The Effects of Prolonged Water-Only Fasting and Refeeding on Markers of Cardiometabolic Risk
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Population and Enrollment
3.2. Weight, BMI, and Abdominal Circumference
3.3. Resting Blood Pressure
3.4. Serum Lipids
3.5. High-Sensitivity C-Reactive Protein
3.6. Homeostatic Model Assessment for Insulin Resistance (HOMA-IR)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-Garcia, F.J.; Monistrol-Mula, A.; Cardellach, F.; Garrabou, G. Nutrition, Bioenergetics, and Metabolic Syndrome. Nutrients 2020, 12, 2785. [Google Scholar] [CrossRef]
- Kirk, E.P.; Klein, S. Pathogenesis and pathophysiology of the cardiometabolic syndrome. J. Clin. Hypertens. 2009, 11, 761–765. [Google Scholar] [CrossRef]
- Xu, H.; Jin, C.; Guan, Q. Causal Effects of Overall and Abdominal Obesity on Insulin Resistance and the Risk of Type 2 Diabetes Mellitus: A Two-Sample Mendelian Randomization Study. Front. Genet. 2020, 11, 603. [Google Scholar] [CrossRef]
- Czech, M.P. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol. Metab. 2020, 34, 27–42. [Google Scholar] [CrossRef]
- Anton, S.D.; Moehl, K.; Donahoo, W.T.; Marosi, K.; Lee, S.A.; Mainous, A.G., 3rd; Leeuwenburgh, C.; Mattson, M.P. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity 2018, 26, 254–268. [Google Scholar] [CrossRef]
- Varady, K.A.; Bhutani, S.; Klempel, M.C.; Kroeger, C.M.; Trepanowski, J.F.; Haus, J.M.; Hoddy, K.K.; Calvo, Y. Alternate day fasting for weight loss in normal weight and overweight subjects: A randomized controlled trial. Nutr. J. 2013, 12, 146. [Google Scholar] [CrossRef]
- Newman, J.C.; Verdin, E. Ketone bodies as signaling metabolites. Trends Endocrinol. Metab. 2014, 25, 42–52. [Google Scholar] [CrossRef]
- Miller, V.J.; Villamena, F.A.; Volek, J.S. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J. Nutr. Metab. 2018, 2018, 5157645. [Google Scholar] [CrossRef]
- Cahill, G.F., Jr. Starvation in man. Clin. Endocrinol. Metab. 1976, 5, 397–415. [Google Scholar] [CrossRef]
- Finnell, J.S.; Saul, B.C.; Goldhamer, A.C.; Myers, T.R. Is fasting safe? A chart review of adverse events during medically supervised, water-only fasting. BMC Complement. Altern. Med. 2018, 18, 67. [Google Scholar] [CrossRef]
- Runcie, J.; Hilditch, T.E. Energy provision, tissue utilization, and weight loss in prolonged starvation. Br. Med. J. 1974, 2, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Goldhamer, A.; Lisle, D.; Parpia, B.; Anderson, S.V.; Campbell, T.C. Medically supervised water-only fasting in the treatment of hypertension. J. Manip. Physiol. Ther. 2001, 24, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Goldhamer, A.C.; Lisle, D.J.; Sultana, P.; Anderson, S.V.; Parpia, B.; Hughes, B.; Campbell, T.C. Medically supervised water-only fasting in the treatment of borderline hypertension. J. Altern. Complement. Med. 2002, 8, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Weigle, D.S.; Duell, P.B.; Connor, W.E.; Steiner, R.A.; Soules, M.R.; Kuijper, J.L. Effect of fasting, refeeding, and dietary fat restriction on plasma leptin levels. J. Clin. Endocrinol. Metab. 1997, 82, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Jackson, I.M.; McKiddie, M.T.; Buchanan, K.D. Effect of fasting on glucose and insulin metabolism of obese patients. Lancet 1969, 1, 285–287. [Google Scholar] [CrossRef]
- Jackson, I.M.; McKiddie, M.T.; Buchanan, K.D. Influence of blood-lipid levels and effect of prolonged fasting on carbohydrate metabolism in obesity. Lancet 1971, 2, 450–452. [Google Scholar] [CrossRef]
- Greenfield, M.; Kolterman, O.; Olefsky, J.M.; Reaven, G.M. The effect of ten days of fasting on various aspects of carbohydrate metabolism in obese diabetic subjects with significant fasting hyperglycemia. Metabolism 1978, 27 (Suppl. 2), 1839–1852. [Google Scholar] [CrossRef]
- Anderson, J.W.; Herman, R.H. Effect of fasting, caloric restriction, and refeeding on glucose tolerance of normal men. Am. J. Clin. Nutr. 1972, 25, 41–52. [Google Scholar] [CrossRef]
- Gayoso-Diz, P.; Otero-Gonzalez, A.; Rodriguez-Alvarez, M.X.; Gude, F.; Garcia, F.; De Francisco, A.; Quintela, A.G. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: Effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 2013, 13, 47. [Google Scholar] [CrossRef]
- Kassambara, A. Rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R Package Version 0.7.0. 2021. Available online: https://CRAN.R-project.org/package=rstatix (accessed on 22 February 2022).
- Siegel, A.F. Robust regression using repeated medians. Biometrika 1982, 69, 242–244. [Google Scholar] [CrossRef]
- James, G.M.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer Nature: Berlin, Germany, 2021. [Google Scholar]
- Leamer, E.; Leonard, H. Reporting the Fragility of Regression Estimates. Rev. Econ. Stat. 1983, 65, 306. [Google Scholar] [CrossRef]
- Allison, P.D. Change Scores as Dependent Variables in Regression Analysis. Sociol. Methodol. 1990, 20, 93. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 22 February 2022).
- Wilhelmi de Toledo, F.; Buchinger, A.; Burggrabe, H.; Holz, G.; Kuhn, C.; Lischka, E.; Lischka, N.; Lützner, H.; May, W.; Ritzmann-Widderich, M.; et al. Fasting therapy—An expert panel update of the 2002 consensus guidelines. Forsch. Komplementmed. 2013, 20, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Kerndt, P.R.; Naughton, J.L.; Driscoll, C.E.; Loxterkamp, D.A. Fasting: The history, pathophysiology and complications. West J. Med. 1982, 137, 379–399. [Google Scholar]
- Bloom, W.L. Fasting as an introduction to the treatment of obesity. Metabolism 1959, 8, 214–220. [Google Scholar]
- Wilhelmi de Toledo, F.; Grundler, F.; Bergouignan, A.; Drinda, S.; Michalsen, A. Safety, health improvement and well-being during a 4 to 21-day fasting period in an observational study including 1422 subjects. PLoS ONE 2019, 14, e0209353. [Google Scholar] [CrossRef]
- Giesecke, K.; Magnusson, I.; Ahlberg, M.; Hagenfeldt, L.; Wahren, J. Protein and amino acid metabolism during early starvation as reflected by excretion of urea and methylhistidines. Metabolism 1989, 38, 1196–1200. [Google Scholar] [CrossRef]
- Henson, L.C.; Heber, D. Whole body protein breakdown rates and hormonal adaptation in fasted obese subjects. J. Clin. Endocrinol. Metab. 1983, 57, 316–319. [Google Scholar] [CrossRef]
- Kwon, H.; Kim, D.; Kim, J.S. Body Fat Distribution and the Risk of Incident Metabolic Syndrome: A Longitudinal Cohort Study. Sci. Rep. 2017, 7, 10955. [Google Scholar] [CrossRef]
- North, K.A.; Lascelles, D.; Coates, P. The mechanisms by which sodium excretion is increased during a fast but reduced on subsequent carbohydrate feeding. Clin. Sci. Mol. Med. 1974, 46, 423–432. [Google Scholar] [CrossRef]
- Kolanowski, J. On the mechanisms of fasting natriuresis and of carbohydrate-induced sodium retention. Diabetes Metab. 1977, 3, 131–143. [Google Scholar]
- Runcie, J. Urinary sodium and potassium excretion in fasting obese subjects. Br. Med. J. 1971, 2, 22–25. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Andersson, B.; Wallin, G.; Hedner, T.; Ahlberg, A.C.; Andersson, O.K. Acute effects of short-term fasting on blood pressure, circulating noradrenaline and efferent sympathetic nerve activity. Acta Med. Scand. 1988, 223, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Chinn, R.H.; Brown, J.J.; Fraser, R.; Heron, S.M.; Lever, A.F.; Murchison, L.; Robertson, J.I.S. The natriuresis of fasting: Relationship to changes in plasma renin and plasma aldosterone concentrations. Clin. Sci. 1970, 39, 437–455. [Google Scholar] [CrossRef]
- Gelman, A.; Sigulem, D.; Korn, D.; Ajzen, H.; Ramos, O.L. Starvation—An interesting model for the study of the renin-angiotensin-aldosterone system. Rev. Bras. Pesqui. Med. Biol. 1978, 11, 43–47. [Google Scholar]
- Feingold, K.R. Introduction to Lipids and Lipoproteins. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dhatariya, K., Dungan, K., Hershman, J.M., Hofland, J., Kalra, S., et al., Eds.; South Dartmouth: Dartmouth, MA, USA, 2000. [Google Scholar]
- Goldstein, J.L.; Brown, M.S. Regulation of low-density lipoprotein receptors: Implications for pathogenesis and therapy of hypercholesterolemia and atherosclerosis. Circulation 1987, 76, 504–507. [Google Scholar] [CrossRef]
- Fang, Y.; Gu, Y.; Zhao, C.; Lv, Y.; Qian, J.; Zhu, L.; Yuan, N.; Zhang, S.; Wang, L.; Li, M.; et al. Impact of supervised beego, a traditional Chinese water-only fasting, on thrombosis and haemostasis. BMJ Nutr. Prev. Health 2021, 4, 1–14. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Li, C.; Ostermann, T.; Hardt, M.; Ludtke, R.; Broecker-Preuss, M.; Dobos, G.; Michalsen, A. Metabolic and psychological response to 7-day fasting in obese patients with and without metabolic syndrome. Forsch. Komplementmed. 2013, 20, 413–420. [Google Scholar] [CrossRef]
- Gutch, M.; Kumar, S.; Razi, S.M.; Gupta, K.K.; Gupta, A. Assessment of insulin sensitivity/resistance. Indian J. Endocrinol. Metab. 2015, 19, 160–164. [Google Scholar] [CrossRef]
- Kolterman, O.G.; Saekow, M.; Olefsky, J.M. The effects of acute and chronic starvation on insulin binding to isolated human adipocytes. J. Clin. Endocrinol. Metab. 1979, 48, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Quinn, W.J., 3rd; Wan, M.; Shewale, S.V.; Gelfer, R.; Rader, D.J.; Birnbaum, M.J.; Titchenell, P.M. mTORC1 stimulates phosphatidylcholine synthesis to promote triglyceride secretion. J. Clin. Investig. 2017, 127, 4207–4215. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, P.K.; Zhang, Y.; O’Keefe, J.; Pesaresi, T.; Lun, M.; Lawney, B.; Steinhauser, M.L. Prolonged fasting drives a program of metabolic inflammation in human adipose tissue. Mol. Metab. 2020, 42, 101082. [Google Scholar] [CrossRef]
- Michalsen, A. Prolonged fasting as a method of mood enhancement in chronic pain syndromes: A review of clinical evidence and mechanisms. Curr. Pain Headache Rep. 2010, 14, 80–87. [Google Scholar] [CrossRef]
- Brandhorst, S.; Choi, I.Y.; Wei, M.; Cheng, C.W.; Sedrakyan, S.; Navarrete, G.; Dubeau, L.; Yap, L.P.; Park, R.; Vinciguerra, M.; et al. A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab. 2015, 22, 86–99. [Google Scholar] [CrossRef] [PubMed]
Median (IQR) | Friedman Test | Median of Differences (95% CI) | |||||
---|---|---|---|---|---|---|---|
Bonferroni Corrected p Value | |||||||
Baseline | EOF | EOR | Fr (p Value) | EOF Baseline | EOR Baseline | EOR–EOF | |
Weight, kg | 87.2 (75.1–99.5) | 78.3 (66.2–88.2) | 79.5 (67.3–89.0) | 43 (<0.0001) | −9.0 (−9.6, −8.0) <0.0001 | −7.3 (−8.5, −6.1) <0.0001 | 1.3 (0.9, 2.0) 0.0006 |
BMI, kg/m2 (18.5–24.9 kg/m2) | 30.7 (27.5–35.3) | 27.6 (24.6–31.5) | 28.8 (25.1–31.9) | 43 (<0.0001) | −3.2 (−3.4, −2.8) <0.0001 | −2.5 (−3.1, −2.2) <0.0001 | 0.5 (0.3, 0.7) 0.0001 |
AC, cm (<101.6 cm for men and <88.9 cm for women) | 97.6 (93.8–108.3) | 90.7 (84.9–100.6) | 90.8 (84.8–102.3) | 46 (<0.0001) | −7.1 (−9.2, −6.4) <0.0001 | −5.7 (−7.5, −4.9) <0.0001 | 1.7 (1.1, 2.6) 0.0054 |
SBP, mmHg (<130 mmHg) | 130 (115–153) | 119 (113–126) | 117 (107–123) | 13 (0.0017) | −14 (−26, −6) 0.0054 | −13 (−27, −9) 0.0012 | −3 (−6, 3) 1.5507 |
DBP, mmHg (<80 mmHg) | 80 (76–87) | 83 (71–85) | 77 (71–82) | 7 (0.0368) | −3 (−6, 2) 1.4533 | −6 (−8, −1) 0.0874 | −3 (−6, 1) 0.6872 |
TC, mmol/L (3.24–5.18 mmol/L) | 5.67 (4.71–6.18) | 5.27 (4.29–6.03) | 4.87 (4.46–5.26) | 7 (0.0280) | 0 (−0.47, 0.35) 2.4280 | −0.52 (−0.88, −0.23) 0.0031 | −0.45 (−0.92, −0.08) 0.0667 |
HDL, mmol/L (≥1.17 mmol/L for men and ≥1.30 mmol/L for women) | 1.28 (1.04–1.52) | 1.14 (0.96–1.23) | 1.09 (0.98–1.29) | 9 (0.0094) | −0.12 (−1.26, −0.03) 0.0544 | −0.09 (−0.22, −0.04) 0.03176 | 0.01 (−0.08, 0.12) 2.0988 |
LDL, mmol/L (<2.59 mmol/L) | 3.83 (2.95–4.12) | 3.39 (2.47–4.68) | 2.85 (2.38–3.13) | 19 (<0.0001) | −0.03 (−0.36, 0.48) 2.4666 | −0.75 (−97, −0.45) 0.0004 | −0.82 (−1.14, −0.41) 0.0010 |
LDL > 3.11 mmol/L ‡ | 4.03 (3.93–4.33) | 3.87 (3.35–5.02) | 2.91 (2.83–3.66) | 16 (0.0004) | −0.13 (−0.63, 0.71) 2.1172 | −0.92 (−1.20, −0.61) 0.0018 | −0.96 (−1.53, −0.52) 0.0044 |
VLDL, mmol/L (<0.78 mmol/L) | 0.63 (0.49–0.78) | 0.66 (0.60–0.74) | 0.87 (0.75–1.04) | 20 (<0.0001) | 0.03 (−0.10, 0.13) 1.7424 | 0.30 (0.13, 0.39) 0.0023 | 0.26 (0.17, 0.36) 0.0002 |
TG, mmol/L (<1.70 mmol/L) | 1.39 (1.06–1.68) | 1.44 (1.30–1.63) | 1.91 (1.65–2.28) | 21 (<0.0001) | 0.04 (−0.21, 0.27) 1.7813 | 0.62 (0.30, 0.84) 0.0011 | 0.55 (0.35, 0.77) <0.0001 |
hsCRP, mg/L (<1.0 mg/L) | 2.67 (1.00–4.60) | 3.91 (1.84–7.09) | 1.68 (0.79–3.44) | 9 (0.0088) | 0.60 (−0.07, 1.69) 0.2526 | −0.55 (−2.65, −0.07) 0.0897 | −1.46 (−3.35, 0.87) 0.0041 |
hsCRP > 2 mg/L ‡ ‡ | 3.64 (2.70–7.01) | 5.19 (3.68–8.06) | 2.54 (1.56–3.47) | 15 (0.0007) | 1.07 (−2.05, 2.81) 1.3757 | −2.02 (−4.71, −0.81) 0.0068 | −2.43 (−5.01, 1.53) 0.0009 |
Glucose, mmol/L (<7.8 mmol/L) | 4.94 (4.56–5.05) | 4.13 (3.90–4.66) | 5.55 (5.05–5.97) | 38 (<0.0001) | −0.61 (−0.94, −0.44) 0.0002 | 0.83 (0.47, 1.05) 0.0003 | 1.42 (1.08, 1.83) < 0.0001 |
Insulin, pmol/L (<102 pmol/L) | 40.2 (30.8–64.5) | 36 (23.4–44.3) | 75.3 (62.0–126.8) | 34 (<0.0001) | −7.2 (−24.0, 1.2) 0.1912 | 41.7 (32.7, 60.9) <0.0001 | 36.9 (32.4, 86.7) 0.0001 |
HOMA-IR (<1 is optimal) | 1.4 (1.0–2.6) | 1.1 (0.6–1.4) | 3.1 (2.2–6.1) | 37 (<0.0001) | −0.4 (−1.2, −0.1) 0.0329 | 2.0 (1.5, 2.9) <0.0001 | 1.8 (1.5, 4.0) 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scharf, E.; Zeiler, E.; Ncube, M.; Kolbe, P.; Hwang, S.-Y.; Goldhamer, A.; Myers, T.R. The Effects of Prolonged Water-Only Fasting and Refeeding on Markers of Cardiometabolic Risk. Nutrients 2022, 14, 1183. https://doi.org/10.3390/nu14061183
Scharf E, Zeiler E, Ncube M, Kolbe P, Hwang S-Y, Goldhamer A, Myers TR. The Effects of Prolonged Water-Only Fasting and Refeeding on Markers of Cardiometabolic Risk. Nutrients. 2022; 14(6):1183. https://doi.org/10.3390/nu14061183
Chicago/Turabian StyleScharf, Eugene, Evelyn Zeiler, Mackson Ncube, Patricia Kolbe, Su-Yeon Hwang, Alan Goldhamer, and Toshia R. Myers. 2022. "The Effects of Prolonged Water-Only Fasting and Refeeding on Markers of Cardiometabolic Risk" Nutrients 14, no. 6: 1183. https://doi.org/10.3390/nu14061183
APA StyleScharf, E., Zeiler, E., Ncube, M., Kolbe, P., Hwang, S.-Y., Goldhamer, A., & Myers, T. R. (2022). The Effects of Prolonged Water-Only Fasting and Refeeding on Markers of Cardiometabolic Risk. Nutrients, 14(6), 1183. https://doi.org/10.3390/nu14061183