Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature
Abstract
:1. Introduction
2. Neuroprotective Effects of CR and IF in TBI
2.1. Alleviating Mitochondrial Dysfunction
2.2. Promoting Hippocampal Neurogenesis
2.3. Inhibiting Glial Cell Responses
2.4. Shaping Neural Cell Plasticity
2.5. Targeting Apoptosis and Autophagy
3. Current Issues and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vasim, I.; Majeed, C.N.; DeBoer, M.D. Intermittent Fasting and Metabolic Health. Nutrients 2022, 14, 631. [Google Scholar] [CrossRef] [PubMed]
- Clifton, K.K.; Ma, C.X.; Fontana, L.; Peterson, L.L. Intermittent fasting in the prevention and treatment of cancer. CA Cancer J. Clin. 2021, 71, 527–546. [Google Scholar] [CrossRef] [PubMed]
- Tootee, A.; Larijani, B. Ramadan fasting during COVID-19 pandemic. J. Diabetes Metab. Disord. 2020, 19, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.W.; Most, J.; Mey, J.T.; Redman, L.M. Calorie Restriction and Aging in Humans. Annu. Rev. Nutr. 2020, 40, 105–133. [Google Scholar] [CrossRef]
- Cerqueira, F.M.; Cunha, F.M.; Laurindo, F.R.; Kowaltowski, A.J. Calorie restriction increases cerebral mitochondrial respiratory capacity in a NO*-mediated mechanism: Impact on neuronal survival. Free Radic. Biol. Med. 2012, 52, 1236–1241. [Google Scholar] [CrossRef]
- Korybalska, K.; Swora-Cwynar, E.; Luczak, J.; Kanikowska, A.; Czepulis, N.; Rutkowski, R.; Breborowicz, A.; Grzymislawski, M.; Witowski, J. Association of endothelial proliferation with the magnitude of weight loss during calorie restriction. Angiogenesis 2016, 19, 407–419. [Google Scholar] [CrossRef]
- Magkos, F. Is calorie restriction beneficial for normal-weight individuals? A narrative review of the effects of weight loss in the presence and absence of obesity. Nutr. Rev. 2022. [Google Scholar] [CrossRef]
- Sun, J.; Xu, N.; Lin, N.; Wu, P.; Yuan, K.; An, S.; Zhang, Z.; Ruan, Y.; Zhang, Y.; Xu, G.; et al. 317-LB: Optimal Weight Loss Effect of Short-Term Low Carbohydrate Diet with Calorie Restriction on Overweight/Obese Subjects in South China—A Multicenter Randomized Controlled Trial. Diabetes 2019, 68 (Suppl. S1), 317-LB. [Google Scholar] [CrossRef]
- Park, C.Y.; Park, S.; Kim, M.S.; Kim, H.K.; Han, S.N. Effects of mild calorie restriction on lipid metabolism and inflammation in liver and adipose tissue. Biochem. Biophys. Res. Commun. 2017, 490, 636–642. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, E.K.; Park, M.H.; Kim, B.-C.; Chung, K.W.; Yu, B.P.; Chung, H.Y. Anti-inflammatory Action of Calorie Restriction Underlies the Retardation of Aging and Age-Related Diseases. Nutr. Exerc. Epigenetics Ageing Interv. 2015, 2, 49–68. [Google Scholar]
- Hoong, C.W.S.; Chua, M.W.J. SGLT2 inhibitors as calorie restriction-mimetics: Insights on longevity pathways and age-related diseases. Endocrinology 2021, 162, bqab079. [Google Scholar] [CrossRef]
- Giacomello, E.; Toniolo, L. The Potential of Calorie Restriction and Calorie Restriction Mimetics in Delaying Aging: Focus on Experimental Models. Nutrients 2021, 13, 2346. [Google Scholar] [CrossRef] [PubMed]
- Silveira, É.A.; Noll, P.R.e.S.; Mohammadifard, N.; Rodrigues, A.P.S.; Sarrafzadegan, N.; de Oliveira, C. Which Diets Are Effective in Reducing Cardiovascular and Cancer Risk in Women with Obesity? An Integrative Review. Nutrients 2021, 13, 3504. [Google Scholar] [CrossRef] [PubMed]
- Perry, C.A.; Gadde, K.M. The Role of Calorie Restriction in the Prevention of Cardiovascular Disease. Curr. Atheroscler. Rep. 2022; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Vidoni, C.; Ferraresi, A.; Esposito, A.; Maheshwari, C.; Dhanasekaran, D.N.; Mollace, V.; Isidoro, C. Calorie Restriction for Cancer Prevention and Therapy: Mechanisms, Expectations, and Efficacy. J. Cancer Prev. 2021, 26, 224–236. [Google Scholar] [CrossRef]
- Duregon, E.; Pomatto-Watson, L.; Bernier, M.; Price, N.L.; de Cabo, R. Intermittent fasting: From calories to time restriction. Geroscience 2021, 43, 1083–1092. [Google Scholar] [CrossRef]
- Mohiuddin, A.K. Intermittent Fasting and Adding More days to Life. J. Gastroenterol. Hepatol. Res. 2019, 2, 2923–2927. [Google Scholar] [CrossRef]
- Fallows, E.; Mckenzie, H. Intermittent Fasting: A Health Panacea or Just Calorie Restriction? A Prescription for Healthy Living; Academic Press: Cambridge, MA, USA, 2021; pp. 287–296. [Google Scholar]
- Gudden, J.; Arias Vasquez, A.; Bloemendaal, M. The Effects of Intermittent Fasting on Brain and Cognitive Function. Nutrients 2021, 13, 3166. [Google Scholar] [CrossRef]
- Rajpal, A.; Ismail-Beigi, F. Intermittent Fasting and “Metabolic Switch”: Effects on Metabolic Syndrome, Pre-diabetes and Type 2 Diabetes Mellitus. Diabetes Obes. Metab. 2020, 22, 1496–1510. [Google Scholar] [CrossRef]
- Varady, K. Intermittent fasting is gaining interest fast. Nat. Rev. Mol. Cell Biol. 2021, 22, 587. [Google Scholar] [CrossRef]
- Matiashova, L.; Shanker, A.; Isayeva, G. The effect of intermittent fasting on mortality in patients with type 2 diabetes and metabolic disease with high cardiovascular risk: A systematic review. Clin. Diabetol. 2021, 10, 284–289. [Google Scholar] [CrossRef]
- Dwaib, H.S.; AlZaim, I.; Eid, A.H.; Obeid, O.; El-Yazbi, A.F. Modulatory Effect of Intermittent Fasting on Adipose Tissue Inflammation: Amelioration of Cardiovascular Dysfunction in Early Metabolic Impairment. Front. Pharmacol. 2021, 12, 626313. [Google Scholar] [CrossRef] [PubMed]
- Vemuganti, R.; Arumugam, T.V. Molecular Mechanisms of Intermittent Fasting-induced Ischemic Tolerance. Cond. Med. 2020, 3, 9–17. [Google Scholar] [PubMed]
- Park, S.; Zhang, T.; Wu, X.; Qiu, J.Y. Ketone production by ketogenic diet and by intermittent fasting has different effects on the gut microbiota and disease progression in an Alzheimer’s disease rat model. J. Clin. Biochem. Nutr. 2020, 67, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Shin, B.K.; Kang, S.; Kim, D.S.; Park, S. Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheime’s disease-induced estrogen deficient rats. Exp. Biol. Med. 2018, 243, 334–343. [Google Scholar] [CrossRef]
- Neth, B.J.; Bauer, B.A.; Benarroch, E.E.; Savica, R. The Role of Intermittent Fasting in Parkinson’s Disease. Front. Neurol. 2021, 12, 682184. [Google Scholar] [CrossRef]
- Sokal, A.; Jarmakiewicz-Czaja, S. Can brain ageing and the risk of dementia be prevented by a proper diet? Med. Ogólna I Nauk. O Zdrowiu. 2022, 28, 20–27. [Google Scholar] [CrossRef]
- Morales-Suarez-Varela, M.; Collado Sánchez, E.; Peraita-Costa, I.; Llopis-Morales, A.; Soriano, J.M. Intermittent fasting and the possible benefits in obesity, diabetes, and multiple sclerosis: A systematic review of randomized clinical trials. Nutrients 2021, 13, 3179. [Google Scholar] [CrossRef]
- Bai, M.; Wang, Y.; Han, R.; Xu, L.; Huang, M.; Zhao, J.; Lin, Y.; Song, S.; Chen, Y. Intermittent caloric restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis. J. Nutr. Biochem. 2020, 87, 108493. [Google Scholar] [CrossRef]
- Hartman, A.L.; Rubenstein, J.E.; Kossoff, E.H. Intermittent fasting: A “new” historical strategy for controlling seizures? Epilepsy Res. 2013, 104, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Höhn, S.; Dozières-Puyravel, B.; Auvin, S. History of dietary treatment: Guelpa & Marie first report of intermittent fasting for epilepsy in 1911. Epilepsy Behav. 2019, 94, 277–280. [Google Scholar] [PubMed]
- Fann, D.Y.-W.; Ng, G.Y.Q.; Poh, L.; Arumugam, T.V. Positive effects of intermittent fasting in ischemic stroke. Exp. Gerontol. 2017, 89, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kang, S.W.; Mallilankaraman, K.; Baik, S.H.; Lim, J.C.; Balaganapathy, P.; She, D.T.; Lok, K.Z.; Fann, D.Y.-W.; Thambiayah, U.; et al. Transcriptome analysis reveals intermittent fasting-induced genetic changes in ischemic stroke. Hum. Mol. Genet. 2018, 27, 1497–1513. [Google Scholar] [CrossRef] [PubMed]
- Fann, D.Y.-W.; Santro, T.; Manzanero, S.; Widiapradja, A.; Cheng, Y.-L.; Lee, S.-Y.; Chunduri, P.; Jo, D.-G.; Stranahan, A.M.; Mattson, M.P.; et al. Intermittent fasting attenuates inflammasome activity in ischemic stroke. Exp. Neurol. 2014, 257, 114–119. [Google Scholar] [CrossRef]
- Cox, N.; Gibas, S.; Salisbury, M.; Gomer, J.; Gibas, K. Ketogenic diets potentially reverse Type II diabetes and ameliorate clinical depression: A case study. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1475–1479. [Google Scholar] [CrossRef]
- Hussin, N.; Shahar, S.; Teng, N.I.M.F.; Ngah, W.Z.W.; Das, S.K. Efficacy of Fasting and Calorie Restriction (FCR) on mood and depression among ageing men. J. Nutr. Health Aging 2013, 17, 674–680. [Google Scholar] [CrossRef]
- Jahrami, H.A.; Bahammam, A.S.; Haji, E.A.; Bragazzi, N.L.; Rakha, I.; Alsabbagh, A.; Nugraha, B.; Pasiakos, S.M. Ramadan Fasting Improves Body Composition without Exacerbating Depression in Males with Diagnosed Major Depressive Disorders. Nutrients 2021, 13, 2718. [Google Scholar] [CrossRef]
- Warwick, J.; Slavova, S.; Bush, J.; Costich, J. Validation of ICD-10-CM surveillance codes for traumatic brain injury inpatient hospitalizations. Brain Inj. 2020, 34, 1763–1770. [Google Scholar] [CrossRef]
- Lyeth, B.G. Historical Review of the Fluid-Percussion TBI Model. Front. Neurol. 2016, 7, 217. [Google Scholar] [CrossRef] [Green Version]
- Kayani, N.A.; Homan, S.G.; Yun, S.; Zhu, B.-P. Health and Economic Burden of Traumatic Brain Injury: Missouri, 2001–2005. Public Health Rep. 2009, 124, 551–560. [Google Scholar] [CrossRef]
- Carroll, C.P.; Cochran, J.A.; Guse, C.E.; Wang, M.C. Are we underestimating the burden of traumatic brain injury? Surveillance of severe traumatic brain injury using centers for disease control International classification of disease, ninth revision, clinical modification, traumatic brain injury codes. Neurosurgery 2012, 71, 1064–1070. [Google Scholar] [CrossRef]
- Hinson, H.E.; Rowell, S.; Schreiber, M. Clinical evidence of inflammation driving secondary brain injury: A systematic review. J. Trauma Acute Care Surg. 2015, 78, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, E.S.; Collett, A.E.; Kaplan, M.J.; Omert, L.A.; Leung, P.S.P. 833: Complement inhibition mitigates secondary effects of traumatic brain injury (TBI). Crit. Care Med. 2018, 46, 401. [Google Scholar] [CrossRef]
- Cordaro, M.; Impellizzeri, D.; Paterniti, I.; Bruschetta, G.; Siracusa, R.; De Stefano, D.; Cuzzocrea, S.; Esposito, E. Neuroprotective Effects of Co-UltraPEALut on Secondary Inflammatory Process and Autophagy Involved in Traumatic Brain Injury. J. Neurotrauma 2016, 33, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Van Eldik, L.J.; Roy, S.M.; Guptill, J.T. First in human studies of MW0Q 6 189WH, a brain penetrant, ant‰ neuroinflammatory, small molecule drug candidate: Phase 1 safety, tolerability, pharmacokinetic, and pharmacodynamic studies in healthy adult volunteers. Alzheimer’s Dement. 2020, 16, e041208. [Google Scholar] [CrossRef]
- Killen, M.J.; Giorgi-Coll, S.; Helmy, A.E.; Hutchinson, P.J.; Carpenter, K.L.H. Metabolism and inflammation: Implications for traumatic brain injury therapeutics. Expert Rev. Neurother. 2019, 19, 227–242. [Google Scholar] [CrossRef]
- Cao, S.; Li, M.; Sun, Y.; Yang, W.; Liang, W. Intermittent Fasting Enhances Hippocampal Npy Expression to Promote Neurogenesis Following Traumatic Brain Injury. Nutrition 2022, 97, 111621. [Google Scholar] [CrossRef]
- Rubovitch, V.; Pharayra, A.; Har-Even, M.; Dvir, O.; Mattson, M.P.; Pick, C.G. Dietary Energy Restriction Ameliorates Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. J. Mol. Neurosci. 2019, 67, 613–621. [Google Scholar] [CrossRef]
- Har-Even, M.; Rubovitch, V.; Ratliff, W.A.; Richmond-Hacham, B.; Citron, B.A.; Pick, C.G. Ketogenic Diet as a potential treatment for traumatic brain injury in mice. Sci. Rep. 2021, 11, 23559. [Google Scholar] [CrossRef]
- Bains, M.; Hall, E.D. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim. Biophys. Acta 2012, 1822, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, W.B.; Harwood, C.L.; Geisler, J.G.; Vekaria, H.J.; Sullivan, P.G. Mitochondrial uncoupling prodrug improves tissue sparing, cognitive outcome, and mitochondrial bioenergetics after traumatic brain injury in male mice. J. Neurosci. Res. 2018, 96, 1677–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbard, W.B.; Joseph, B.; Spry, M.L.; Vekaria, H.J.; Saatman, K.; Sullivan, P.G. Acute Mitochondrial Impairment Underlies Prolonged Cellular Dysfunction after Repeated Mild Traumatic Brain Injuries. J. Neurotrauma 2019, 36, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.M.; Pauly, J.R.; Readnower, R.D.; Rho, J.M.; Sullivan, P.G. Fasting is neuroprotective following traumatic brain injury. J. Neurosci. Res. 2008, 86, 1812–1822. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.M.H. The Underlying Mechanism(s) of Fasting Induced Neuroprotection after Moderate Traumatic Brain Injury. Ph.D. Thesis, University of Kentucky, Lexington, Kentucky. Available online: https://uknowledge.uky.edu/gradschool_diss/673 (accessed on 4 March 2022).
- Greco, T.; Glenn, T.C.; Hovda, D.A.; Prins, M.L. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity. J. Cereb. Blood Flow Metab. 2016, 36, 1603–1613. [Google Scholar] [CrossRef]
- Lee, J.; Duan, W.; Long, J.M.; Ingram, D.K.; Mattson, M.P. Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J. Mol. Neurosci. 2000, 15, 99–108. [Google Scholar] [CrossRef]
- Fontán-Lozano, Á.; Sáez-Cassanelli, J.L.; Inda, M.C.; de los Santos-Arteaga, M.; Sierra-Domínguez, S.A.; López-Lluch, G.; Delgado-García, J.M.; Carrión, Á.M. Caloric Restriction Increases Learning Consolidation and Facilitates Synaptic Plasticity through Mechanisms Dependent on NR2B Subunits of the NMDA Receptor. J. Neurosci. 2007, 27, 10185–10195. [Google Scholar] [CrossRef] [Green Version]
- Qin, W. Neuronal SIRT1 Activation as a Novel Mechanism Underlying the Prevention of Alzheimer Disease Amyloid Neuropathology by Calorie Restriction. J. Biol. Chem. 2006, 2, S100–S101. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-E.; Mori, R.; Shimokawa, I. Does Calorie Restriction Modulate Inflammaging via FoxO Transcription Factors? Nutrients 2020, 12, 1959. [Google Scholar] [CrossRef]
- Srámková, V.; Berend, S.; Siklová, M.; Caspar-Bauguil, S.; Carayol, J.; Bonnel, S.; Marques, M.; Decaunes, P.; Kolditz, C.I.; Dahlman, I.; et al. Apolipoprotein M: A novel adipokine decreasing with obesity and upregulated by calorie restriction. Am. J. Clin. Nutr. 2019, 109, 1499–1510. [Google Scholar] [CrossRef] [Green Version]
- Jessberger, S.; Clark, R.E.; Broadbent, N.J.; Clemenson, G.D., Jr.; Consiglio, A.; Lie, D.C.; Squire, L.R.; Gage, F.H. Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats. Learn. Mem. 2009, 16, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Burghardt, N.S.; Park, E.H.; Hen, R.; Fenton, A.A. Adult-Born Hippocampal Neurons Promote Cognitive Flexibility in Mice. Hippocampus 2012, 22, 1795–1808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.-M.; Liu, C.; Wang, Y.-Y.; Deng, Y.-S.; He, X.-C.; Du, H.-Z.; Liu, C.-M.; Teng, Z.-Q. SerpinA3N deficiency deteriorates impairments of learning and memory in mice following hippocampal stab injury. Cell Death Discov. 2020, 6, 88. [Google Scholar] [CrossRef] [PubMed]
- Lieberwirth, C.; Pan, Y.; Liu, Y.; Zhang, Z.; Wang, Z. Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory. Brain Res. 2016, 1644, 127–140. [Google Scholar] [CrossRef]
- Manzanero, S.; Erion, J.R.; Santro, T.; Steyn, F.J.; Chen, C.; Arumugam, T.V.; Stranahan, A.M. Intermittent fasting attenuates increases in neurogenesis after ischemia and reperfusion and improves recovery. J. Cereb. Blood Flow Metab. 2014, 34, 897–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baik, S.H.; Rajeev, V.; Fann, D.Y.; Jo, D.G.; Arumugam, T.V. Intermittent fasting increases adult hippocampal neurogenesis. Brain Behav. 2020, 10, e01444. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Seroogy, K.B.; Mattson, M.P. Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J. Neurochem. 2002, 80, 539–547. [Google Scholar] [CrossRef]
- Cheng, B.; Mattson, M.P. NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults. Brain Res. 1994, 640, 56–67. [Google Scholar] [CrossRef]
- Robel, S.; Berninger, B.; Gotz, M. The stem cell potential of glia: Lessons from reactive gliosis. Nat. Rev. Neurosci. 2011, 12, 88–104. [Google Scholar] [CrossRef]
- Xiong, X.-Y.; Liu, L.; Yang, Q.-W. Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol. 2016, 142, 23–44. [Google Scholar] [CrossRef]
- Xu, S.; Lu, J.; Shao, A.; Zhang, J.H.; Zhang, J. Glial Cells: Role of the Immune Response in Ischemic Stroke. Front. Immunol. 2020, 11, 294. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.I.; Jo, M.G.; Park, T.J.; Ullah, R.; Ahmad, S.; Réhman, S.u.; Kim, M.O. Quinpirole-Mediated Regulation of Dopamine D2 Receptors Inhibits Glial Cell-Induced Neuroinflammation in Cortex and Striatum after Brain Injury. Biomedicines 2021, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Jha, K.A.; Pentecost, M.; Lenin, R.R.; Klaj, L.; Elshaer, S.L.; Gentry, J.; Russell, J.M.; Beland, A.; Reiner, A.; Jotterand, V.; et al. Concentrated Conditioned Media from Adipose Tissue Derived Mesenchymal Stem Cells Mitigates Visual Deficits and Retinal Inflammation Following Mild Traumatic Brain Injury. Int. J. Mol. Sci. 2018, 19, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofroniew, M.V. Reactive astrocytes in neural repair and protection. Neuroscientist 2005, 11, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Loane, D.J. Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain Behav. Immun. 2012, 26, 1191–1201. [Google Scholar] [CrossRef]
- Tweedie, D.; Rachmany, L.; Kim, D.S.; Rubovitch, V.; Lehrmann, E.; Zhang, Y.; Becker, K.G.; Perez, E.J.; Pick, C.G.; Greig, N.H. Mild traumatic brain injury-induced hippocampal gene expressions: The identification of target cellular processes for drug development. J. Neurosci. Methods 2016, 272, 4–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afridi, R.; Tsuda, M.; Ryu, H.R.; Suk, K. The Function of Glial Cells in the Neuroinflammatory and Neuroimmunological Responses. Cells 2022, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Meneghini, V.; Peviani, M.; Luciani, M.; Zambonini, G.; Gritti, A. Delivery Platforms for CRISPR/Cas9 Genome Editing of Glial Cells in the Central Nervous System. Front. Genome Ed. 2021, 3, 644319. [Google Scholar] [CrossRef]
- Loncarevic-Vasiljkovic, N.; Pesic, V.; Todorovic, S.; Popic, J.; Smiljanic, K.; Milanovic, D.; Ruzdijic, S.; Kanazir, S. Caloric restriction suppresses microglial activation and prevents neuroapoptosis following cortical injury in rats. PLoS ONE 2012, 7, e37215. [Google Scholar] [CrossRef] [Green Version]
- Radler, M.; Wright, B.; Walker, F.; Hale, M.; Kent, S. Calorie restriction increases lipopolysaccharide-induced neuropeptide Y immunolabeling and reduces microglial cell area in the arcuate hypothalamic nucleus. Neuroscience 2015, 285, 236–247. [Google Scholar] [CrossRef]
- Michinaga, S.; Koyama, Y. Pathophysiological Responses and Roles of Astrocytes in Traumatic Brain Injury. Int. J. Mol. Sci. 2021, 22, 6418. [Google Scholar] [CrossRef]
- Loncarevic-Vasiljkovic, N.; Pesic, V.; Tanic, N.; Milanovic, D.; Popic, J.; Kanazir, S.; Ruzdijic, S. Changes in markers of neuronal and glial plasticity after cortical injury induced by food restriction. Exp. Neurol. 2009, 220, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, R.; Zhao, Z.; Dong, W.; Zhang, X.; Chen, X.; Ma, L. Short-term caloric restriction exerts neuroprotective effects following mild traumatic brain injury by promoting autophagy and inhibiting astrocyte activation. Behav. Brain Res. 2017, 331, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kaur, G. Dietary restriction enhances kainate-induced increase in NCAM while blocking the glial activation in adult rat brain. Neurochem. Res. 2008, 33, 1178–1188. [Google Scholar] [CrossRef]
- John, G.R.; Lee, S.C.; Brosnan, C.F. Cytokines: Powerful Regulators of Glial Cell Activation. Neuroscientist 2003, 9, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Bush, T.G.; Puvanachandra, N.; Horner, C.H.; Polito, A.; Ostenfeld, T.; Svendsen, C.N.; Mucke, L.; Johnson, M.H.; Sofroniew, M.V. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 1999, 23, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Voskuhl, R.R.; Peterson, R.; Song, B.; Ao, Y.; Morales, L.; Tiwari-Woodruff, S.K.; Sofroniew, M.V. Reactive Astrocytes Form Scar-Like Perivascular Barriers to Leukocytes during Adaptive Immune Inflammation of the CNS. J. Neurosci. 2009, 29, 11511–11522. [Google Scholar] [CrossRef] [Green Version]
- Stein, D.G.; Hoffman, S.W. Concepts of CNS plasticity in the context of brain damage and repair. J. Head Trauma Rehabil. 2003, 18, 317–341. [Google Scholar] [CrossRef]
- Schoch, K.M.; Madathil, S.K.; Saatman, K.E. Genetic manipulation of cell death and neuroplasticity pathways in traumatic brain injury. Neurotherapeutics 2012, 9, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.-S.; Zhang, G.; Liebl, D.J.; Kernie, S.G. Traumatic brain injury-induced hippocampal neurogenesis requires activation of early nestin-expressing progenitors. J. Neurosci. 2008, 28, 12901–12912. [Google Scholar] [CrossRef]
- Baecker, J.; Wartchow, K.M.; Sehm, T.; Ghoochani, A.; Buchfelder, M.; Kleindienst, A. Treatment with the Neurotrophic Protein S100B Increases Synaptogenesis Following Traumatic Brain Injury. J. Neurotrauma 2020, 37, 1097–1107. [Google Scholar] [CrossRef]
- Scheff, S.W.; Price, D.A.; Hicks, R.R.; Baldwin, S.A.; Robinson, S.E.; Brackney, C.K. Synaptogenesis in the hippocampal CA1 field following traumatic brain injury. J. Neurotrauma 2005, 22, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Zhang, Y.; Jiang, W.; He, L.; Qu, H. Modulation of autophagy in traumatic brain injury. J. Cell Physiol. 2020, 235, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Long, X.; Tang, J.; Li, X.; Zhang, X.; Luo, C.; Zhou, Y.; Zhang, P. The Attenuation of Traumatic Brain Injury via Inhibition of Oxidative Stress and Apoptosis by Tanshinone IIA. Oxid. Med. Cell Longev. 2020, 2020, 4170156. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, H.-C.; Luo, C.; Gao, C.; Zhang, Y.; Chen, G.; Chen, W.; Chen, X.-P.; Tao, L. Chd8 Rescued TBI-Induced Neurological Deficits by Suppressing Apoptosis and Autophagy Via Wnt Signaling Pathway. Cell. Mol. Neurobiol. 2020, 40, 1165–1184. [Google Scholar] [CrossRef]
- Taheri, S.; Karaca, Z.C.O.; Mehmetbeyolu, E.; Hamurcu, Z.; Yilmaz, Z.; Dal, F.; È1nar, V.; Ulutabanca, H.; Tans1verdi, F.; Unluhizarci, K.; et al. The Role of Apoptosis and Autophagy in the Hypothalamic-Pituitary-Adrenal (HPA) Axis after Traumatic Brain Injury (TBI). Res. Square 2022. [Google Scholar] [CrossRef]
- Loncarevic-Vasiljkovic, N.; Milanovic, D.; Pesic, V.; Tesic, V.; Brkic, M.; Lazic, D.; Avramovic, V.; Kanazir, S. Dietary restriction suppresses apoptotic cell death, promotes Bcl-2 and Bcl-xl mRNA expression and increases the Bcl-2/Bax protein ratio in the rat cortex after cortical injury. Neurochem. Int. 2016, 96, 69–76. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Liu, Z.; Xu, S.; Li, C.; Li, M.; Cao, S.; Sun, Y.; Dai, H.; Guo, Y.; Chen, X.; et al. Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature. Nutrients 2022, 14, 1431. https://doi.org/10.3390/nu14071431
Xu Y, Liu Z, Xu S, Li C, Li M, Cao S, Sun Y, Dai H, Guo Y, Chen X, et al. Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature. Nutrients. 2022; 14(7):1431. https://doi.org/10.3390/nu14071431
Chicago/Turabian StyleXu, Yang, Zejie Liu, Shuting Xu, Chengxian Li, Manrui Li, Shuqiang Cao, Yuwen Sun, Hao Dai, Yadong Guo, Xiameng Chen, and et al. 2022. "Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature" Nutrients 14, no. 7: 1431. https://doi.org/10.3390/nu14071431
APA StyleXu, Y., Liu, Z., Xu, S., Li, C., Li, M., Cao, S., Sun, Y., Dai, H., Guo, Y., Chen, X., & Liang, W. (2022). Scientific Evidences of Calorie Restriction and Intermittent Fasting for Neuroprotection in Traumatic Brain Injury Animal Models: A Review of the Literature. Nutrients, 14(7), 1431. https://doi.org/10.3390/nu14071431