Changes in Bone Mineral Density and Serum Lipids across the First Postpartum Year: Effect of Aerobic Fitness and Physical Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Measurements
2.2. Assessment of Anthropometrics and Bone Mineral Density
2.3. Serum Lipid Profiles
2.4. Markers of Bone Resorption
2.5. Assessment of Habitual Exercise and Aerobic Fitness
2.6. Menstrual and Lactation Logs
2.7. Statistical Analysis
3. Results
3.1. Missing Data
3.2. Body Mass and Body Composition
3.3. Bone Mineral Density and Markers of Bone Resorption
3.3.1. BMD at Dual-Femur, Spine and Total Body
3.3.2. Biochemical Markers of Bone Resorption
3.4. Serum Lipids
3.5. Aerobic Fitness and Physical Activity
3.6. Effect of Habitual Exercise, Lactation and Return of Menses
3.6.1. Habitual exercise and Aerobic Fitness
3.6.2. Lactation Duration
3.6.3. Return of Menses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- More, C.; Bettembuk, P.; Bhattoa, H.P.; Balogh, A. The Effects of Pregnancy and Lactation on Bone Mineral Density. Osteoporos. Int. 2001, 12, 732–737. [Google Scholar] [CrossRef]
- Møller, U.K.; Við Streym, S.; Mosekilde, L.; Rejnmark, L. Changes in bone mineral density and body composition during pregnancy and postpartum. A controlled cohort study. Osteoporos. Int. 2012, 23, 1213–1223. [Google Scholar] [CrossRef]
- Karlsson, C.; Obrant, K.J.; Karlsson, M. Pregnancy and Lactation Confer Reversible Bone Loss in Humans. Osteoporos. Int. 2001, 12, 828–834. [Google Scholar] [CrossRef]
- Saarelainen, H.; Laitinen, T.; Raitakari, O.T.; Juonala, M.; Heiskanen, N.; Lyyra-Laitinen, T.; Viikari, J.S.; Vanninen, E.; Heinonen, S. Pregnancy-related hyperlipidemia and endothelial function in healthy women. Circ. J. 2006, 70, 768–772. [Google Scholar] [CrossRef] [Green Version]
- Diareme, M.; Karkalousos, P.; Theodoropoulos, G.; Strouzas, S.; Lazanas, N. Lipid profile of healthy women during pregnancy. J. Med. Biochem. 2009, 28, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.; Dar, S.; Zhu, Y.; Wu, J.; Rawal, S.; Li, S.; Weir, N.L.; Tsai, M.Y.; Zhang, C. Plasma concentrations of lipids during pregnancy and the risk of gestational diabetes mellitus: A longitudinal study. J. Diabetes 2018, 10, 487–495. [Google Scholar] [CrossRef]
- Kovacs, C.S. Maternal Mineral and Bone Metabolism During Pregnancy, Lactation, and Post-Weaning Recovery. Physiol. Rev. 2016, 96, 449–547. [Google Scholar] [CrossRef] [Green Version]
- Herrera, E.; Ortega-Senovilla, H. Maternal lipid metabolism during normal pregnancy and its implications to fetal development. Clin. Lipidol. 2010, 5, 899–911. [Google Scholar] [CrossRef] [Green Version]
- Salari, P.; Abdollahi, M. The influence of pregnancy and lactation on maternal bone health: A systematic review. J. Fam. Reprod Health 2014, 8, 135–148. [Google Scholar]
- Mankuta, D.; Elami-Suzin, M.; Elhayani, A.; Vinker, S. Lipid profile in consecutive pregnancies. Lipids Health Dis 2010, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. The National Academies Collection: Reports funded by National Institutes of Health. In Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academies Press (US): Washington, DC, USA, 2020. [Google Scholar]
- Prentice, A. Micronutrients and the bone mineral content of the mother, fetus and newborn. J. Nutr. 2003, 133, 1693s–1699s. [Google Scholar] [CrossRef] [Green Version]
- Laskey, M.A.; Prentice, A.; Hanratty, L.A.; Jarjou, L.M.; Dibba, B.; Beavan, S.R.; Cole, T.J. Bone changes after 3 mo of lactation: Influence of calcium intake, breast-milk output, and vitamin D-receptor genotype. Am. J. Clin. Nutr. 1998, 67, 685–692. [Google Scholar] [CrossRef] [Green Version]
- Specker, B.L.; Tsang, R.C.; Ho, M.; Miller, D. Effect of vegetarian diet on serum 1,25-dihydroxyvitamin D concentrations during lactation. Obstet. Gynecol. 1987, 70, 870–874. [Google Scholar]
- Moser, P.B.; Reynolds, R.D.; Acharya, S.; Howard, M.P.; Andon, M.B. Calcium and magnesium dietary intakes and plasma and milk concentrations of Nepalese lactating women. Am. J. Clin. Nutr. 1988, 47, 735–739. [Google Scholar] [CrossRef]
- Affinito, P.; Tommaselli, G.A.; di Carlo, C.; Guida, F.; Nappi, C. Changes in bone mineral density and calcium metabolism in breastfeeding women: A one year follow-up study. J. Clin. Endocrinol. Metab. 1996, 81, 2314–2318. [Google Scholar]
- Drinkwater, B.L.; Chesnut, C.H. Bone density changes during pregnancy and lactation in active women: A longitudinal study. Bone Miner. 1991, 14, 153–160. [Google Scholar] [CrossRef]
- Hopkinson, J.M.; Butte, N.F.; Ellis, K.; Smith, E.O. Lactation delays postpartum bone mineral accretion and temporarily alters its regional distribution in women. J. Nutr. 2000, 130, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Brembeck, P.; Lorentzon, M.; Ohlsson, C.; Winkvist, A.; Augustin, H. Changes in cortical volumetric bone mineral density and thickness, and trabecular thickness in lactating women postpartum. J. Clin. Endocrinol. Metab. 2015, 100, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Sowers, M.; Corton, G.; Shapiro, B.; Jannausch, M.L.; Crutchfield, M.; Smith, M.L.; Randolph, J.F.; Hollis, B. Changes in bone density with lactation. JAMA 1993, 269, 3130–3135. [Google Scholar] [CrossRef]
- Laskey, M.A.; Prentice, A. Bone mineral changes during and after lactation. Obstet. Gynecol. 1999, 94, 608–615. [Google Scholar] [CrossRef]
- Polatti, F.; Capuzzo, E.; Viazzo, F.; Colleoni, R.; Klersy, C. Bone mineral changes during and after lactation. Obstet. Gynecol. 1999, 94, 52–56. [Google Scholar]
- Krebs, N.F.; Reidinger, C.J.; Robertson, A.D.; Brenner, M. Bone mineral density changes during lactation: Maternal, dietary, and biochemical correlates. Am. J. Clin. Nutr. 1997, 65, 1738–1746. [Google Scholar] [CrossRef] [Green Version]
- Kalkwarf, H.J.; Specker, B.L.; Bianchi, D.C.; Ranz, J.; Ho, M. The effect of calcium supplementation on bone density during lactation and after weaning. N. Engl. J. Med. 1997, 337, 523–528. [Google Scholar] [CrossRef]
- Bezerra, F.F.; Mendonça, L.M.; Lobato, E.C.; O’Brien, K.O.; Donangelo, C.M. Bone mass is recovered from lactation to postweaning in adolescent mothers with low calcium intakes. Am. J. Clin. Nutr. 2004, 80, 1322–1326. [Google Scholar] [CrossRef]
- Akesson, A.; Vahter, M.; Berglund, M.; Eklöf, T.; Bremme, K.; Bjellerup, P. Bone turnover from early pregnancy to postweaning. Acta Obs. Gynecol. Scand. 2004, 83, 1049–1055. [Google Scholar] [CrossRef]
- Glerean, M.; Furci, A.; Galich, A.M.; Fama, B.; Plantalech, L. Bone and mineral metabolism in primiparous women and its relationship with breastfeeding: A longitudinal study. Medicine 2010, 70, 227–232. [Google Scholar]
- Laskey, M.A.; Price, R.I.; Khoo, B.C.C.; Prentice, A. Proximal femur structural geometry changes during and following lactation. Bone 2011, 48, 755–759. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.L.; Krupa, F.G.; Rehder, P.M.; Sousa, M.H.; Costa-Paiva, L.; Cecatti, J.G. Forearm bone mineral density changes during postpartum and the effects of breastfeeding, amenorrhea, body mass index and contraceptive use. Osteoporos. Int. 2012, 23, 1691–1698. [Google Scholar] [CrossRef]
- Méndez, R.O.; Gallegos, A.C.; Cabrera, R.M.; Quihui, L.; Zozaya, R.; Morales, G.G.; Valencia, M.E.; Méndez, M. Bone mineral density changes in lactating adolescent mothers during the first postpartum year. Am. J. Hum. Biol 2013, 25, 222–224. [Google Scholar] [CrossRef]
- Kent, G.N.; Price, R.I.; Gutteridge, D.H.; Allen, J.R.; Rosman, K.J.; Smith, M.; Bhagat, C.I.; Wilson, S.G.; Retallack, R.W. Effect of pregnancy and lactation on maternal bone mass and calcium metabolism. Osteoporos. Int. 1993, 3 (Suppl. S1), 44–47. [Google Scholar] [CrossRef]
- Lovelady, C.A.; Bopp, M.J.; Colleran, H.L.; Mackie, H.K.; Wideman, L. Effect of exercise training on loss of bone mineral density during lactation. Med. Sci. Sports Exerc. 2009, 41, 1902–1907. [Google Scholar] [CrossRef] [Green Version]
- Colleran, H.L.; Hiatt, A.; Wideman, L.; Lovelady, C.A. The Effect of an Exercise Intervention During Early Lactation on Bone Mineral Density During the First Year Postpartum. J. Phys. Act. Health 2019, 16, 197–204. [Google Scholar] [CrossRef]
- Ebina, A.; Sawa, R.; Kondo, Y.; Murata, S.; Saito, T.; Isa, T.; Tsuboi, Y.; Torizawa, K.; Matsuda, N.; Ono, R. Daily physical activity is associated with increased sonographically measured bone status during lactation. Womens Health 2020, 16, 1745506519900582. [Google Scholar] [CrossRef] [Green Version]
- Little, K.D.; Clapp, J.F., 3rd. Self-selected recreational exercise has no impact on early postpartum lactation-induced bone loss. Med. Sci. Sports Exerc. 1998, 30, 831–836. [Google Scholar]
- Ganesan, G.R.; Vijayaraghavan, P.V. Urinary N-telopeptide: The New Diagnostic Test for Osteoporosis. Surg. J. 2019, 5, e1–e4. [Google Scholar] [CrossRef] [Green Version]
- Vasikaran, S.; Eastell, R.; Bruyere, O.; Foldes, A.J.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trenti, T.; et al. Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: A need for international reference standards. Osteoporos. Int. 2011, 22, 391–420. [Google Scholar] [CrossRef]
- Bartels, Ä.; O’Donoghue, K. Cholesterol in pregnancy: A review of knowns and unknowns. Obs. Med. 2011, 4, 147–151. [Google Scholar] [CrossRef]
- Kallio, M.J.; Siimes, M.A.; Perheentupa, J.; Salmenperä, L.; Miettinen, T.A. Serum cholesterol and lipoprotein concentrations in mothers during and after prolonged exclusive lactation. Metabolism 1992, 41, 1327–1330. [Google Scholar] [CrossRef]
- Qureshi, I.A.; Xi, X.R.; Limbu, Y.R.; Bin, H.Y.; Chen, M.I. Hyperlipidaemia during normal pregnancy, parturition and lactation. Ann. Acad. Med. Singap. 1999, 28, 217–221. [Google Scholar]
- Lovelady, C.A.; Nommsen-Rivers, L.A.; McCrory, M.A.; Dewey, K.G. Effects of exercise on plasma lipids and metabolism of lactating women. Med. Sci. Sports Exerc. 1995, 27, 22–28. [Google Scholar] [CrossRef]
- Brekke, H.K.; Bertz, F.; Rasmussen, K.M.; Bosaeus, I.; Ellegård, L.; Winkvist, A. Diet and exercise interventions among overweight and obese lactating women: Randomized trial of effects on cardiovascular risk factors. PLoS ONE 2014, 9, e88250. [Google Scholar] [CrossRef] [PubMed]
- Larson-Meyer, D.E.; Schueler, J.; Kyle, E.; Austin, K.J.; Hart, A.M.; Alexander, B.M. Do Lactation-Induced Changes in Ghrelin, Glucagon-Like Peptide-1, and Peptide YY Influence Appetite and Body Weight Regulation during the First Postpartum Year? J. Obes. 2016, 2016, 7532926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson-Meyer, D.E.; Schueler, J.; Kyle, E.; Austin, K.J.; Hart, A.M.; Alexander, B.M. Appetite-Regulating Hormones in Human Milk: A Plausible Biological Factor for Obesity Risk Reduction? J. Hum. Lact. 2020, 37, 603–614. [Google Scholar] [CrossRef]
- Pescatello, L.S.; American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PA, USA, 2014; p. 373. [Google Scholar]
- Baecke, J.A.; Burema, J.; Frijters, J.E. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am. J. Clin. Nutr. 1982, 36, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Birtcher, K.K.; Ballantyne, C.M. Measurement of Cholesterol. Circulation 2004, 110, e296–e297. [Google Scholar] [CrossRef] [Green Version]
- Cross, N.A.; Hillman, L.S.; Allen, S.H.; Krause, G.F. Changes in bone mineral density and markers of bone remodeling during lactation and postweaning in women consuming high amounts of calcium. J. Bone Min. Res. 1995, 10, 1312–1320. [Google Scholar] [CrossRef]
- Ritchie, L.D.; Fung, E.B.; Halloran, B.P.; Turnlund, J.R.; Van Loan, M.D.; Cann, C.E.; King, J.C. A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am. J. Clin. Nutr. 1998, 67, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Kalkwarf, H.J.; Specker, B.L. Bone mineral loss during lactation and recovery after weaning. Obstet. Gynecol. 1995, 86, 26–32. [Google Scholar] [CrossRef]
- Lopez, J.M.; Gonzalez, G.; Reyes, V.; Campino, C.; Diaz, S. Bone turnover and density in healthy women during breastfeeding and after weaning. Osteoporos. Int. 1996, 6, 153–159. [Google Scholar] [CrossRef]
- Malpeli, A.; Mansur, J.L.; De Santiago, S.; Villalobos, R.; Armanini, A.; Apezteguia, M.; Gonzalez, H.F. Changes in bone mineral density of adolescent mothers during the 12-month postpartum period. Public Health Nutr. 2010, 13, 1522–1527. [Google Scholar] [CrossRef] [Green Version]
- Kolthoff, N.; Eiken, P.; Kristensen, B.; Nielsen, S.P. Bone mineral changes during pregnancy and lactation: A longitudinal cohort study. Clin. Sci. 1998, 94, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 2008, 3 (Suppl. S3), S131–S139. [Google Scholar] [CrossRef] [Green Version]
- Lems, W.F.; Raterman, H.G.; van den Bergh, J.P.W.; Bijlsma, H.W.J.; Valk, N.K.; Zillikens, M.C.; Geusens, P. Osteopenia: A diagnostic and therapeutic challenge. Curr. Osteoporos. Rep. 2011, 9, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Hayslip, C.C.; Klein, T.A.; Wray, H.L.; Duncan, W.E. The effects of lactation on bone mineral content in healthy postpartum women. Obstet. Gynecol. 1989, 73, 588–592. [Google Scholar]
- Honda, A.; Kurabayashi, T.; Yahata, T.; Tomita, M.; Takakuwa, K.; Tanaka, K. Lumbar bone mineral density changes during pregnancy and lactation. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 1998, 63, 253–258. [Google Scholar] [CrossRef]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef]
- Sowers, M.R.; Zheng, H.; Jannausch, M.L.; McConnell, D.; Nan, B.; Harlow, S.; Randolph, J.F., Jr. Amount of bone loss in relation to time around the final menstrual period and follicle-stimulating hormone staging of the transmenopause. J. Clin. Endocrinol. Metab. 2010, 95, 2155–2162. [Google Scholar] [CrossRef] [Green Version]
- Grizzo, F.M.F.; Alarcão, A.C.J.; Dell’ Agnolo, C.M.; Pedroso, R.B.; Santos, T.S.; Vissoci, J.R.N.; Pinheiro, M.M.; Carvalho, M.D.B.; Pelloso, S.M. How does women’s bone health recover after lactation? A systematic review and meta-analysis. Osteoporos. Int. 2020, 31, 413–427. [Google Scholar] [CrossRef]
- Dobnig, H.; Kainer, F.; Stepan, V.; Winter, R.; Lipp, R.; Schaffer, M.; Kahr, A.; Nocnik, S.; Patterer, G.; Leb, G. Elevated parathyroid hormone-related peptide levels after human gestation: Relationship to changes in bone and mineral metabolism. J. Clin. Endocrinol. Metab. 1995, 80, 3699–3707. [Google Scholar] [CrossRef]
- Kalkwarf, H.J.; Specker, B.L. Bone mineral changes during pregnancy and lactation. Endocrine 2002, 17, 49–53. [Google Scholar] [CrossRef]
- Butte, N.F.; Hopkinson, J.M. Body composition changes during lactation are highly variable among women. J. Nutr. 1998, 128, 381S–385S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, J.J.; Montelongo, A.; Iglesias, A.; Lasunción, M.A.; Herrera, E. Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J. Lipid Res. 1996, 37, 299–308. [Google Scholar] [CrossRef]
Baseline | 6 Months | 12 Months | p Value | ||
---|---|---|---|---|---|
Age (years) | Control | 26.4 ± 1.4 | - | - | - |
(19–38) | |||||
Lactating | 27.9 ± 1.5 | - | - | ||
(19–38) | |||||
Height (cm) | Control | 169.0 ± 1.4 | - | - | - |
(160.0–178.5) | |||||
Lactating | 167.7 ± 1.8 (154.1–179.2) | - | - | ||
Weight (kg) | Control | 68.0 ± 2.2 | 69.1 ± 2.3 | 67.9 ± 2.5 | * p = 0.019 |
(55.4–86.1) | (55.6–87.4) a | (54.2–92.2) | |||
Lactating | 70.8 ± 2.2 | 66.8 ± 2.3 | 65.6 ± 2.3 | ||
(52.8–92.3) | (48.5–85.2) 1 | (48.2–86.6) 2 | |||
BMI (kg/m²) | Control | 23.9 ± 0.7 | 24.2 ± 0.7 | 23.7 ± 0.8 | * p = 0.026 |
(19.5–30.0) | (20.3–30.2) a | (19.0–32.2) | |||
Lactating | 25.0 ± 0.8 | 23.6 ± 0.9 | 23.0 ± 0.9 | ||
(20.3–32.9) | (19.0–32.0) 1 | (18.4–33.1) 2 | |||
Waist Circumference (cm) | Control | 81.5 | 81.1 | 80.3 | * p = 0.027 |
(68.0–101.0) | (72.5–104.0) a | (29.5–106.0) | |||
Lactating | 93.5 | 83.8 | 80.5 | ||
(77.0–107.0) b | (32.0–109.4) | (71.5–105.4) 2 | |||
Hip Circumference (cm) | Control | 99.0 ± 1.9 | 102.3 ± 1.4 | 97.7 ± 4.4 | * † NS |
(84.5–110.0) | (92.7–110.6) a | (37.5–115.0) | |||
Lactating | 104.5 | 98.8 | 99 | ||
(85.5–118.0) b | (37.5–117.2) | (86.6–120.7) | |||
Body Fat (%) | Control | 34.2 ± 1.8 | 36.0 ± 1.5 | 34.5 ± 2.0 | * p = 0.007 |
(18.0–44.8) | (26.1–44.1) a | (15.4–46.4) | |||
Lactating | 38.9 ± 1.4 | 36.0 ± 1.7 | 34.5 ± 1.9 | ||
(26.5–47.0) | (24.4–52.3) 1 | (22.5–52.9) 2 |
Bone Density | Baseline | 6 Months | 12 Months | p Value | |
---|---|---|---|---|---|
Total Body (g/cm²) | Control | 1.17 ± 0.02 | 1.16 ± 0.02 | 1.17 ± 0.02 | * p = 0.011 |
(1.07–1.27) | (1.06–1.27) a | (1.07–1.28) | |||
Lactating | 1.16 ± 0.01 | 1.15 ± 0.01 | 1.14 ± 0.01 | ||
(1.08–1.31) | (1.07–1.24) | (1.04–1.23) 2 | |||
Spine (g/cm²) | Control | 1.17 ± 0.04 | 1.15 ± 0.04 | 1.14 ± 0.03 | * † NS |
(0.94–1.41) | (0.82–1.39) a | (0.93–1.40) | |||
Lactating | 1.20 ± 0.03 | 1.18 ± 0.03 | 1.17 ± 0.01 | ||
(0.99–1.34) | (0.96–1.46) | (0.81–1.40) | |||
Dual Femur (g/cm²) | Control | 1.06 ± 0.03 | 1.05 ± 0.03 | 1.04 ± 0.03 | † p = 0.014 |
(0.85–1.33) | (0.84–1.24) a | (0.84–1.19) | |||
Lactating | 1.03 ± 0.02 | 0.99 ± 0.02 | 1.00 ± 0.03 | ||
(0.87–1.21) | (0.82–1.13) 1 | (0.85–1.15) 2 | |||
T-scores Total Body | Control | 0.59 ± 0.19 | 0.56 ± 0.21 | 0.54 ± 0.20 | † p = 0.041 |
(−0.5 – 1.7) c | (−0.8 – 1.8) ac | (−0.7 – 1.9) | |||
Lactating | 0.49 ± 0.17 | 0.29 ± 0.16 | 0.22 ± 0.13 | ||
(−0.5 – 2.3) d | (−0.7 – 1.4) bc1 | (−0.6 – 1.3) | |||
T-scores Spine | Control | 0.41 ± 0.28 | 0.28 ± 0.30 | 0.31 ± 0.32 | * † NS |
(−2.1 – 1.8) c | (−2.0 – 1.6) ad | (−2.2 – 2.3) d | |||
Lactating | 0.35 ± 0.17 | 0.16 ± 0.26 | 0.18 ± 0.22 | ||
(−0.9 – 1.2) e | (−1.2 – 2.1) be1 | (−1.7 – 1.7) c | |||
T-scores Dual Femur | Control | 0.45 ± 0.23 | 0.29 ± 0.26 | 0.06 ± 0.22 | † p = 0.009 |
(−1.3 – 1.7) c | (−1.4 – 1.8) ad | (−1.3 – 1.4) d | |||
Lactating | 0.25 ± 0.20 | −0.18 ± 0.17 | −0.12 ± 0.17 | ||
(−1.1 – 1.6) d | (−1.2 – 1.0) bc1 | (−1.1 – 1.1)2 |
Baseline | 6 Months | 12 Months | p Value | ||
---|---|---|---|---|---|
NTX (nM BCE/mM creatinine) | Control | 67.1 ± 11.1 | 54.3 ± 6.7 | 46.6 ± 3.4 | † p = 0.007 |
(25–121) | (26–76) | (31–57) | |||
Lactating | 101.1.6 ± 14.0 | 101.1 ± 8.0 | 73.8 ± 7.0 | ||
(34–219) | (66–156) | (28–124)2 | |||
PYD (µmol/mol creatinine) | Control | 46.5 ± 4.5 | 47.7 ± 3.7 | 50.7 ± 3.7 | * p = 0.000 |
(34.3–72.8) | (34.6–64.4) | (38–69.6) | |||
Lactating | 151.3 ± 11.8 | 80.4 ± 5.5 | 69.0 ± 4.4 | ||
(101.5–266.7) | (59.4–119.9) 1 | (43.4–100.7) 2 | |||
DPYD (µmol/mol creatinine) | Control | 13.9 ± 1.4 | 14.4 ± 1.4 | 14.8 ± 1.3 | * p = 0.021 |
(8.8–20.9) | (8.4–18.9) | (9.0–20.6) | |||
Lactating | 34.3 ± 2.7 | 26.9 ± 2.0 | 23.1 ± 1.7 | ||
(23.2–64.4) | (18.4–37.8) 1 | (14.2–32.7) 2 | |||
DPYD/PYD Ratio | Control | 0.31 ± 0.01 | 0.31 ± 0.01 | 0.29 ± 0.01 | * p = 0.000 |
(0.25–0.42) | (0.23–0.34) | (0.24–0.32) | |||
Lactating | 0.23 ± 0.01 | 0.33 ± 0.01 | 0.33 ± 0.01 | ||
(0.17–0.36) | (0.25–0.44) 1 | (0.27–0.42) 2 |
Baseline | 6 Months | 12 Months | p Value | ||
---|---|---|---|---|---|
Cholesterol (mg/dL) | Control | 163.1 ± 6.5 | 186.3 ± 7.5 | 183.8 ± 8.4 | * p = 0.002 |
(108.0–208.0) b | (154.0–253.0) a1 | (133.0–270.0) 2 | |||
Lactating | 171.6 ± 8.0 | 165.6 ± 5.8 | 157.2 ± 5.7 | ||
(115.0–227.0) b | (130.0–204.0) | (113.0–206.0) | |||
HDL-C (mg/dL) | Control | 51.1 ± 3.6 | 62.3 ± 4.7 | 59.3 ± 3.4 | † p = 0.000 |
(32.0–73.0) b | (37.0–109.0) a1 | (32.0–89.0) 2 | |||
Lactating | 46.7 ± 2.6 | 53.7 ± 2.3 | 52.3 ± 2.1 | ||
(29.0–68.0) b | (31.0–68.0) 1 | (39.0–71.0) | |||
LDL-C (mg/dL) | Control | 91.7 ± 6.3 | 103.2 ± 6.6 | 104.3 ± 9.3 | * p = 0.010 |
(53–156) b | (67.0–170.0) a | (44.0–212.0) | |||
Lactating | 106.4 ± 6.8 | 95.6 ± 4.8 | 89.7 ± 4.1 | ||
(70.0–165.0) b | (69.0–124.0) | (58–122) 2 | |||
VLDL-C (mg/dL) | Control | 19 | 21 | 19 | * † NS |
(10.0–49.0) b | (9.0–36.0) a | (10.0–45.0) | |||
Lactating | 18.6 ± 2.5 | 16.4 ± 1.8 | 15.2 ± 2.0 | ||
(10–47) b | (9–39) | (9–47) | |||
TG (mg/dL) | Control | 96 | 103 | 93.5 | * † NS |
(52.0–244.0) b | (46.0–179.0) a | (51.0–227.0) | |||
Lactating | 76.1 | 71 | 64.5 | ||
(50–234) b | (43–195) | (47–234) | |||
Cholesterol/HDL-C Ratio | Control | 3.1 | 2.8 | 2.9 | † p = 0.001 |
(2.1–6.5) b | (2.1–6.0) a1 | 2.0–7.1) | |||
Lactating | 3.5 | 3 | 3 | ||
(2.7–6.7) b | (2.4–6.0) 1 | (2.4–3.8) 2 |
Baseline | 6 Months | 12 Months | p Value | ||
---|---|---|---|---|---|
Work Index | Control | 2.5 ± 0.1 (1.6–3.5) | 2.4 ± 0.1 (1.6–3.1) a | 2.6 ± 0.2 (1.4–3.9) | * † NS |
Lactating | 2.2 ± 0.2 (0.0–3.1) | 2.3 ± 0.1 (1.6–3.3) | 2.3 ± 0.1 (1.6–3.3) | ||
Sport Index | Control | 3.7 ± 0.2 (2.3–4.5) | 3.2 ± 0.2 (2.0–4.8) a | 3.4 ± 0.2 (2.0–4.5) | * † NS |
Lactating | 2.4 ± 0.2 (1.0–3.5) | 2.5 ± 0.2 (1.3–3.8) | 2.7 ± 0.2 (1.5–4.5) | ||
Leisure Index | Control | 3.6 ± 0.4 (2.5–10.0) | 3.7 ± 0.3 (2.3–7.3) a | 3.6 ± 0.4 (2.8–8.9) | * † NS |
Lactating | 2.9 ± 0.2 (1.5–6.5) | 2.8 ± 0.1 (2.0–3.5) | 2.8 ± 0.1 (2.0–3.8) | ||
Total Baecke Score | Control | 9.8 ± 2.2 (7.3–16.8) | 9.3 ± 1.6 (6.5–12.5.0) a | 9.6 ± 2.2 (6.1–15.6) | * † NS |
Lactating | 7.5 ± 0.4 (3.5–11.3) | 7.6 ± 0.2 (5.4–10.3) | 7.8 ± 0.3 (5.9–10.0) | ||
VO2max (ml/kg/min) | Control | - | - | 37.9 ± 1.7 (24.2–50.9) | - |
Lactating | - | - | 37.5 ± 1.5 (29.1–48.7) b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyle, E.M.; Miller, H.B.; Schueler, J.; Clinton, M.; Alexander, B.M.; Hart, A.M.; Larson-Meyer, D.E. Changes in Bone Mineral Density and Serum Lipids across the First Postpartum Year: Effect of Aerobic Fitness and Physical Activity. Nutrients 2022, 14, 703. https://doi.org/10.3390/nu14030703
Kyle EM, Miller HB, Schueler J, Clinton M, Alexander BM, Hart AM, Larson-Meyer DE. Changes in Bone Mineral Density and Serum Lipids across the First Postpartum Year: Effect of Aerobic Fitness and Physical Activity. Nutrients. 2022; 14(3):703. https://doi.org/10.3390/nu14030703
Chicago/Turabian StyleKyle, Erin M., Hayley B. Miller, Jessica Schueler, Michelle Clinton, Brenda M. Alexander, Ann Marie Hart, and D. Enette Larson-Meyer. 2022. "Changes in Bone Mineral Density and Serum Lipids across the First Postpartum Year: Effect of Aerobic Fitness and Physical Activity" Nutrients 14, no. 3: 703. https://doi.org/10.3390/nu14030703
APA StyleKyle, E. M., Miller, H. B., Schueler, J., Clinton, M., Alexander, B. M., Hart, A. M., & Larson-Meyer, D. E. (2022). Changes in Bone Mineral Density and Serum Lipids across the First Postpartum Year: Effect of Aerobic Fitness and Physical Activity. Nutrients, 14(3), 703. https://doi.org/10.3390/nu14030703