Whey Protein, Leucine- and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia
Abstract
1. Introduction
2. Pathophysiology of the Aging Muscle and Rationale for Nutritional Therapy
3. Nutrikinetic and Nutridynamic Studies
4. Efficacy Trials
4.1. MT-ONS in the Community Setting
4.2. MT-ONS in Rehabilitation Units and Care Homes
4.3. MT-ONS in Sarcopenic Obesity
5. Discussion and Conclusion
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Available online: https://www.icd10data.com/ICD10CM/Codes/M00-M99/M60-M63/M62-/M62.84 (accessed on 28 March 2022).
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zùniga, C.; Arai, H.; Boirie, Y.; Chen, L.-K.; Fielding, R.A.; Martin, F.C.; Michel, J.-P. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.M.; Fusco, D.; Sisto, A.; Ortolani, E.; Savera, G.; Salini, S.; Marzetti, E. Age-related variations of muscle mass, strength and physical performance in community-dwellers: Results from the Milan EXPO survey. J. Am. Med. Dir. Assoc. 2017, 18, 88.e17–88.e24. [Google Scholar] [CrossRef] [PubMed]
- Volpato, S.; Bianchi, L.; Cherubini, A.; Landi, F.; Maggio, M.; Savino, E.; Bandinelli, S.; Ceda, G.P.; Guralnik, J.M.; Zuliani, G.; et al. Prevalence and clinical correlates of sarcopenia in community-dwelling older people: Application of the EWGSOP definition and diagnostic algorithm. J. Gerontol. A. Biol. Sci. Med. Sci. 2014, 69, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Ligthart-Melis, G.C.; Luiking, Y.C.; Kakourou, A.; Cederholm, T.; Maier, A.B.; de van der Schueren, M.A.E. Frailty, Sarcopenia, and Malnutrition Frequently (Co-)occur in Hospitalized Older Adults: A Systematic Review and Meta-analysis. J. Am. Med. Dir. Assoc. 2020, 21, 1216–1228. [Google Scholar] [CrossRef]
- Woizischke, J.; van Wijngaarden, J.; van den Berg, C.; Cetinvurek-Yavuz, A.; Diekmann, R.; Luiking, Y.; Bauer, J. Nutritional status and functionality in geriatric rehabilitation patients: A systematic review and meta-analysis. Eur. Geriatr. Med. 2020, 11, 195–207. [Google Scholar] [CrossRef]
- Barazzoni, R.; Bischoff, S.C.; Boirie, Y.; Busetto, L.; Cederholm, T.; Dicker, D.; Toplak, H.; Van Gossum, A.; Yumuk, V.; Vettor, R. Sarcopenic obesity: Time to meet the challenge. Clin. Nutr. 2018, 37, 1787–1793. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Guelistan, B.; Bauer, J.; Boirie, Y.; Bruyère Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; Schneider, S.M.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Cereda, E.; Veronese, N.; Caccialanza, R. The final word on nutritional screening and assessment in older persons. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 24–29. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Cesari, M.; Tosato, M.; Martone, A.M.; Bernabei, R.; Onder, G.; Marzetti, E. Sarcopenia as the biological substrate of physical frailty. Clin. Geriatr. Med. 2015, 31, 367–374. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Landi, F.; Topinkova, E.; Michel, J.P. Understanding sarcopenia as a geriatric syndrome. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 1–7. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef]
- Xu, J.; Wan, C.S.; Ktoris, K.; Reijnierse, E.M.; Maier, A.B. Sarcopenia Is Associated with Mortality in Adults: A Systematic Review and Meta-Analysis. Gerontology 2021, 27, 1–16. [Google Scholar] [CrossRef]
- Wang, D.X.M.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Ortolani, E.; Salini, S.; Martone, A.M.; Santoro, L.; Santoliquido, A.; Sisto, A.; Picca, A.; Marzetti, E. The association between sarcopenia and functional outcomes among older patients with hip fracture undergoing in-hospital rehabilitation. Osteoporos Int. 2017, 28, 1569–1576. [Google Scholar] [CrossRef]
- Veronese, N.; Stubbs, B.; Volpato, S.; Zuliani, G.; Maggi, S.; Cesari, M.; Lipnicki, D.M.; Smith, L.; Schofield, P.; Firth, J.; et al. Association between gait speed with mortality, cardiovascular disease and cancer: A systematic review and meta-analysis of prospective cohort studies. J. Am. Med. Dir. Assoc. 2018, 19, 981–988. [Google Scholar] [CrossRef]
- Welsh, C.E.; Celis-Morales, C.; Ho, F.K.; Brown, R.; MacKay, D.F.; Lyall, D.M.; Anderson, J.J.; Pell, J.P.; Gill, J.M.; Sattar, N.; et al. Grip strength and walking pace and cardiovascular disease risk prediction in 406,834 UK Biobank participants. Mayo Clin. Proc. 2020, 95, 879–888. [Google Scholar] [CrossRef]
- Janssen, I.; Shepard, D.S.; Katzmarzyk, P.T.; Roubenoff, R. The Healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 2004, 52, 80–85. [Google Scholar] [CrossRef]
- Norman, K.; Otten, L. Financial impact of sarcopenia or low muscle mass—A short review. Clin. Nutr. 2019, 38, 1489–1495. [Google Scholar] [CrossRef]
- Gielen, E.; Beckwée, D.; Delaere, A.; De Breucker, S.; Vandewoude, M.; Bautmans, I. Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: An umbrella review of systematic reviews and meta-analyses. Nutr. Rev. 2021, 79, 121–147. [Google Scholar] [CrossRef]
- Martínez-Arnau, F.M.; Fonfría-Vivas, R.; Cauli, O. Beneficial Effects of Leucine Supplementation on Criteria for Sarcopenia: A Systematic Review. Nutrients 2019, 11, 2504. [Google Scholar] [CrossRef]
- Wright, J.; Baldwin, C. Oral nutritional support with or without exercise in the management of malnutrition in nutritionally vulnerable older people: A systematic review and meta-analysis. Clin. Nutr. 2018, 37, 1879–1891. [Google Scholar] [CrossRef]
- Martin-Cantero, A.; Reijnierse, E.M.; Gill, B.M.T.; Maier, A.B. Factors influencing the efficacy of nutritional interventions on muscle mass in older adults: A systematic review and meta-analysis. Nutr. Rev. 2021, 79, 315–330. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in elder people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Morley, J.E.; Argiles, J.M.; Evans, W.J.; Bhasin, S.; Cella, D.; Deutz, N.E.P.; Doehner, W.; Fearon, K.C.; Ferrucci, L.; Hellerstein, M.K.; et al. Nutritional recommendations for the management of sarcopenia. J. Am. Med. Dir. Assoc. 2010, 11, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Katsanos, C.S.; Kobayashi, H.; Sheffield-Moore, M.; Aarsland, A.; Wolfe, R.R. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am. J. Clin. Nutr. 2005, 82, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Reginster, J.-Y.; Beaudart, C.; Al-Daghri, N.; Avouac, B.; Bauer, J.; Bere, N.; Bruyère, O.; Cerreta, F.; Cesari, M.; Rosa, M.M.; et al. Update on the ESCEO recommendation for the conduct of clinical trials for drugs aiming at the treatment of sarcopenia in older adults. Aging Clin. Exp. Res. 2021, 33, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Kortebein, P.; Ferrando, A.; Lombeida, J.; Wolfe, R.; Evans, W.J. Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 2007, 297, 1772–1774. [Google Scholar] [CrossRef] [PubMed]
- Borack, M.S.; Volpi, E. Efficacy and safety of leucine supplementation in the elderly. J. Nutr. 2016, 146, 2625S–2629S. [Google Scholar] [CrossRef]
- Szwiega, S.; Pencharz, P.B.; Rafii, M.; Lebarron, M.; Chang, J.; Ball, R.O.; Kong, D.; Xu, L.; Elango, R.; Courtney-Martin, G. Dietary leucine requirement of older men and women is higher than current recommendations. Am. J. Clin. Nutr. 2021, 113, 410–419. [Google Scholar] [CrossRef]
- Boirie, Y.; Guillet, C. Fast digestive proteins and sarcopenia of aging. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 37–41. [Google Scholar] [CrossRef]
- Xu, Z.; Tan, Z.; Zhang, Q.; Gui, Q.; Yang, Y. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: A systematic review and meta-analysis. Br. J. Nutr. 2015, 113, 25–34. [Google Scholar] [CrossRef]
- Garcia, M.; Seelaender, M.; Sotiropoulos, A.; Coletti, D.; Lancha, A.H., Jr. Vitamin D, muscle recovery, sarcopenia, cachexia, and muscle atrophy. Nutrition 2019, 60, 66–69. [Google Scholar] [CrossRef]
- Salles, J.; Chanet, A.; Giraudet, C.; Patrac, V.; Pierre, P.; Jourdan, M.; Luiking, Y.C.; Verlaan, S.; Migné, C.; Boirie, Y.; et al. 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PBK and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol. Nutr. Food Res. 2013, 57, 2137–2146. [Google Scholar] [CrossRef]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.-Y.; Bruyère, O. The effects of vitamin D on skeletal muscle strength, muscle mass and muscle power: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef]
- Dhesi, J.K.; Jackson, S.H.D.; Bearne, L.M.; Moniz, C.; Hurley, M.V.; Swift, C.G.; Allain, T.J. Vitamin D supplementation improves neuromuscular function in older people who fall. Ageing 2004, 33, 589–595. [Google Scholar] [CrossRef]
- Yang, A.; Lv, Q.; Chen, F.; Wang, Y.; Liu, Y.; Shi, W.; Liu, Y.; Wang, D. The effect of vitamin D on sarcopenia depends on the level of physical activity in older adults. J. Cachexia Sarcopenia Muscle 2020, 11, 678–689. [Google Scholar] [CrossRef]
- Pennings, B.; Boirie, Y.; Senden, J.M.G.; Gijsen, A.P.; Kuipers, H.; van Loon, L.J.C. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 2011, 93, 997–1005. [Google Scholar] [CrossRef]
- Luiking, Y.C.; Deutz, N.E.P.; Memelink, R.G.; Verlaan, S.; Wolfe, R.R. Postprandial muscle protein synthesis is higher after a high whey protein, leucine-enriched supplement than after a dairy-like product in healthy older people: A randomized controlled trial. Nutr. J. 2014, 13, 9. [Google Scholar] [CrossRef]
- Luiking, Y.C.; Abrahamse, E.; Ludwig, T.; Boirie, Y.; Verlaan, S. Protein type and caloric density of protein supplements modulate postprandial amino acid profile through changes in gastrointestinal behavior: A randomized trial. Clin. Nutr. 2016, 35, 48–58. [Google Scholar] [CrossRef][Green Version]
- Kramer, I.F.; Verdijk, L.B.; Hamer, H.M.; Verlaan, S.; Luiking, Y.; Kouw, I.W.K.; Senden, J.M.; Van Kranenburg, J.; Gijsen, A.P.; Poeze, M.; et al. Impact of the macronutrient composition of a nutritional supplement on muscle protein synthesis rates in older men: A randomized, double blind, controlled trial. J. Clin. Endocrinol. Metab. 2015, 100, 4124–4132. [Google Scholar] [CrossRef]
- Kramer, I.F.; Verdijk, L.B.; Hamer, H.M.; Verlaan, S.; Luiking, Y.C.; Kouw, I.W.K.; Senden, J.M.; van Kranenburg, J.; Gijsen, A.P.; Bierau, J.; et al. Both basal and post-prandial muscle protein synthesis rates, following the ingestion of a leucine-enriched whey protein supplement, are not impaired in sarcopenic older males. Clin. Nutr. 2017, 36, 1440–1449. [Google Scholar] [CrossRef]
- Chanet, A.; Verlaan, S.; Salles, J.; Giraudet, C.; Patrac, V.; Pidou, V.; Pouyet, C.; Hafnaoui, N.; Blot, A.; Cano, N.; et al. Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink enhances postprandial muscle protein synthesis and muscle mass in healthy older men. J. Nutr. 2017, 147, 2262–2271. [Google Scholar] [CrossRef]
- van Vliet, S.; Fappi, A.; Reeds, D.N.; Mittendorfer, B. No independent or combined effects of vitamin D and conjugated linoleic acids on muscle protein synthesis in older adults: A randomized, double-blind, placebo-controlled clinical trial. Am. J. Clin. Nutr. 2020, 112, 1382–1389. [Google Scholar] [CrossRef]
- Bothwell, L.E.; Greene, J.A.; Podolski, S.H.; Jones, D.S. Assessing the gold standard—Lessons from the history of RCTs. N. Engl. J. Med. 2016, 374, 2175–2181. [Google Scholar] [CrossRef]
- Bauer, J.M.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.; Mets, T.; Seal, C.; Wijers, S.L.; et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: A randomized, double-blind, placebo-controlled trial. J. Am. Med. Dir. Assoc. 2015, 16, 740–747. [Google Scholar] [CrossRef]
- Barichella, M.; Cereda, E.; Pinelli, G.; Iorio, L.; Caroli, D.; Masiero, I.; Ferri, V.; Cassani, E.; Bolliri, C.; Caronni, S.; et al. Muscle-targeted nutritional support for rehabilitation in patients with parkinsonian syndrome. Neurology 2019, 93, e485–e496. [Google Scholar] [CrossRef]
- Liberman, K.; Njemini, R.; Luiking, Y.; Forti, L.N.; Verlaan, S.; Bauer, J.M.; Memelink, R.; Brandt, K.; Donini, L.M.; Maggio, M.; et al. Thirteen weeks of supplementation of vitamin D and leucine-enriched whey protein nutritional supplement attenuates chronic low-grade inflammation in sarcopenic older adults: The PROVIDE study. Aging Clin. Exp. Res. 2019, 31, 845–854. [Google Scholar] [CrossRef]
- Rondanelli, M.; Cereda, E.; Klersy, C.; Faliva, M.A.; Peroni, G.; Nichetti, M.; Gasparri, C.; Iannello, G.; Spadaccini, D.; Infantino, V. Improving Rehabilitation In Sarcopenia (IRIS) by muscle-targeted food for special medical purposes: A randomized, double-blind, controlled trial. J. Cachexia Sarcopenia Muscle 2020, 11, 1535–1547. [Google Scholar] [CrossRef]
- Hill, T.R.; Verlaan, S.; Biesheuvel, E.; Eastell, R.; Bauer, J.M.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; Mets, T.; et al. A Vitamin D, Calcium and Leucine-Enriched Whey Protein Nutritional Supplement Improves Measures of Bone Health in Sarcopenic Non- Malnourished Older Adults: The PROVIDE Study. Calcif. Tissue Int. 2019, 105, 383–391. [Google Scholar] [CrossRef]
- Bouillanne, O.; Neveux, N.; Nicolis, I.; Curries, E.; Cynober, L.; Aussel, C. Long-lasting improved amino acid bioavailability associated with protein pulse feeding in hospitalized elderly patients: A randomized controlled trial. Nutrition 2014, 30, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Chanet, A.; Salles, J.; Guillet, C.; Giraudet, C.; Berry, A.; Patrac, V.; Domingues-Faria, C.; Tagliaferri, C.; Bouton, K.; Bertrand-Michel, J.; et al. Vitamin D supplementation restores the blunted muscle protein synthesis response in deficient old rats through an impact on ectopic fat deposition. J. Nutr. Biochem. 2017, 46, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Verreijen, A.M.; Verlaan, S.; Engberink, M.F.; Swinkels, S.; de Vogel-van den Bosch, J.; Weijs, P.J.M. A high whey protein-, leucine-, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2015, 101, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Klersy, C.; Terracol, G.; Talluri, J.; Maugeri, R.; Guido, D.; Faliva, M.A.; Solerte, B.S.; Fioravanti, M.; Lukaski, H.; et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am. J. Clin. Nutr. 2016, 103, 830–840. [Google Scholar] [CrossRef] [PubMed]
- Verlaan, S.; Maier, A.B.; Bauer, J.M.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.T.; Mets, T.; Seal, C.; et al. Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults—The PROVIDE study. Clin. Nutr. 2018, 37, 551–557. [Google Scholar] [CrossRef]
- Dimori, S.; Leoni, G.; Fior, L.; Gasparotto, F. Clinical nutrition and physical rehabilitation in a long-term care setting: Preliminary observations in sarcopenic older patients. Aging Clin. Exp. Res. 2018, 30, 951–958. [Google Scholar] [CrossRef]
- Chen, N.; Wan, Z.; Han, S.F.; Li, B.Y.; Zhang, Z.L.; Qin, L.Q. Effect of vitamin D supplementation on the level of circulating high-sensitivity C-Reactive Protein: A meta-analysis of randomized controlled trials. Nutrients 2014, 6, 2206–2216. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, J.; Rao, C.; Han, S.; Wan, Z.; Qin, L. Effect of whey supplementation on circulating C-Reactive Protein: A meta-analysis of randomized controlled trials. Nutrients 2015, 7, 1131–1143. [Google Scholar] [CrossRef]
- Memelink, R.G.; Pasman, W.J.; Bongers, A.; Tump, A.; van Ginkel, A.; Tromp, W.; Wopereis, S.; Verlaan, S.; de Vogel-van den Bosch, J.; Weijs, P.J.M. Effect of an Enriched Protein Drink on Muscle Mass and Glycemic Control during Combined Lifestyle Intervention in Older Adults with Obesity and Type 2 Diabetes: A Double-Blind RCT. Nutrients 2020, 13, 64. [Google Scholar] [CrossRef]
- Pasman, W.J.; Memelink, R.G.; de Vogel-Van den Bosch, J.; Begieneman, M.P.V.; van den Brink, W.J.; Weijs, P.J.M.; Wopereis, S. Obese Older Type 2 Diabetes Mellitus Patients with Muscle Insulin Resistance Benefit from an Enriched Protein Drink during Combined Lifestyle Intervention: The PROBE Study. Nutrients 2020, 12, 2979. [Google Scholar] [CrossRef]
- Lewis, R.; Gomez Alvarez, C.B.; Rayman, M.; Lanham-New, S.; Woolf, A.; Mobashei, A. Strategies for optimizing musculoskeletal health in the 21st century. BMC Musculoskelet. Disord. 2019, 20, 164. [Google Scholar] [CrossRef]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Crutz-Jentoft, A.; Goisser, S.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.C.; et al. ESPEN guideline on clinical nutrition and hydration in geriatrics. Clin. Nutr. 2019, 38, 10–47. [Google Scholar] [CrossRef]
- Nussbaumer-Streit, B.; Klerings, I.; Dobrescu, A.I.; Persad, E.; Stevens, A.; Garritty, C.; Kamel, C.; Affengruber, L.; King, V.; Gartlehner, G. Excluding non-English publications from evidence-syntheses did not change conclusions: A meta-epidemiological study. J. Clin. Epidemiol. 2020, 118, 42–54. [Google Scholar] [CrossRef]
- Bauer, J.M.; Mikušová, L.; Verlaan, S.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; Mets, T.; Wijers, S.L.J.; Garthoff, J.A. Safety and tolerability of 6-month supplementation with a vitamin D, calcium and leucine-enriched whey protein medical nutrition drink in sarcopenic older adults. Aging Clin. Exp. Res. 2020, 32, 1501–1514. [Google Scholar] [CrossRef]
- Oesen, S.; Halper, B.; Hofmann, M.; Jandrasits, W.; Franzke, B.; Strasser, E.M.; Graf, A.; Tschan, H.; Bachl, N.; Quittan, M. Effects of elastic band resistance training and nutritional supplementation on physical performance of institutionalised elderly--A randomized controlled trial. Exp. Gerontol. 2015, 72, 99–108. [Google Scholar] [CrossRef]
- Greenhaff, P.L.; Karagounis, L.G.; Peirce, N.; Simpson, E.J.; Hazell, M.; Layfield, R.; Wackerhage, H.; Smith, K.; Atherton, P.; Selby, A.; et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E595–E604. [Google Scholar] [CrossRef]
Author, Year [Ref] | Study Aim | Study Design | Participants | Experimental Intervention (Dosages) | Control Intervention (None or Description) | Combined Physical Activity Intervention (None or Description) | Findings | Other Findings |
---|---|---|---|---|---|---|---|---|
Pennings, 2011 [38] | To compare protein digestion and absorption kinetics and post-prandial muscle protein accretion after ingestion of different protein sources | Randomized, parallel-group trial | Healthy older men (n = 48; age, 74 ± 1 years) | Single bolus of whey protein (20 g) | Single bolus of casein (20 g) or casein hydrolisate (20 g) | None (avoidance any sort of exhaustive physical activity for 3 days before the experiment) |
| Strong positive correlation (r = 0.66; p < 0.01) between peak plasma leucine concentration and post-prandial FSR |
Luiking, 2014 [39] | To evaluate muscle protein synthesis after ingestion of two different oral nutritional supplements (ONS) and to study the combined effect with resistance exercise, using a unilateral resistance exercise protocol. | Randomized, parallel-group, double-blind trial | Healthy older adults (n = 19; males, 47%; age, 69 ± 6 years) | Single bolus of whey protein (20 g) leucine-enriched (3 g) supplement | Conventional iso-caloric diary product (single bolus containing 6 g of proteins) | Unilateral resistance exercise protocol | FSR: higher after whey protein + leucine vs. control (p = 0.049) | None |
Luiking, 2016 [40] | To evaluate the impact of ONS with distinct protein source and energy density on serum amino acids (AAs) profile | Randomized, cross-over, single-blind trial | Healthy adults (n = 12; males, 42%; age, 67 ± 2 years) | Single bolus of low-calorie (150 kcal) and high-calorie (300 kcal) whey-protein-based (20 g) ONS | Single bolus of low-calorie (150 kcal) and high-calorie (300 kcal) casein-based (20 g) ONS | None |
| In vitro digestion modelling for 90 min resulted in higher levels of free total AAs, essential AAs and leucine for low-calorie whey protein ONS vs. low-calorie casein ONS, for low-calorie whey protein ONS vs. high-calorie whey protein ONS, and for low-calorie casein ONS vs. high-calorie casein ONS. High-calorie ONS resulted in higher serum insulin concentration vs. low-calorie ONS (p < 0.001) |
Kramer, 2015 [41] | To determine the impact of the macronutrient composition of ONS on the post-prandial muscle protein synthesis (MPS) rates | Randomized, parallel-group, double-blind trial | Non sarcopenic older men (n = 45; age, 69 ± 1 years) | Single bolus of two different isonitrogenous whey protein (20 g) leucine-enriched ONS containing (150 kcal) or not containing carbohydrate and fat | Protein-free isocaloric mixture (150 kcal) containing carbohydrate and fat | None |
| Insulin levels: greater post-prandial rise after protein-leucine ONS containing calories, but not significantly superior to ONS containing protein-leucine only |
Kramer, 2017 [42] | To assess basal and post-prandial muscle protein FSR in healthy and sarcopenic subjects | Comparative study of two different patients populations | Healthy adults (n = 15; age, 69 ± 1 years) and sarcopenic older men (n = 15; age, 81 ± 1 years) | Single bolus of a low-calorie (150 kcal) whey protein (20 g) leucine-enriched ONS | None | None |
| None |
Author, Year | Random Sequence Generation (Selection Bias) | Allocation Concealment (Selection Bias) | Blinding of Participants and Personnel (Performance Bias) | Blinding of Outcome Assessment (Detection Bias) | Incomplete Outcome Data (Attrition Bias) | Selective Reporting (Reporting Bias) | Other Bias |
---|---|---|---|---|---|---|---|
PROVIDE study Bauer, 2015 [44] Verlaan, 2018 [45] Liberman, 2019 [46] | |||||||
Verreijen, 2015 [47] | Single-center | ||||||
Rondanelli, 2016 [48] | Single-center | ||||||
Chanet, 2017 [43] | |||||||
Dimori, 2018 [49] | Single-center | ||||||
PRO-LEADER study Barichella, 2019 [48] | |||||||
IRIS study Rondanelli, 2020 [50] | Single-center |
Author, Year [Ref] | Study Design | Setting | Study Duration | Muscle-Targeted Intervention (Dosages) | Control Intervention (None or Description) | Combined Physical Activity Intervention (None or Description) | Muscle Mass | Physical Performance Endpoints | Physical Function Endpoints | Other Endpoints |
---|---|---|---|---|---|---|---|---|---|---|
Bauer, 2015 [46] PROVIDE study (first analysis) | RCT, multi-centre | Community | 13 weeks | Twice daily (21 g whey protein, 3 g leucine and 800 IU vitamin D each serving) for 13 weeks | Isocaloric matched placebo | None | Appendicular muscle mass (Between-group difference of 0.17 kg; p = 0.045) | Handgrip strength (No between- group differences) | SPPB (No between- group differences) Chair stand test (Delta = −1.01 s, p = 0.018); gait speed; balance score | None |
Verreijen, 2015 [53] | RCT, single-centre | Community | 13 weeks | 10 times/week (21 g whey protein, 3 g leucine and 800 IU of vitamin D each serving) for 13 weeks | Isocaloric matched placebo | Resistance training 3X/week for 13 weeks in both groups | Appendicular muscle mass (+0.4 kg vs. −0.5 kg; p = 0.03) | Handgrip strength (No between-group differences) | 400 m walking test; 4 m gait speed test; chair stand test | Body composition |
Rondanelli 2016 [54] | RCT, single-centre | Rehabilitation center | 12 weeks | Once daily (22 g whey protein, 4 g leucine and 100 IU of vitamin D each serving) | Isocaloric matched placebo | Controlled physical activity program (20 min exercise session/day, 5 times/week) | Fat free mass (1.7 kg gain; p <0.001); relative skeletal muscle mass (p = 0.009) | Handgrip strength (improved with test product; p = 0.001) | Activities of daily living | Body composition; IGF-1 and PCR; HR-QoL; global nutritional status |
Chanet, 2017 [43] | RCT, single-centre | Community | 6 weeks | Once daily before breakfast (21 g whey protein, 3 g leucine and 800 IU of vitamin D each serving) for 6 weeks | Non caloric flavored watery placebo | None | Mixed muscle protein synthesis rate(FSR) (higher in the test group; p = 0.001); appendicular lean mass (higher in the test group; p = 0.035) | Handgrip strength (No between- group differences) | SPPB (no between-group differences) | Body composition; blood glucose, insulin, EAA and leucine |
Verlaan, 2018 [55] PROVIDE study (secondary analysis) | RCT, multi-centre; post hoc analysis | Community | 13 weeks | Twice daily (21 g whey protein, 3 g leucine and 800 IU vitamin D each serving) for 13 weeks | Isocaloric matched placebo | None | Appendicular muscle mass (higher baseline concentrations of 25(OH)D are associated with greater gain in AMM) | None | Chair stand test (no effect of baseline concentrations of 25(OH)D) | None |
Dimori, 2018 [56] | Observational study: cross-sectional survey (Phase 1) + single-arm intervention trial (Phase 2) | Care home | 6 months on + 3 months off + 3 months on | Twice daily (21 g whey protein, 3 g leucine and 800 IU vitamin D each serving) when administered | None | Patients with Tinetti score >9: 40 min physical therapy session, 3 times/week for 12 months | Skeletal muscle mass | Handgrip strength | SPPB (patients with Tinetti score > 9); gait speed (4 m walking test) | Body composition; sarcopenia prevalence (Phase 1 of the study) |
Liberman, 2019 [48] PROVIDE study (Tertiary analysis) | RCT, multi-centre | Community | 13 weeks | Twice daily (21 g whey protein, 3 g leucine and 800 IU vitamin D each serving) for 13 weeks | Isocaloric matched placebo | None | IL-8 (higher decrease with the test product; p = 0.03); IL-1RA and IL-6 (no significant between-group differences); sTNFR1; CRP; pre-albumin | |||
Barichella, 2019 [47] PRO-LEADER study | RCT, pragmatic, bicentric, assessor-blind | Rehabilitation centre for patients with Parkinson’s disease | 30 days | Twice daily (21 g whey protein, 3 g leucine and 800 IU vitamin D each serving) for 30 days | Usual care | Multidisciplinary Intensive Rehabilitation Program (MIRT) | Skeletal muscle mass (increased vs. usual care; p = 0.029) and skeletal muscle index | Handgrip strength | 6 min walking test (+18.1 m vs. usual care; p = 0.039); 4 m walking speed, timed up and go, Berg balance scale (all improved vs. usual care) | |
Rondanelli, 2020 [49] IRIS study | RCT, single-centre | Rehabilitation centre | Until discharge (at least 4 weeks and up to 8 weeks) | Twice daily (21 g whey protein, 3 g LEU and 800 IU vit. D each serving) for 4-8 weeks | Isocaloric control formula | Controlled physical activity program (20 min exercise session/day, 5 times/week) | Muscle mass (increased vs. control; p <0.03) | Handgrip strength (increased vs. control; p <0.03) | Change in4 m gait speed/month (+0.063 m/sec/month with active vs. control; p <0.001); chair stand test; timed up and go test; SPPB (all improved vs. control; p <0.001) | Cognitive function tests (both improved vs. control; p <0.001); rehabilitation intensity profile (improved vs. control; p = 0.003); probability of being discharged at home (higher vs. control; p = 0.002); overall economic benefit (duration of rehabilitation and length of hospital stay, both improved vs. control; p <0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cereda, E.; Pisati, R.; Rondanelli, M.; Caccialanza, R. Whey Protein, Leucine- and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia. Nutrients 2022, 14, 1524. https://doi.org/10.3390/nu14071524
Cereda E, Pisati R, Rondanelli M, Caccialanza R. Whey Protein, Leucine- and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia. Nutrients. 2022; 14(7):1524. https://doi.org/10.3390/nu14071524
Chicago/Turabian StyleCereda, Emanuele, Roberto Pisati, Mariangela Rondanelli, and Riccardo Caccialanza. 2022. "Whey Protein, Leucine- and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia" Nutrients 14, no. 7: 1524. https://doi.org/10.3390/nu14071524
APA StyleCereda, E., Pisati, R., Rondanelli, M., & Caccialanza, R. (2022). Whey Protein, Leucine- and Vitamin-D-Enriched Oral Nutritional Supplementation for the Treatment of Sarcopenia. Nutrients, 14(7), 1524. https://doi.org/10.3390/nu14071524