | ||
100.0% (full points) | 65 (15.5) | 105 (25.1) | 100.0% (full points) | 406 (96.9) | 415 (99.0) | ||
Fish & Seafood * | 0.493 | Seafood & Plant Proteins # | 0.153 | ||||
0.0% (0 point) | 12 (2.9) | 11 (2.6) | 0.0% (0 point) | 1 (0.2) | 1 (0.2) | ||
0.1~49.9% | 55 (13.1) | 41 (9.8) | 0.1~49.9% | 13 (3.1) | 7 (1.7) | ||
50.0~99.9% | 96 (22.9) | 101 (24.1) | 50.0~99.9% | 35 (8.4) | 23 (5.5) | ||
100.0% (full points) | 256 (61.1) | 266 (63.5) | 100.0% (full points) | 370 (88.3) | 388 (92.6) | ||
Poultry * | 0.700 | Total Protein Foods # | 0.813 | ||||
0.0% (0 point) | 20 (4.8) | 24 (5.7) | 0.0% (0 point) | 0 (0.0) | 0 (0.0) | ||
0.1~49.9% | 73 (17.4) | 64 (15.3) | 0.1~49.9% | 1 (0.2) | 1 (0.2) | ||
50.0~99.9% | 84 (20.0) | 78 (18.6) | 50.0~99.9% | 10 (2.4) | 7 (1.7) | ||
100.0% (full points) | 242 (57.8) | 253 (60.4) | 100.0% (full points) | 408 (97.4) | 411 (98.1) | ||
Eggs * | 0.023 | Fatty Acids # | 0.074 | ||||
0.0% (0 point) | 16 (3.8) | 9 (2.1) | 0.0% (0 point) | 4 (0.01) | 5 (0.01) | ||
0.1~49.9% | 147 (35.1) | 119 (28.4) | 0.1~49.9% | 161 (0.38) | 162 (0.39) | ||
50.0~99.9% | 173 (41.3) | 178 (42.5) | 50.0~99.9% | 235 (0.56) | 215 (0.51) | ||
100.0% (full points) | 83 (19.8) | 113 (27.0) | 100.0% (full points) | 19 (0.05) | 37 (0.09) | ||
Seeds and Nuts * | 0.172 | Saturated Fats * | - | ||||
0.0% (0 point) | 111 (26.5) | 95 (22.7) | 0.0% (0 point) | 0 (0.0) | 0 (0.0) | ||
0.1~49.9% | 50 (11.9) | 39 (9.3) | 0.1~49.9% | 0 (0.0) | 0 (0.0) | ||
50.0~99.9% | 15 (3.6) | 23 (5.5) | 50.0~99.9% | 0 (0.0) | 0 (0.0) | ||
100.0% (full points) | 243 (58.0) | 262 (62.5) | 100.0% (full points) | 419 (100.0) | 419 (100.0) | ||
Red Meat * | 0.030 | Added Sugars * | - | ||||
0.0% (0 point) | 32 (7.6) | 13 (3.1) | 0.0% (0 point) | 0 (0.0) | 0 (0.0) | ||
0.1~49.9% | 93 (22.2) | 106 (25.3) | 0.1~49.9% | 0 (0.0) | 0 (0.0) | ||
50.0~99.9% | 279 (66.6) | 284 (67.8) | 50.0~99.9% | 0 (0.0) | 0 (0.0) | ||
100.0% (full points) | 15 (3.6) | 16 (3.8) | 100.0% (full points) | 419 (100.0) | 419 (100.0) | ||
Added Sugars # | 0.902 | Sodium * | 0.111 | ||||
0.0% (0 point) | 2 (0.5) | 2 (0.5) | 0.0% (0 point) | 5 (1.2) | 1 (0.2) | ||
0.1~49.9% | 1 (0.2) | 2 (0.5) | 0.1~49.9% | 52 (12.4) | 47 (11.2) | ||
50.0~99.9% | 78 (18.6) | 72 (17.2) | 50.0~99.9% | 359 (85.7) | 371 (88.5) | ||
100.0% (full points) | 338 (80.7) | 343 (81.9) | 100.0% (full points) | 3 (0.7) | 0 (0.0) | ||
Alcohol * | 0.124 | ||||||
0.0% (0 point) | 1 (0.2) | 0 (0.0) | |||||
0.1~49.9% | 0 (0.0) | 0 (0.0) | |||||
50.0~99.9% | 3 (0.7) | 0 (0.0) | |||||
100.0% (full points) | 415 (99.0) | 419 (100.0) | |||||
Fruits * | <0.001 | ||||||
0.0% (0 point) | 68 (16.2) | 29 (6.9) | |||||
0.1~49.9% | 290 (69.2) | 272 (64.9) | |||||
50.0~99.9% | 43 (10.3) | 84 (20.0) | |||||
100.0% (full points) | 18 (4.3) | 34 (8.1) | |||||
Cooking Oils # | 0.002 | ||||||
0.0% (0 point) | 4 (1.0) | 2 (0.5) | |||||
0.1~49.9% | 44 (10.5) | 20 (4.8) | |||||
50.0~99.9% | 225 (53.7) | 214 (51.1) | |||||
100.0% (full points) | 146 (34.8) | 183 (43.7) | |||||
Sodium # | 0.111 | ||||||
0.0% (0 point) | 5 (1.2) | 1 (0.2) | |||||
0.1~49.9% | 52 (12.4) | 47 (11.2) | |||||
50.0~99.9% | 359 (85.7) | 371 (88.5) | |||||
100.0% (full points) | 3 (0.7) | 0 (0.0) |
n (Cases a/Controls b) | Crude OR (95% CI) | Multivariable-Adjusted OR (95% CI) c | p-Interaction | |
---|---|---|---|---|
CHEId | ||||
Total scored | 419/419 | 0.65 (0.59, 0.72) | 0.68 (0.61, 0.76) | |
Sex | 0.175 | |||
Female | 184/184 | 0.78 (0.70, 0.88) | 0.84 (0.73, 0.96) | |
Male | 235/235 | 0.63 (0.56, 0.70) | 0.66 (0.59, 0.75) | |
BMI, kg/m2 | 0.435 | |||
≥24 | 198/184 | 0.76 (0.68, 0.86) | 0.80 (0.71, 0.91) | |
<24 | 221/235 | 0.67 (0.60, 0.75) | 0.68 (0.60, 0.77) | |
Smoker | 0.436 | |||
Yes | 131/115 | 0.62 (0.53, 0.73) | 0.68 (0.57, 0.81) | |
No | 287/304 | 0.74 (0.67, 0.81) | 0.76 (0.69, 0.84) | |
Alcohol consumption | 0.257 | |||
Yes | 44/49 | 0.79 (0.61, 1.04) | 0.85 (0.58, 1.24) | |
No | 375/370 | 0.70 (0.64, 0.76) | 0.73 (0.66, 0.79) | |
Tea-drinking | 0.674 | |||
Yes | 188/220 | 0.73 (0.65, 0.81) | 0.71 (0.63, 0.81) | |
No | 231/199 | 0.68 (0.61, 0.77) | 0.76 (0.67, 0.85) | |
Hypertension | 0.062 | |||
Yes | 313/206 | 0.75 (0.68, 0.83) | 0.78 (0.70, 0.87) | |
No | 103/210 | 0.67 (0.58, 0.77) | 0.67 (0.57, 0.78) | |
Dyslipidemia | 0.725 | |||
Yes | 234/230 | 0.76 (0.69, 0.85) | 0.78 (0.70, 0.87) | |
No | 145/173 | 0.64 (0.55, 0.74) | 0.68 (0.58, 0.80) | |
T2D duration, y | 0.626 | |||
≥5 | 227/269 | 0.74 (0.67, 0.82) | 0.77 (0.69, 0.86) | |
<5 | 192/150 | 0.66 (0.58, 0.75) | 0.67 (0.58, 0.77) | |
Medical nutrition therapy knowledge | 0.301 | |||
Yes | 128/187 | 0.79 (0.70, 0.90) | 0.76 (0.65, 0.88) | |
No | 254/223 | 0.70 (0.63, 0.78) | 0.71 (0.63, 0.80) | |
HEI-2015e | ||||
Total scored | 419/419 | 0.58 (0.50, 0.66) | 0.60 (0.52, 0.70) | |
Sex | 0.079 | |||
Female | 184/184 | 0.70 (0.59, 0.83) | 0.74 (0.62, 0.90) | |
Male | 235/235 | 0.52 (0.43, 0.63) | 0.55 (0.45, 0.67) | |
BMI, kg/m2 | 0.242 | |||
≥24 | 198/184 | 0.70 (0.59, 0.83) | 0.75 (0.62, 0.90) | |
<24 | 221/235 | 0.58 (0.49, 0.68) | 0.60 (0.50, 0.71) | |
Smoker | 0.504 | |||
Yes | 131/115 | 0.51 (0.40, 0.67) | 0.56 (0.42, 0.75) | |
No | 287/304 | 0.67 (0.58, 0.77) | 0.68 (0.59, 0.78) | |
Alcohol consumption | 0.908 | |||
Yes | 44/49 | 0.55 (0.36, 0.86) | 0.52 (0.28, 0.98) | |
No | 375/370 | 0.63 (0.56, 0.71) | 0.65 (0.57, 0.74) | |
Tea-drinking | 0.726 | |||
Yes | 188/220 | 0.63 (0.53, 0.74) | 0.65 (0.54, 0.78) | |
No | 231/199 | 0.63 (0.53, 0.74) | 0.65 (0.54, 0.77) | |
Hypertension | 0.003 | |||
Yes | 313/206 | 0.70 (0.60, 0.81) | 0.72 (0.61, 0.85) | |
No | 103/210 | 0.60 (0.49, 0.74) | 0.60 (0.48, 0.75) | |
Dyslipidemia | 0.031 | |||
Yes | 234/230 | 0.70 (0.60, 0.81) | 0.71 (0.60, 0.83) | |
No | 145/173 | 0.59 (0.49, 0.72) | 0.64 (0.51, 0.79) | |
T2D duration, y | 0.182 | |||
≥5 | 227/269 | 0.72 (0.62, 0.84) | 0.74 (0.62, 0.88) | |
<5 | 192/150 | 0.53 (0.44, 0.64) | 0.53 (0.43, 0.65) | |
Medical nutrition therapy knowledge | 0.169 | |||
Yes | 128/187 | 0.82 (0.69, 0.97) | 0.81 (0.67, 0.98) | |
No | 254/223 | 0.57 (0.49, 0.68) | 0.56 (0.47, 0.68) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.-L.; Peng, L.-Y.; Chen, Y.-M.; Zeng, F.-F.; Zhuo, S.-Y.; Li, Y.-B.; Lu, W.; Chen, P.-Y.; Ye, Y.-B. Greater Adherence to Dietary Guidelines Associated with Reduced Risk of Cardiovascular Diseases in Chinese Patients with Type 2 Diabetes. Nutrients 2022, 14, 1713. https://doi.org/10.3390/nu14091713
Wu S-L, Peng L-Y, Chen Y-M, Zeng F-F, Zhuo S-Y, Li Y-B, Lu W, Chen P-Y, Ye Y-B. Greater Adherence to Dietary Guidelines Associated with Reduced Risk of Cardiovascular Diseases in Chinese Patients with Type 2 Diabetes. Nutrients. 2022; 14(9):1713. https://doi.org/10.3390/nu14091713
Chicago/Turabian StyleWu, Shang-Ling, Long-Yun Peng, Yu-Ming Chen, Fang-Fang Zeng, Shu-Yu Zhuo, Yan-Bing Li, Wei Lu, Pei-Yan Chen, and Yan-Bin Ye. 2022. "Greater Adherence to Dietary Guidelines Associated with Reduced Risk of Cardiovascular Diseases in Chinese Patients with Type 2 Diabetes" Nutrients 14, no. 9: 1713. https://doi.org/10.3390/nu14091713
APA StyleWu, S. -L., Peng, L. -Y., Chen, Y. -M., Zeng, F. -F., Zhuo, S. -Y., Li, Y. -B., Lu, W., Chen, P. -Y., & Ye, Y. -B. (2022). Greater Adherence to Dietary Guidelines Associated with Reduced Risk of Cardiovascular Diseases in Chinese Patients with Type 2 Diabetes. Nutrients, 14(9), 1713. https://doi.org/10.3390/nu14091713