Protein Energy Wasting in a Cohort of Maintenance Hemodialysis Patients in Dhaka, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. Anthropometric and Nutritional Assessments
2.3. Diagnosis of PEW Patients
2.4. Other Nutrition and Health Status Assessment
2.5. Blood Sampling and Lipid Measurements
2.6. Statistical Analyses
3. Results
4. Discussion
Limitations and Strengths of Our Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anand, S.; Khanam, M.A.; Saquib, J.; Saquib, N.; Ahmed, T.; Alam, D.S.; Cullen, M.R.; Barry, M.; Chertow, G.M. High prevalence of chronic kidney disease in a community survey of urban Bangladeshis: A cross-sectional study. Glob. Health 2014, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Rashid, H.U. Management of end stage renal disease-Bangladesh perspective. Open Urol. Nephrol. J. 2014, 7, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Vargas, P.A.; Tong, A.; Howell, M.; Craig, J.C. Educational interventions for patients with CKD: A systematic review. Am. J. Kidney Dis. 2016, 68, 353–370. [Google Scholar] [CrossRef]
- Rashid, H.U.; Arefin, S.; Hasan, S.; Alam, K. The role of the Kidney Foundation of Bangladesh in promoting kidney care in a resource-limited environment. Clin. Nephrol. 2016, 86, 64–68. [Google Scholar] [CrossRef]
- Obi, Y.; Qader, H.; Kovsedy, C.P.; Kalantar-Zadeh, K. Latest consensus and update on protein-energy wasting in chronic kidney disease. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Block, G.; McAllister, C.J.; Humphreys, M.H.; Kopple, J.D. Appetite and inflammation, nutrition, anemia, and clinical outcome in hemodialysis patients. Am. J. Clin. Nutr. 2004, 80, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.-M.; Okpechi, I.G.; Ye, F.; Kovesdy, C.P.; Brunori, G.; Burrowes, J.D.; Campbell, K.; Damster, S.; Fouque, D.; Freidman, A.N.; et al. Assessing Global Kidney Nutrition Care. CJASN 2022, 17, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Carrin, G.; Waelkens, M.-P.; Criel, B. Community-based health insurance in developing countries: A study of its contribution to the performance of health financing systems. Trop. Med. Int. Health 2005, 10, 799–811. [Google Scholar] [CrossRef]
- Vazquez-Jimenez, E.; Madero, M. Global dialysis perspective: Mexico. Kidney360 2020, 1, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Garcia, P.; Sanchez-Polo, V. Global dialysis perspective: Guatemala. Kidney360 2020, 1, 1300–1305. [Google Scholar] [CrossRef]
- Stankuvienė, A.; Ziginskiene, E.; Kuzminskis, V.; Bumblyte, I.A. Impact of hemodialysis dose and frequency on survival of patients on chronic hemodialysis in Lithuania during 1998–2005. Medicina 2010, 46, 516–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, C.T.; Yabes, J.; Pike, F.; Weiner, D.E.; Beddhu, S.; Burrowes, J.D.; Rocco, M.V.; Unruh, M.L. Changes in anthropometry and mortality in maintenance hemodialysis patients in the HEMO Study. Am. J. Kidney Dis. 2013, 62, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.R.; Maheshwari, N.; Shaikh, M.A.; Laghari, M.S.; Lal, D.K.; Ahmed, K. Correlation of serum magnesium with dyslipidemia in patients on maintenance hemodialysis. Saudi J. Kidney Dis. Transplant. 2012, 23, 21. [Google Scholar]
- Wen, J.-H.; Zhong, Y.Y.; Wen, Z.G.; Kuang, C.Q.; Liao, J.R.; Chen, L.H.; Wang, P.S.; Wu, Y.X.; Ouyang, C.J.; Chen, Z.J. Triglyceride to HDL-C ratio and increased arterial stiffness in apparently healthy individuals. Int. J. Clin. Exp. Med. 2015, 8, 4342. [Google Scholar] [PubMed]
- Hermans, M.P.; Ahn, S.A.; Rousseau, M.F. The atherogenic dyslipidemia ratio [log (TG)/HDL-C] is associated with residual vascular risk, beta-cell function loss and microangiopathy in type 2 diabetes females. Lipids Health Dis. 2012, 11, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrero, J.J.; Thomas, F.; Nagy, K.; Arogundade, F.; Avesani, C.M.; Chan, M.; Chmielewski, N.; Cordeiro, A.C.; Espinosa-Cuevas, A.; Fiaccadori, E.; et al. Global prevalence of protein-energy wasting in kidney disease: A meta-analysis of contemporary observational studies from the international society of renal nutrition and metabolism. J. Ren. Nutr. 2018, 28, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Garrow, J.S.; Webster, J. Quetelet’s index (W/H2) as a measure of fatness. Int. J. Obes. 1985, 9, 147–153. [Google Scholar]
- Delanaye, P.; Quinonez, K.; Buckinx, F.; Krzesinski, J.-M.; Bruyere, O. Hand grip strength measurement in haemodialysis patients: Before or after the session? Clin. Kidney J. 2017, 11, 555–558. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, N.; Rahim, A.T.; Mohiduzzaman, M.d.; Bari, M.d.L.; Rahman, S.M.M. Food Composition Table for Bangladesh; Final Research Results; University of Dhaka: Dhaka, Bangladesh, 2013; pp. 1–60. Available online: http://fpmu.gov.bd/agridrupal/sites/default/files/ToR%2013-Project%20Final%20Report.pdf (accessed on 27 March 2022).
- Ferrari, P.; Slimani, N.; Ciampi, A.; Trichopolou, A.; Naska, A.; Lauria, C.; Veglia, F.; Bueno-de-Mesquita, H.B.; Ocke, M.C.; Brustad, M.; et al. Evaluation of under-and overreporting of energy intake in the 24-hour diet recalls in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2002, 5, 1329–1345. [Google Scholar] [CrossRef] [Green Version]
- Black, A.; Cole, T. Within-and between-subject variation in energy expenditure measured by the doubly-labelled water technique: Implications for validating reported dietary energy intake. Eur. J. Clin. Nutr. 2000, 54, 386. [Google Scholar] [CrossRef] [Green Version]
- National Kidney Foundation. Clinical practice guidelines for nutrition in chronic renal failure. Am. J. Kidney Dis. 2000, 35 (Suppl. S2), S1–S140. [Google Scholar]
- Ho, L.-C.; Wang, H.H.; Peng, Y.S.; Chiang, C.K.; Huang, J.W.; Hung, K.Y.; Hu, F.C.; Wu, K.D. Clinical utility of malnutrition-inflammation score in maintenance hemodialysis patients: Focus on identifying the best cut-off point. Am. J. Nephrol. 2008, 28, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Burrowes, J.D.; Larive, B.; Chertow, G.M.; Cockram, D.B.; Dwyer, J.T.; Greene, T.; Kusek, J.W.; Leung, J.; Rocco, M.V. Hemodialysis (HEMO) Study Group; Self-reported appetite, hospitalization and death in haemodialysis patients: Findings from the Hemodialysis (HEMO) Study. Nephrol. Dial. Transplant. 2005, 20, 2765–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molnar, M.Z.; Keszei, A.; Czira, M.E.; Rudas, A.; Ujszaszi, A.; Haromszeki, B.; Kosa, J.P.; Lakatos, P.; Sarvary, E.; Beko, G.; et al. Evaluation of the malnutrition-inflammation score in kidney transplant recipients. Am. J. Kidney Dis. 2010, 56, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, A.C.; Hacker, E.; Lora, C.M.; Ackerson, L.; DeSalvo, K.B.; Go, A.; Kusek, J.W.; Nessel, L.; Ojo, A.; Townsend, R.R.; et al. Validation of the kidney disease quality of life short form 36 (KDQOL-36™) US Spanish and English versions in a co-hort of hispanics with chronic kidney disease. Ethn. Dis. 2013, 23, 202. [Google Scholar]
- Hays, R.D.; Kallich, J.; Mapes, D.; Coons, S.; Amin, N.; Carter, W.B.; Kamberg, C. Kidney Disease Quality of Life Short Form (KDQOL-SF), Version 1.3: A Manual for Use and Scoring; RAND: Santa Monica, CA, USA, 1997; Volume 39. [Google Scholar]
- Nordestgaard, B.G.; Langsted, A.; Mora, S.; Kolovou, G.; Baum, H.; Bruckert, E.; Watts, G.F.; Sypniewska, G.; Wiklund, O.; Borén, J.; et al. Fasting is not routinely required for determination of a lipid profile: Clinical and laboratory implications in-cluding flagging at desirable concentration cut-points—A joint consensus statement from the European Atherosclerosis So-ciety and European Federation of Clinical Chemistry and Laboratory Medicine. Eur. Heart J. 2016, 37, 1944–1958. [Google Scholar]
- Kalantar-Zadeh, K.; Kleiner, M.; Dunne, E.; Lee, G.H.; Luft, F.C. A modified quantitative subjective global assessment of nutrition for dialysis patients. Nephrol. Dial. Transplant. Nephrol. Dial. Transplant. 1999, 14, 1732–1738. [Google Scholar] [CrossRef] [Green Version]
- Hays, R.D.; Kallich, J.D.; Mapes, D.L.; Coons, S.J.; Carter, W.B. Development of the kidney disease quality of life (KDQOL TM) instrument. Qual. Life Res. 1994, 3, 329–338. [Google Scholar] [CrossRef]
- Jeong, H.; Vacanti, N.M. Systemic vitamin intake impacting tissue proteomes. Nutr. Metab. 2020, 17, 73. [Google Scholar] [CrossRef]
- Huda, M.N.; Alam, K.S.; Harun Ur, R. Prevalence of chronic kidney disease and its association with risk factors in disadvan-tageous population. Int. J. Nephrol. 2012, 2012, 267329. [Google Scholar] [CrossRef]
- Wardani, N.W.S.; Budiyaa, D.G.A.; Sudhana, W.; Widiana, G.R. Nutritional status using ISRNM criteria and MIS of chronic haemodialysis patients at Sanjiwani Gianyar General Hospital. J. Phys. Conf. Ser. 2019, 1157, 042132. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Kashman, N.; Volland, G.; Weber, K.; Dowe, M.; Rogers, S. Grip and pinch strength: Normative data for adults. Arch. Phys. Med. Rehabil. 1985, 66, 69–74. [Google Scholar] [PubMed]
- Bohannon, R.W. Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Tashkandi, B.; Kaur, D.; Latifi, E.; Tallman, D.A.; Chinna, K.; Daud, Z.; Karupaiah, T.; Alhozali, H.; Khosla, P. Lipids, lipo-protein distribution and nutritional parameters over the Ramadan period in hemodialysis patients. Nutrients 2019, 11, 2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahathevan, S.; Se, C.H.; Ng, S.H.; Chinna, K.; Harvinder, G.S.; Chee, W.S.; Goh, B.L.; Gafor, H.A.; Bavanandan, S.; Ahmad, G.; et al. Assessing protein energy wasting in a Malaysian haemodialysis population using self-reported appetite rating: A cross-sectional study. BMC Nephrol. 2015, 16, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bross, R.; Zitterkoph, J.; Pithia, J.; Benner, D.; Rambod, M.; Kovesdy, C.P.; Kopple, J.D.; Kalantar-Zadeh, K. Association of serum total iron-binding capacity and its changes over time with nutritional and clinical outcomes in hemodialysis patients. Am. J. Nephrol. 2009, 29, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Kovesdy, C.P.; Estrada, W.; Ahmadzadeh, S.; Kalantar-Zadeh, K. Association of markers of iron stores with outcomes in patients with nondialysis-dependent chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Kato, A.; Takita, T.; Furuhashi, M.; Maruyama, Y.; Hishida, A. Comparison of serum albumin, C-reactive protein and carotid atherosclerosis as predictors of 10-year mortality in hemodialysis patients. Hemodial. Int. 2010, 14, 226–232. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kopple, J.D.; Block, G.; Humphreys, M.H. A malnutrition-inflammation score is correlated with mor-bidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2001, 38, 1251–1263. [Google Scholar] [CrossRef] [Green Version]
- Bross, R.; Noori, N.; Kovesdy, C.P.; Murali, S.B.; Benner, D.; Block, G.; Kopple, J.D.; Kalantar-Zadeh, K. Dietary assessment of individuals with chronic kidney disease. In Seminars in Dialysis; Wiley Online Library: Hoboken, NJ, USA, 2010. [Google Scholar]
- Mafra, D.; Moraes, C.; Leal, V.O.; Farage, N.E.; Stockler-Pinto, M.B.; Fouque, D. Underreporting of energy intake in maintenance hemodialysis patients: A cross-sectional study. J. Ren. Nutr. 2012, 22, 578–583. [Google Scholar] [CrossRef]
- Heck, J.E.; Nieves, J.W.; Chen, Y.; Parvez, F.; Brandt-Rauf, P.W.; Howe, G.R.; Ahsan, H. Protein and amino acid intakes in a rural area of Bangladesh. Food Nutr. Bull. 2010, 31, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laster, M.; Shen, J.I.; Norris, K.C. Kidney disease among African Americans: A population perspective. Am. J. Kidney Dis. 2018, 72, S3–S7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.I.; Streja, E.; Soohoo, M.; Ko, G.J.; Rhee, C.M.; Kovesdy, C.P.; Kashyap, M.L.; Vaziri, N.D.; Kalantar-Zadeh, K.; Moradi, H. Increments in serum high-density lipoprotein cholesterol over time are not associated with improved outcomes in incident hemodialysis patients. J. Clin. Lipidol. 2018, 12, 488–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kontush, A. HDL particle number and size as predictors of cardiovascular disease. Front. Pharmacol. 2015, 6, 218. [Google Scholar] [CrossRef] [Green Version]
- Kontush, A.; Chantepie, S.; Chapman, M.J. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1881–1888. [Google Scholar] [CrossRef] [Green Version]
- Rubinow, K.B.; Henderson, C.M.; Robinson-Cohen, C.; Himmelfarb, J.; de Boer, I.H.; Vaisar, T.; Kestenbaum, B.; Hoofnagle, A.N. Kidney function is associated with an altered protein composition of high-density lipoprotein. Kidney Int. 2017, 92, 1526–1535. [Google Scholar] [CrossRef]
Parameters | All | PEW | Non-PEW | p Value |
---|---|---|---|---|
Gender M/F (n) | 65/68 (133) | 13/7 (20) | 41/54 (95) | |
Age (Years) | 49.8 ± 13.0 (133) | 48.6 ± 17.5 (20) | 49.9 ± 11.5 (95) | 0.674 |
Duration of dialysis, h | 3.8 ± 0.4 (120) | 3.9 ± 0.3 (18) | 3.8 ± 0.4 (91) | 0.242 |
Dialysis vintage, months | 30.0 ± 24.3 (123) | 32.1 ± 32.8 (19) | 29.0 ± 22.2 (95) | 0.621 |
Dialysis frequency, n ** (%) | ||||
Thrice a week | 49 (38%) | 7 (35%) | 34 (36%) | |
Twice a week | 81 (62%) | 13 (65%) | 61 (64%) | |
Causes of ESRD, n (%) | ||||
HTN | 52 (39%) | 7 (35%) | 42 (44%) | |
DN | 35 (26%) | 4 (20%) | 27 (28%) | |
CGN | 23 (17%) | 7 (35%) | 12 (13%) | |
Others | 13 (10%) | 1 (5%) | 12 (13%) | |
Unknown | 10 (8%) | 1 (5%) | 2 (2%) | |
Height (cm) | 158.5 ± 9.3 (116) | 159.7 ± 8.3 (20) | 158.3 ± 9.6 (95) | 0.539 |
Dry weight (kg) | 60.6 ± 12.6 (116) | 50.7 ± 9.1 a (20) | 62.7 ± 12.3 a (95) | <0.001 |
BMI (kg/m2) | 24.2 ± 5.2 (116) | 19.8 ± 2.4 a (20) | 25.2 ± 5.2 a (95) | <0.001 |
<23 kg/m2 | 20.1 ± 2.0 (55) | 19.9 ± 2.4(20) | 20.3 ± 1.7 (34) | |
≥23 kg/m2 | 27.9 ± 4.5 (61) | - | 27.9 ± 4.5 (61) | |
HGS (kg) | 19.8 ± 7.4 (116) | 19.5 ± 7.6 (20) | 19.7 ± 7.3 (95) | 0.938 |
MAC (cm) | 26.6 ± 5.2 (116) | 22.4 ± 2.4 a (20) | 27.5 ± 5.2 a (95) | <0.001 |
TSF (mm) | 15.8 ± 8.2 (116) | 9.6 ± 3.7 a (20) | 17.2 ± 8.2 a (95) | <0.001 |
MAMC (cm) | 21.7 ± 3.7 (116) | 19.4 ± 2.4 a (20) | 22.2 ± 3.8 a (95) | <0.001 |
Reduction > 10% | 19.7 ± 2.9 (65) | 19.4 ± 2.4(20) | 19.9 ± 3.1 (44) | |
Reduction ≤ 10% | 24.1 ± 3.1(51) | - | 24.1 ± 3.1 (51) | |
Albumin (g/dl) | 3.7 ± 0.6 (97) | 3.5 ± 0.6 a (19) | 3.8 ± 0.5 a (77) | 0.029 |
<3.8 g/dl | 3.4 ± 0.4 (57) | 3.4 ± 0.6(18) | 3.5 ± 0.3 (38) | |
≥3.8 g/dl | 4.1 ± 0.5(40) | 4.7(1) | 4.1 ± 0.5 (39) | |
TC (mg/dL) | 162 ± 51 (116) | 135 ± 34 a (20) | 159 ± 40 a (95) | 0.01 |
<100 mg/dL | 94 ± 4 (4) | 95 ± 4 (3) | 90 (1) | |
≥100 mg/dL | 164 ± 50 (112) | 142 ± 32 (17) | 168 ± 52 (94) | 0.058 |
TIBC (mg/dL) | 244.1 ± 61.5 (81) | 228.1 ± 55.4 (15) | 247.7 ± 62.6 (66) | 0.267 |
URR% | 65.3 ± 8.8 (83) | 67.8 ± 8.8 (15) | 65.0 ± 8.6 (67) | 0.231 |
Na (mEq/L) | 136.1 ± 3.8 (107) | 136.4 ± 2.5 (18) | 136.0 ± 4.1 (88) | 0.731 |
K (mEq/L) | 5.0 ± 0.7 (112) | 5.2 ± 0.7 (19) | 5.0 ± 0.7 (92) | 0.247 |
P (mg/dl) | 4.5 ± 2.2 (100) | 4.6 ± 2.7 (17) | 4.5 ± 2.1 (82) | 0.811 |
CRP (mg/L) | 14.5 ± 25.8 (95) | 20.0 ± 34.8 (17) | 10.0 ± 13.9 (69) | 0.065 |
Ferritin (ng/mL) | 496.7 ± 442.8 (69) | 645.8 ± 543.4 (9) | 482.0 ± 423.1 (59) | 0.302 |
F > 2000 ng/mL | 15 | 6 | 9 | |
Kt/V | 1.3 ± 0.4 (55) | 1.4 ± 0.4 (11) | 1.3 ± 0.4 (44) | 0.435 |
Nutrients | All (n = 65) | PEW (n = 13) | Non-PEW (n = 52) | p Value | KDOQI Guidelines |
---|---|---|---|---|---|
Calories (Kcal) | 1429 ± 497 | 1327 ± 278 | 1455 ± 537 | 0.412 | ** |
DEI/Kg BW/day | 24.2 ± 7.6 | 26.2 ± 5.9 | 23.7 ± 7.9 | 0.289 | 30–35 Kcal/Kg BW/day |
<25 | 19.1 ± 3.4 (38) | 19.0 ± 2.3 (5) | 19.2 ± 3.4 (33) | ||
≥25 | 31.4 ± 5.8 (27) | 30.2 ± 3.1 (8) | 32.3 ± 6.8 (19) | ||
Protein (g) | 53.6 ± 21.0 | 55.2 ± 19.5 | 53.7 ± 22.4 | 0.852 | ** |
DPI/Kg BW/day | 0.9 ± 0.3 | 1.1 ± 0.3 a | 0.9 ± 0.3 a | 0.035 | 1.0–1.2 g/Kg BW/day |
<1.0 | 0.7 ± 0.1 (38) | 0.7 ± 0.1 (6) | 0.6 ± 0.1 (32) | ||
≥1.0–1.2 | 1.2 ± 0.3 (27) | 1.2 ± 0.3 (7) | 1.2 ± 0.2 (20) | ||
P mg/Kg BW/day | 14.7 ± 5.6 | 15.2 ± 3.2 | 14.5 ± 6.1 | 0.695 | 10–17 mg/Kg BW/day |
P/Protein | 16.5 ± 3.9 | 14.9 ± 3.7 | 16.9 ± 3.9 | 0.088 | <12 mg/g of protein |
Carbohydrates (g) | 207 ± 71 | 192 ± 44 | 211 ± 76 | 0.401 | ** |
Total Fiber (g) | 17 ± 7 | 15 ± 4 | 17 ± 7 | 0.298 | 20–25 g/day |
Fat (g) | 43 ± 21 | 37 ± 14 | 45 ± 22 | 0.280 | ** |
SFA (g) | 8.5 ± 4.5 | 7.2 ± 3.3 | 8.8 ± 4.7 | 0.253 | ** |
MUFA (g) | 8.4 ± 4.6 | 6.9 ± 3.6 | 8.8 ± 4.8 | 0.178 | ** |
PUFA (g) | 15.6 ± 9.6 | 13.5 ± 6.7 | 16.2 ± 10.2 | 0.378 | ** |
Cholesterol (mg) | 226 ± 153 | 177 ± 135 | 238 ± 156 | 0.196 | <200 mg/day |
omega 6:omega 3 | 10.4 ± 5.7 | 9.0 ± 5.3 | 10.7 ± 5.7 | 0.327 | 4:01 |
Water (mL) | 1446 ± 639 | 1577 ± 664 | 1413 ± 635 | 0.411 | 750–1500 mL/day |
Vitamin A-IU | 1360 ± 2168 | 891 ± 1136 | 1478 ± 2530 | 0.386 | 700–900 IU |
Vitamin D-IU | 46 ± 39 | 30 ± 37 | 50 ± 39 | 0.110 | 600 IU |
Vitamin E (mg) | 2.3 ± 1.6 | 1.9 ± 0.8 | 2.4 ± 1.7 | 0.398 | 15 mg |
Vitamin K (µg) | 22 ± 78 | 18 ± 34 | 23 ± 86 | 0.825 | 90–120 µg |
Vit B1 (mg) | 0.7 ± 0.3 | 0.7 ± 0.2 | 0.8 ± 0.4 | 0.220 | 1.1–1.2 mg |
Vit B2 (mg) | 1.0 ± 1.7 | 0.7 ± 0.2 | 1.1 ± 1.9 | 0.395 | 1.1–1.3 mg |
Vit B3 (mg) | 13.8 ± 5.4 | 15.1 ± 5.3 | 13.5 ± 5.4 | 0.325 | 14–16 mg |
Vit B6 (mg) | 10.8 ± 28.0 | 8.3 ± 15.7 | 11.4 ± 30.4 | 0.729 | 13–17 mg |
Vit B12 (µg) | 1.8 ± 2.1 | 1.5 ± 1.1 | 1.9 ± 2.3 | 0.572 | 2.4 µg |
Biotin (µg) | 10.0 ± 9.8 | 9.7 ± 9.3 | 10.1 ± 10.0 | 0.907 | 30 µg |
Folate (µg) | 142 ± 189 | 96 ± 61 | 152 ± 209 | 0.399 | 1000 µg |
Vit C (mg) | 87 ± 73 | 64 ± 45 | 93 ± 78 | 0.209 | 75–90 mg/day |
Dietary Ca (mg) | 431 ± 262 | 311 ± 149 | 461 ± 276 | 0.063 | <1000 mg |
Iron (mg) | 15 ± 14 | 11.8 ± 7.8 | 15.6 ± 15.1 | 0.377 | ** |
Dietary P (mg) | 872 ± 422 | 785 ± 212 | 894 ± 458 | 0.411 | 1000 mg |
Dietary K (mg) | 1475 ± 582 | 1407 ± 389 | 1492 ± 623 | 0.641 | ** |
Dietary Na (mg) | 2099 ± 918 | 1993 ± 732 | 2125 ± 962 | 0.647 | <2400 mg |
Zinc (mg) | 8.0 ± 4.5 | 7.6 ± 3.1 | 8.1 ± 4.8 | 0.716 | 15 mg |
Magnesium (mg) | 231 ± 91 | 214 ± 58 | 235 ± 98 | 0.466 | 200–300 mg |
Assessments | PEW | Non-PEW | p Value |
---|---|---|---|
MIS Score | 7.6 ± 3.1 (14) a | 5.3 ± 2.7 (65) a | 0.004 |
Well-nourished < 5 | 3.0 ± 0 (2) | 3.1 ± 0.9(27) | 0.911 |
Malnourished ≥ 5 | 8.4 ± 2.6(12) a | 7.0 ± 2.2 (38) a | 0.030 |
ADAT Score | 3.0 ± 1.1 (10) | 3.7 ± 1.6 (43) | 0.159 |
KD-QoL | |||
SF-12 Physical Health Composite | 43.7 ± 12.5 (15) a | 37.3 ± 10.4 (64) a | 0.043 |
SF-12 Mental Health Composite | 50.1 ± 7.5 (15) a | 43.9 ± 9.6 (64) a | 0.023 |
Burden of Kidney Disease | 35.4 ± 23.5 (15) | 28.1 ± 26.9 (66) | 0.337 |
Effects of Kidney Disease | 72.6 ± 19.1 (13) | 63.5 ± 16.2 (58) | 0.082 |
ALL (107) | PEW (20) | Non-PEW (87) | |
---|---|---|---|
TC (mg/dL) | 155 ± 40 | 135 ± 34 a | 160 ± 40 a |
HDL-C (mg/dL) | 35 ± 11 | 38 ± 16 | 34 ± 10 |
TG (mg/dL) | 178 ± 98 | 132 ± 51 a | 188 ± 103 a |
LDL-C (mg/dL) | 85 ± 31 | 71 ± 29 a | 88 ± 31 a |
Non-HDL-C | 121 ± 40 | 97 ± 28 a | 126 ± 41 |
TG/HDL-C | 5.9 ± 4.0 | 4.2 ± 2.7 a | 6.4 ± 4.1 a |
Large HDL (mg/dL) | 12.4 ± 8.1 | 16.6 ± 10.4 a | 11.4 ± 7.3 a |
Small HDL (mg/dL) | 4.7 ± 2.4 | 3.4 ± 2.2 a | 5.0 ± 2.3 a |
Mean LDL size (Å) | 267.9 ± 6.7 | 271.0 ± 3.4 a | 267 ± 7 a |
LDL-Pattern, n (%) | |||
A | 63 (59%) | 16 (80%) | 47 (54%) |
B | 29 (27%) | 2 (10%) | 27 (31%) |
Intermediate | 15 (14%) | 2 (10%) | 13 (15%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, T.; Khor, B.-H.; Sahathevan, S.; Kaur, D.; Latifi, E.; Afroz, M.; Mitali, E.J.; Tashkandi, B.; Begum, N.A.S.; Kashem, T.S.; et al. Protein Energy Wasting in a Cohort of Maintenance Hemodialysis Patients in Dhaka, Bangladesh. Nutrients 2022, 14, 1469. https://doi.org/10.3390/nu14071469
Rahman T, Khor B-H, Sahathevan S, Kaur D, Latifi E, Afroz M, Mitali EJ, Tashkandi B, Begum NAS, Kashem TS, et al. Protein Energy Wasting in a Cohort of Maintenance Hemodialysis Patients in Dhaka, Bangladesh. Nutrients. 2022; 14(7):1469. https://doi.org/10.3390/nu14071469
Chicago/Turabian StyleRahman, Tanjina, Ban-Hock Khor, Sharmela Sahathevan, Deepinder Kaur, Eno Latifi, Mousume Afroz, Esrat Jahan Mitali, Bayan Tashkandi, Nura Afza Salma Begum, Tasnuva Sarah Kashem, and et al. 2022. "Protein Energy Wasting in a Cohort of Maintenance Hemodialysis Patients in Dhaka, Bangladesh" Nutrients 14, no. 7: 1469. https://doi.org/10.3390/nu14071469
APA StyleRahman, T., Khor, B. -H., Sahathevan, S., Kaur, D., Latifi, E., Afroz, M., Mitali, E. J., Tashkandi, B., Begum, N. A. S., Kashem, T. S., Arefin, S. U. Z., Daud, Z. A. M., Karupaiah, T., Rashid, H. U., & Khosla, P. (2022). Protein Energy Wasting in a Cohort of Maintenance Hemodialysis Patients in Dhaka, Bangladesh. Nutrients, 14(7), 1469. https://doi.org/10.3390/nu14071469