An Emerging Role of Defective Copper Metabolism in Heart Disease
Abstract
:1. Introduction
2. Copper Chaperones and Heart Physiological and Pathological Processes
2.1. CCO
2.2. SOD
2.3. MTs
2.4. CP
2.5. LOX
3. Copper Transporters and Heart Physiology and Pathology
4. Copper Deficiency and Heart Disease
4.1. Cardiac Hypertrophy and HF
4.1.1. Cardiac Hypertrophy
4.1.2. HF
4.2. IHD
4.3. DM cardiomyopathy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Linder, M.C.; Hazegh-Azam, M. Copper biochemistry and molecular biology. Am. J. Clin. Nutr. 1996, 63, 797S–811S. [Google Scholar] [PubMed]
- Ohgami, R.S.; Campagna, D.R.; McDonald, A.; Fleming, M.D. The Steap proteins are metalloreductases. Blood 2006, 108, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Attar, N.; Campos, O.A.; Vogelauer, M.; Xue, Y.; Schmollinger, S.; Mallipeddi, N.V.; Cheng, C.; Yen, L.; Yang, S.; Zikovich, S.; et al. The histone H3-H4 tetramer is a copper reductase enzyme. Science 2020, 369, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Hellman, N.E.; Gielin, J.D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 2002, 22, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.E.; Turski, M.L.; Nose, Y.; Casad, M.; Rockman, H.A.; Thiele, D.J. Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs. Cell Metab. 2010, 11, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Saari, J.T.; Schuschke, D.A. Cardiovascular effects of dietary copper deficiency. Biofactors 1999, 10, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Pacheu-Grau, D.; Bareth, B.; Dudek, J.; Juris, L.; Vögtle, F.N.; Wissel, M.; Leary, S.C.; Dennerlein, S.; Rehling, P.; Deckers, M. Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies. Cell Metab. 2015, 21, 823–833. [Google Scholar] [CrossRef] [Green Version]
- Baertling, F.; van den Brand, M.A.; Hertecant, J.L.; Al-Shamsi, A.; van den Heuvel, L.P.; Distelmaier, F.; Mayatepek, E.; Smeitink, J.A.; Nijtmans, L.G.; Rodenburg, R.J. Mutations in COA6 cause Cytochrome c Oxidase Deficiency and Neonatal Hypertrophic Cardiomyopathy. Hum. Mutat. 2014, 36, 34–38. [Google Scholar] [CrossRef]
- Kopp, S.J.; Klevay, L.M.; Feliksik, J.M. Physiological and metabolic characterization of a cardiomyopathy induced by chronic copper deficiency. Am. J. Physiol. 1983, 245, H855–H866. [Google Scholar] [CrossRef]
- Freisinger, P.; Horvath, R.; Macmillan, C.; Peters, J.; Jaksch, M. Reversion of hypertrophic cardiomyopathy in a patient with deficiency of the mitochondrial copper binding protein Sco2: Is there a potential effect of copper? J. Inherit. Metab. Dis. 2004, 27, 67–69. [Google Scholar] [CrossRef]
- Klevay, L.M. Is the Western diet adequate in copper? J. Trace Elem. Med. Biol. 2011, 25, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Willis, M.S.; Monaghan, S.A.; Miller, M.L.; McKenna, R.W.; Perkins, W.D.; Levinson, B.S.; Bhushan, V.; Kroft, S.H. Zinc-Induced Copper Deficiency: A Report of Three Cases Initially Recognized on Bone Marrow Examination. Am. J. Clin. Pathol. 2005, 123, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Harry, H.N.; Phyliky, R.L.; Fleming, C.R. Zinc-induced copper deficiency. Gastroenterology 1988, 94, 508–512. [Google Scholar]
- DiNicolantonio, J.J.; Mangan, D.; O’Keefe, J.H. Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart 2018, 5, e000784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chipperfield, B.; Chipperfield, J.R. Differences in metal content of the heart muscle in death from ischemic heart disease. Am. Heart J. 1978, 95, 732–737. [Google Scholar] [CrossRef]
- Alarcón, O.M.; Guerrero, Y.; Ramírez de Fernández, M.; D’Jesús, I.; Burguera, M.; Burguera, J.L.; Bernardo, M.L. Effect of cooper supplementation on blood pressure values in patients with stable moderate hypertension. Arch. Latinoam. Nutr. 2003, 53, 271–276. [Google Scholar]
- Klevay, L.M. Ischemic Heart Disease: Nutrition or Pharmacotherapy? J. Trace Elem. Electrolytes Health Dis. 1993, 7, 63–69. [Google Scholar]
- Medeiros, D.M.; Wildman, R.E. Newer findings on a unified perspective of copper restriction and cardiomyopathy. Proc. Soc. Exp. Biol. Med. 1997, 215, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.A.; Sampson, B.; Muller, B.R.; Curtis, J.R. Urinary iron loss in the nephrotic syndrome—An unusual cause of iron deficiency with a note on urinary copper losses. Postgrad. Med. J. 1984, 60, 125–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halfdanarson, T.R.; Kumar, N.; Hogan, W.J.; Murray, J.A. Copper deficiency in celiac disease. J. Clin. Gastroenterol. 2009, 43, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Fukai, T.; Ushio-Fukai, M.; Kaplan, J.H. Copper transporters and copper chaperones: Roles in cardiovascular physiology and disease. Am. J. Physiol. Cell Physiol. 2018, 315, C186–C201. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Mangan, D.; H. O’Keefe, J. The fructose–copper connection: Added sugars induce fatty liver and insulin resistance via copper deficiency. J. Insul. Resist. 2018, 3, a43. [Google Scholar] [CrossRef]
- Fan, M.; Zhao, F.; Fairweather-Tait, S.J.; Poulton, P.R.; Dunham, S.J.; McGrath, S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 2008, 22, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulos, P.G.; Wang, S.; Georgopoulos, I.G.; Yonone-Lioy, M.J.; Lioy, P.J. Assessment of human exposure to copper: A case study using the NHEXAS database. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Henderson, L.; Gregory, J.; Swan, G. The National Diet & Nutrition Survey: Adults Aged 19 to 64 Years; HMSO Publications Centre: London, UK, 2004. [Google Scholar]
- Gregory, J.; Foster, K.; Tyler, H.; Wiseman, M. The Dietary and Nutritional Survey of British Adults; HMSO Publications Centre: London, UK, 1990. [Google Scholar]
- Johnson, W.T.; Brown-Borg, H.M. Cardiac Cytochrome-c Oxidase Deficiency Occurs During Late Postnatal Development in Progeny of Copper-Deficient Rats. Exp. Biol. Med. 2006, 231, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Saati, J.T.; Johnson, W.T. Copper Deficiency Decreases Complex IV but Not Complex I, II, III, or V in the Mitochondrial Respiratory Chain in Rat Heart. J. Nutr. 2007, 137, 14–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, W.T.; Newman, S.M., Jr. Hearts in adult offspring of copper-deficient dams exhibit decreased cytochrome c oxidase activity, increased mitochondrial hydrogen peroxide generation and enhanced formation of intracellular residual bodies. J. Nutr. Biochem. 2007, 18, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, D.M.; Jennings, D. Role of Copper in Mitochondrial Biogenesis Via Interaction with ATP Synthase and Cytochrome c Oxidase. J. Bioenerg. Biomembr. 2002, 34, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Palumaa, P. Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett. 2013, 587, 1902–1910. [Google Scholar] [CrossRef] [Green Version]
- Robinson, N.J.; Winge, D.R. Copper Metallochaperones. Annu. Rev. Biochem. 2010, 79, 537–562. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Avadhani, N.G. Cytochrome c Oxidase Dysfunction in Oxidative Stress. Free Radic. Biol. Med. 2012, 53, 1252–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, J.R.; Warshaw, J.B.; Dallman, P.R. Cardiac Hypertrophy in Rats with Iron and Copper Deficiency: Quantitative Contribution of Mitochondrial Enlargement. Pediatr. Res. 1970, 4, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Schttltze, M.O. The effect of deficiencies in copper and iron on the cytochrome oxidase of rat tissues. J. Biol. Chem. 1939, 129, 729–737. [Google Scholar] [CrossRef]
- Sacconi, S.; Salviati, L.; Sue, C.M.; Shanske, S.; Davidson, M.M.; Bonilla, E.; Naini, A.B.; De Vivo, D.C.; DiMauro, S. Mutation screening in patients with isolated cytochrome c oxidase deficiency. Pediatr. Res. 2003, 53, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, L.C.; Sue, C.M.; Davidson, M.M.; Tanji, K.; Nishino, I.; Sadlock, J.E.; Krishna, S.; Walker, W.; Selby, J.; Glerum, D.M.; et al. Fatal Infantile Cardioencephalomyopathy With COX Deficiency and Mutations in SCO2, a COX Assembly Gene. Nat. Genet. 1999, 23, 333–337. [Google Scholar] [CrossRef]
- Jaksch, M.; Horvath, R.; Horn, N.; Auer, D.P.; Macmillan, C.; Peters, J.; Gerbitz, K.D.; Kraegeloh-Mann, I.; Muntau, A.; Karcagi, V.; et al. Homozygosity (E140K) in SCO2 Causes Delayed Infantile Onset of Cardiomyopathy and Neuropathy. Neurology 2001, 57, 1440–1446. [Google Scholar] [CrossRef]
- Jaksch, M.; Ogilvie, I.; Yao, J.; Kortenhaus, G.; Bresser, H.G.; Gerbitz, K.D.; Shoubridge, E.A. Mutations in SCO2 are associated with a distinct form of hypertrophic cardiomyopathy and cytochrome c oxidase deficiency. Hum. Mol. Genet. 2000, 9, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Stiburek, L.; Vesela, K.; Hansikova, H.; Hulkova, H.; Zeman, J. Loss of Function of Sco1 and Its Interaction with Cytochrome C Oxidase. Am. J. Physiol. Cell Physiol. 2009, 296, C1218–C1226. [Google Scholar] [CrossRef] [PubMed]
- Baker, Z.N.; Jett, K.; Boulet, A.; Hossain, A.; Cobine, P.A.; Kim, B.E.; Zawily, A.M.; Lee, L.; Tibbits, G.F.; Petris, M.J.; et al. The Mitochondrial Metallochaperone SCO1 Maintains CTR1 at the Plasma Membrane to Preserve Copper Homeostasis in the Murine Heart. Hum. Mol. Genet. 2017, 26, 4617–4628. [Google Scholar] [CrossRef]
- Vögtle, F.N.; Buekhart, J.M.; Rao, S.; Gerbeth, C.; Hinrichs, J.; Martinou, J.C.; Chacinska, A.; Sickmann, A.; Zahedi, R.P.; Meisinger, C. Intermembrane Space Proteome of Yeast Mitochondria. Mol. Cell Proteom. 2012, 11, 1840–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, R.; Wanschers, B.F.; Cuypers, T.D.; Esseling, J.J.; Riemersma, M.; van den Brand, M.A.; Gloerich, J.; Lasonder, E.; van den Heuvel, L.P.; Nijtmans, L.G.; et al. Iterative orthology prediction uncovers new mitochondrial proteins and identifies C12orf62 as the human ortholog of COX14, a protein involved in the assembly of cytochrome c oxidase. Genome Biol. 2012, 13, R12. [Google Scholar] [CrossRef]
- Ghosh, A.; Trivedi, P.; Timbalia, S.A.; Griffin, A.T.; Rahn, J.J.; Chan, S.S.; Gohil, V.M. Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency. Hum. Mol. Genet. 2014, 23, 3596–3606. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Yang, Y.; Mu, X.; Lin, G.; Wang, Y.; Jin, S.; Chen, Y.; Wang, M.; Zhu, Y. Hydrogen Sulfide Alleviates Acute Myocardial Ischemia Injury by Modulating Autophagy and Inflammation Response under Oxidative Stress. Oxid. Med. Cell Longev. 2018, 2018, 3402809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, X.; Zhou, S.; Zheng, Y.; Tan, Y.; Kong, M.; Wang, B.; Feng, W.; Epstein, P.N.; Cai, J.; Cai, L. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice. Toxicol. Appl. Pharmacol. 2014, 277, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Xu, X.; Hu, X.; Zhu, G.; Zhang, P.; Deel, E.D.; French, J.P.; Fassett, J.T.; Oury, T.D.; Bache, R.J.; et al. Extracellular superoxide dismutase deficiency exacerbates pressure overload-induced left ventricular hypertrophy and dysfunction. Hypertension 2008, 51, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Kliment, C.R.; Suliman, H.B.; Tobolewski, J.M.; Reynolds, C.M.; Day, B.J.; Zhu, X.; McTiernan, C.F.; McGaffin, K.R.; Piantadosi, C.A.; Oury, T.D. Extracellular superoxide dismutase regulates cardiac function and fibrosis. J. Mol. Cell Cardiol. 2009, 47, 730–742. [Google Scholar] [CrossRef] [Green Version]
- Juul, K.; Tybjaerg-Hansen, A.; Marklund, S.; Heegaard, N.H.; Steffensen, R.; Sillesen, H.; Jensen, G.; Nordestgaard, B.G. Genetically Reduced Antioxidative Protection and Increased Ischemic Heart Disease Risk. Circulation 2004, 109, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Kobylecki, C.J.; Afzal, S.; Nordestgaard, B.G. Genetically low antioxidant protection and risk of cardiovascular disease and heart failure in diabetic subjects. EBioMedicine 2015, 2, 2010–2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammedi, K.; Bellili-Muñoz, N.; Marklund, S.L.; Driss, F.; Nagard, H.L.; Patente, T.A.; Fumeron, F.; Roussel, R.; Hadjadj, S.; Marre, M.; et al. Plasma extracellular superoxide dismutase concentration, allelic variations in the SOD3 gene and risk of myocardial infarction and all-cause mortality in people with type 1 and type 2 diabetes. Cardiovasc. Diabetol. 2015, 14, 845. [Google Scholar] [CrossRef] [Green Version]
- Kwon, M.J.; Lee, K.Y.; Ham, W.G.; Tak, L.J.; Agrahari, G.; Kim, T.Y. Pathologic properties of SOD3 variant R213G in the cardiovascular system through the altered neutrophils function. PLoS ONE 2020, 15, e0227449. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Abe, Y.; Takayama, M.; Adachi, T.; Okano, H.; Hirose, N.; Arai, Y. Association among extracellular superoxide dismutase genotype, plasma concentration, and comorbidity in the very old and centenarians. Sci. Rep. 2021, 11, 8539. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Wu, Y.; Hartiala, J.; Fan, Y.; Stewart, A.F.; Roberts, R.; McPherson, R.; Fox, P.L.; Allayee, H.; Hazen, S.L. Clinical and genetic association of serum ceruloplasmin with cardiovascular risk. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Dadu, R.T.; Dodge, R.; Nambi, V.; Virani, S.S.; Hoogeveen, R.C.; Smith, N.L.; Chen, F.; Pankow, J.S.; Guild, C.; Tang, W.H.; et al. Ceruloplasmin and Heart Failure in the Atherosclerosis Risk in Communities Study. Circ. Heart Fail. 2013, 6, 936–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nose, Y.; Kim, B.E.; Thiele, D.J. Ctr1 drives intestinal copper absorption and is essential for growth, iron metabolism, and neonatal cardiac function. Cell Metab. 2006, 4, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Hicks, J.D.; Donsante, A.; Pierson, T.M.; Gillespie, M.J.; Chou, D.E.; Kaler, S.G. Increased frequency of congenital heart defects in Menkes disease. Clin. Dysmorphol. 2012, 21, 59–63. [Google Scholar] [CrossRef]
- Almomani, R.; Herkert, J.C.; Posafalvi, A.; Post, J.G.; Boven, L.G.; van der Zwaag, P.A.; Willems, P.H.; van Veen-Hof, I.H.; Verhagen, J.M.; Wessels, M.W.; et al. Homozygous damaging SOD2 variant causes lethal neonatal dilated cardiomyopathy. J. Med. Genet. 2019, 57, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, Y.; Torres, A.S.; O’Halloran, T.V. Oxygen-induced maturation of SOD1: A key role for disulfide formation by the copper chaperone CCS. EMBO J. 2004, 23, 2872–2881. [Google Scholar] [CrossRef]
- Wong, P.C.; Waggoner, D.; Subramaniam, J.R.; Tessarollo, L.; Bartnikas, T.B.; Culotta, V.C.; Price, D.L.; Rothstein, J.; Gitlin, J.D. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 2000, 97, 2886–2891. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.J.; Keen, C.L.; Lanoue, L.; Rucker, R.B.; Uriu-Adams, J.Y. Low nitric oxide: A key factor underlying copper deficiency teratogenicity. Free Radic. Biol. Med. 2007, 43, 1639–1648. [Google Scholar] [CrossRef] [Green Version]
- Strassburger, M.; Bloch, W.; Sulyok, S.; Schüller, J.; Keist, A.F.; Schmidt, A.; Wenk, J.; Peters, T.; Wlaschek, M.; Lenart, J.; et al. Heterozygous deficiency of manganese superoxide dismutase results in severe lipid peroxidation and spontaneous apoptosis in murine myocardium in vivo. Free Radic. Biol. Med. 2005, 38, 1458–1470. [Google Scholar] [CrossRef]
- Gongora, M.C.; Qin, Z.; Laude, K.; Kim, H.W.; McCann, L.; Folz, J.R.; Dikalov, S.; Fukai, T.; Harrison, D.G. Role of extracellular superoxide dismutase in hypertension. Hypertension 2006, 48, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Hou, M.; Li, Y.; Traverse, J.H.; Zhang, P.; Salvemini, D.; Fukai, T.; Bache, R.J. Increased superoxide production causes coronary endothelial dysfunction and depressed oxygen consumption in the failing heart. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H133–H141. [Google Scholar] [CrossRef]
- Landmesser, U.; Merten, R.; Spiekermann, S.; Büttner, K.; Drexler, H.; Hornig, B. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: Relation to endothelium-dependent vasodilation. Circulation 2000, 101, 2264–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Yang, S.; Xu, H.; Liu, D.; Zhang, Y.; Wang, G. Superoxide Dismutase Gene Polymorphism is Associated with Ischemic Stroke Risk in the China Dali Region Han Population. Neurologist 2021, 26, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Oster, O.; Dahm, M.; Oelert, H. Element concentrations (selenium, copper, zinc, iron, magnesium, potassium, phosphorous) in heart tissue of patients with coronary heart disease correlated with physiological parameters of the heart. Eur. Heart J. 1993, 14, 770–774. [Google Scholar] [CrossRef]
- Thirumoorthy, N.; Sunder, A.S.; Kumar, K.M.; Kumar, M.S.; Ganesh, G.; Chatterjee, M. A Review of Metallothionein Isoforms and their Role in Pathophysiology. World J. Surg. Oncol. 2011, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Park, J.D.; Liu, Y.; Klaassen, C.D. Protective effect of metallothionein against the toxicity of cadmium and other metals(1). Toxicology 2001, 163, 93–100. [Google Scholar] [CrossRef]
- Kang, Y.J.; Zhou, Z.X.; Wu, H.; Wang, G.W.; Saari, J.T.; Klein, J.B. Metallothionein Inhibits Myocardial Apoptosis in Copper-Deficient Mice: Role of Atrial Natriuretic Peptide. Lab. Investig. 2000, 80, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.J.; Chen, Y.; Yu, A.; Voss-McCowan, M.; Epstein, P.N. Overexpression of metallothionein in the heart of transgenic mice suppresses doxorubicin cardiotoxicity. J. Clin. Investig. 1997, 100, 1501–1506. [Google Scholar] [CrossRef]
- Bannister, W.H.; Wood, E.J. Effect of photooxidation on hum caeruloplasmin. Eur. J. Biochem. 1969, 11, 179–182. [Google Scholar] [CrossRef]
- Shiva, S.; Wang, X.; Ringwood, L.A.; Xu, X.; Yuditskaya, S.; Annavajjhala, V.; Miyajima, H.; Hogg, N.; Harris, Z.L.; Gladwin, M.T. Ceruloplasmin is a nitric oxide oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat. Chem. Bio. 2006, 2, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Shukla, N.; Maher, J.; Masters, J.; Angelini, G.D.; Jeremy, J.Y. Does Oxidative Stress Change Ceruloplasmin From a Protective to a Vasculopathic Factor? Atherosclerosis 2006, 187, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Papatheodorou, L.; Weiss, N. Vascular Oxidant Stress and Inflammation in Hyperhomocysteinemia. Antioxid. Redox Signal. 2007, 9, 1941–1958. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, Y.; Zhou, Y.; Cheng, G.; Xu, G. Ceruloplasmin and the extent of heart failure in ischemic and nonischemic cardiomyopathy patients. Mediators Inflamm. 2013, 348145. [Google Scholar] [CrossRef] [Green Version]
- Hammadah, M.; Fan, Y.; Wu, Y.; Hazen, S.L.; Tang, W.H. Prognostic value of elevated serum ceruloplasmin levels in patients with heart failure. J. Card. Fail. 2014, 20, 946–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, J.; Leffell, M.; Mearkle, P.; Harmatz, P. Elevated plasma ceruloplasmin in insulin-dependent diabetes mellitus: Evidence for increased oxidative stress as a variable complication. Metabolism 1995, 44, 996–999. [Google Scholar] [CrossRef]
- Lee, M.J.; Jung, C.H.; Hwang, J.Y.; Shin, M.S.; Yu, J.H.; Lee, W.J.; Park, J.Y. Association between serum ceruloplasmin levels and arterial stiffness in Korean men with type 2 diabetes mellitus. Diabetes Technol. Ther. 2012, 14, 1091–1097. [Google Scholar] [CrossRef]
- Arner, E.; Forrest, A.R.; Ehrlund, A.; Mejhert, N.; Itoh, M.; Kawaji, H.; Lassmann, T.; Laurencikiene, J.; Rydén, M.; Arner, P.; et al. Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells. PLoS ONE 2014, 9, e80274. [Google Scholar] [CrossRef]
- Kim, O.Y.; Shin, M.J.; Moon, J.; Chung, J.H. Plasma ceruloplasmin as a biomarker for obesity: A proteomic approach. Clin. Biochem. 2011, 44, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Andreasova, T.; Vondrakova, D.; Sedlackova, L.; Dvorak, J.; Taborsky, L.; Neuzil, P.; Malek, F. Evaluation of Ceruloplasmin—A Potential Biomarker in Chronic Heart Failure. J. Clin. Exp. Cardiolog. 2018, 9, 601. [Google Scholar] [CrossRef]
- Mujumdar, V.S.; Tyagi, S.C. Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure. J. Hypertens. 1999, 17, 261–270. [Google Scholar] [CrossRef]
- Robins, S.P. Biochemistry and functional significance of collagen cross-linking. Biochem Soc Trans. 2007, 35, 849–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borg, T.K.; Klevay, L.M.; Gay, R.E.; Siegel, R.; Bergin, M.E. Alteration of the connective tissue network of striated muscle in copper deficient rats. J. Mol. Cell Cardiol. 1985, 17, 1173–1183. [Google Scholar] [CrossRef]
- Farquharson, C.; Duncan, A.; Robins, S.P. The effects of copper deficiency on the pyridinium crosslinks of mature collagen in the rat skeleton and cardiovascular system. Proc. Soc. Exp. Biol. Med. 1989, 192, 166–172. [Google Scholar] [CrossRef] [PubMed]
- López, B.; González, A.; Hermida, N.; Valencia, F.; Teresa, E.D.; Díez, J. Role of lysyl oxidase in myocardial fibrosis: From basic science to clinical aspects. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H1–H9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, T.F.; Geraci, M.A.; Sonnenblick, E.H.; Factor, S.M. Coiled perimysial fibers of papillary muscle in rat heart: Morphology, distribution, and changes in configuration. Circ. Res. 1988, 63, 577–592. [Google Scholar] [CrossRef] [Green Version]
- Dawson, R.; Milne, G.; Williams, R.B. Changes in the Collagen of Rat Heart in Copper-Deficiency-Induced Cardiac Hypertrophy. Cardiovasc. Res. 1982, 16, 559–565. [Google Scholar] [CrossRef] [PubMed]
- López, B.; Querejeta, R.; González, A.; Beaumont, J.; Larman, M.; Díez, J. Impact of treatment on myocardial lysyl oxidase expression and collagen cross-linking in patients with heart failure. Hypertension 2009, 53, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar, P.; Gupta, S.; Sarkar, S.; Sen, S. Upregulation of lysyl oxidase and MMPs during cardiac remodeling in human dilated cardiomyopathy. Mol. Cell Biochem. 2008, 307, 159–167. [Google Scholar] [CrossRef]
- Shieh, T.M.; Tu, H.F.; Ku, T.H.; Chang, S.S.; Chang, K.W.; Liu, C.J. Association between lysyl oxidase polymorphisms and oral submucous fibrosis in older male areca chewers. J. Oral Pathol. Med. 2009, 38, 109–113. [Google Scholar] [CrossRef]
- Öhrvik, H.; Nose, Y.; Wood, L.K.; Kim, B.E.; Gleber, S.C.; Ralle, M.; Thiele, D.J. Ctr2 regulates biogenesis of a cleaved form of mammalian Ctr1 metal transporter lacking the copper- and cisplatin-binding ecto-domain. Proc. Natl. Acad. Sci. USA 2013, 110, E4279–E4288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertinato, J.; Duval, S.; L’abbé, M.R. Copper Transporter 2 Content Is Lower in Liver and Heart of Copper-Deficient Rats. Int. J. Mol. Sci. 2010, 11, 4741–4749. [Google Scholar] [CrossRef] [PubMed]
- Ke, B.X.; Llanos, R.M.; Wright, M.; Deal, Y.; Mercer, J.F. Alteration of copper physiology in mice overexpressing the human Menkes protein ATP7A. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R1460–R1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polishchuk, E.V.; Concilli, M.; Lacobacci, S.; Chesi, G.; Pastore, N.; Piccolo, P.; Paladino, S.; Baldantoni, D.; IJzendoorn, S.C.; Chan, J.; et al. Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis. Dev. Cell. 2014, 29, 686–700. [Google Scholar] [CrossRef] [Green Version]
- Meerson, F.Z. On the mechanism of compensatory hyperfunction and insufficiency of the heart. Cor. Vasa 1961, 3, 161–177. [Google Scholar]
- Medeiros, D.M.; Davidson, J.; Jenkins, J.E. A unified perspective on copper deficiency and cardiomyopathy. Proc. Soc. Exp. Biol. Med. 1993, 203, 262–273. [Google Scholar] [CrossRef]
- Kang, Y.J.; Wu, H.; Saari, J.T. Alterations in hypertrophic gene expression by dietary copper restriction in mouse heart. Proc. Soc. Exp. Biol. Med. 2000, 223, 282–287. [Google Scholar] [CrossRef]
- Fields, M.; Lewis, C.G.; Lure, M.D. Anemia Plays a Major Role in Myocardial Hypertrophy of Copper Deficiency. Metabolism 1991, 40, 1–3. [Google Scholar] [CrossRef]
- Kelly, W.A.; Kesterson, J.W.; Carlton, W.W. Myocardial lesions in the offspring of female rats fed a copper dificient diet. Exp. Mol. Pathol. 1974, 2, 40–56. [Google Scholar] [CrossRef]
- Klevay, L.M.; Milne, D.B.; Wallwork, J.C. Comparison of some indices of copper deficiency in growing rats. Nutr. Rep. Int. 1985, 31, 963–971. [Google Scholar]
- Dallman, P.R.; Goodman, J.R. Enlargement of Mitochondrial Compartment in Iron and Copper Deficiency. Blood 1970, 35, 496–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lear, P.M.; Heller, L.J.; Prohaska, J.R. Cardiac Hypertrophy in Copper-Deficient Rats Is Not Attenuated by Angiotensin II Receptor Antagonist L-158,809. Proc. Soc. Exp. Biol. Med. 1996, 212, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Reynolds, C.; Xiao, C.; Feng, W.; Zhou, Z.; Rodriguez, W.; Tyagi, S.C.; Eaton, J.W.; Saari, J.T.; Kang, Y.J. Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. J. Exp. Med. 2007, 204, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jiang, Y.; Kang, Y.J. Copper inhibition of hydrogen peroxide-induced hypertrophy in embryonic rat cardiac H9c2 cells. Exp. Biol. Med. 2007, 232, 385–389. [Google Scholar]
- Sano, M.; Minamino, T.; Toko, H.; Miyauchi, H.; Orimo, M.; Qin, Y.; Akazawa, H.; Tateno, K.; Kayama, Y.; Harada, M.; et al. P53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 2007, 446, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Izumiya, Y.; Shiojima, I.; Sato, K.; Sawyer, D.B.; Colucci, W.S.; Walsh, K. Vascular Endothelial Growth Factor Blockade Promotes the Transition from Compensatory Cardiac Hypertrophy to Failure in Response to Pressure Overload. Hypertension 2006, 47, 887–893. [Google Scholar] [CrossRef]
- Xu, X.; Xu, J.; Xue, L.; Cao, H.; Liu, X.; Chen, Y. VEGF attenuates development from cardiac hypertrophy to heart failure after aortic stenosis through mitochondrial mediated apoptosis and cardiomyocyte proliferation. J. Cardiothorac. Surg. 2011, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Abraham, D.; Hofbauer, R.; Schäfer, R.; Blumer, R.; Paulus, P.; Miksovsky, A.; Traxler, H.; Kocher, A.; Aharinejad, S. Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ. Res. 2000, 87, 644–647. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Johnson, W.T. Kang, Y.J. Regression of copper-deficient heart hypertrophy: Reduction in the size of hypertrophic cardiomyocytes. J. Nutr. Biochem. 2009, 20, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Russo, C.; Olivieri, O.; Girelli, D.; Faccini, G.; Zenari, M.L.; Lombardi, S.; Corrocher, R. Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J. Hypertens. 1998, 16, 1267–1271. [Google Scholar] [CrossRef] [PubMed]
- Prohaska, J.R.; Heller, L.J. Mechanical properties of the copper-deficient rat heart. J. Nutr. 1982, 112, 2142–2150. [Google Scholar]
- Klevay, L.M. Hypertension in rats due to copper deficiency. Nutr. Rep. Int. 1987, 35, 999–1005. [Google Scholar]
- Medeiros, D.M. Hypertension in the Wistar-Kyoto rat as a result of post-weaning copper restriction. Nutr. Res. 1987, 7, 231–235. [Google Scholar] [CrossRef]
- Ozumi, K.; Sudhahar, V.; Kim, H.W.; Chen, G.F.; Kohno, T.; Finney, L.; Vogt, S.; McKinney, R.D.; Ushio-Fukai, M.; Fukai, T. Role of copper transport protein antioxidant 1 in angiotensin II-induced hypertension: A key regulator of extracellular superoxide dismutase. Hypertension 2012, 60, 476–486. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.; Gongora, M.C.; Ozumi, K.; Itoh, S.; Akram, K.; Ushio-Fukai, M.; Harrison, D.G.; Fukai, T. Role of Menkes ATPase in Angiotensin II-Induced Hypertension: A Key Modulator for Extracellular SOD Function. Hypertension 2008, 52, 945–951. [Google Scholar] [CrossRef] [Green Version]
- Elsherif, L.; Ortines, R.; Saari, J.T.; Kang, Y.J. Congestive Heart Failure in Copper-Deficient Mice. Exp. Biol. Med. 2003, 80, 745–757. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Schuschke, D.A.; Zhou, Z.; Saari, J.T.; Kang, Y.J. Marginal dietary copper restriction induces cardiomyopathy in rats. J. Nutr. 2005, 135, 2130–2136. [Google Scholar] [CrossRef] [Green Version]
- Elsherif, L.; Wang, L.; Saari, J.T.; Kang, Y.J. Regression of dietary copper restriction-induced cardiomyopathy by copper repletion in mice. J. Nutr. 2004, 134, 855–860. [Google Scholar] [CrossRef] [Green Version]
- Bers, D.M. Cardiac excitation-contraction coupling. Nature 2002, 415, 198–205. [Google Scholar] [CrossRef]
- Elsherif, L.; Jiang, Y.; Saari, J.T.; Kang, Y.J. Dietary copper restriction-induced changes in myocardial gene expression and the effect of copper repletion. Exp. Biol. Med. 2004, 229, 616–622. [Google Scholar] [CrossRef]
- Relling, D.P.; Esberg, L.B.; Johnson, W.T.; Murphy, E.J.; Carlson, E.C.; Lukaski, H.C.; Saari, J.T.; Ren, J. Dietary Interaction of High Fat and Marginal Copper Deficiency on Cardiac Contractile Function. Obesity 2007, 15, 1242–1257. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, F.; Bailey, M.A.; Rode, B.; Mateo, P.; Antigny, F.; Bedouet, K.; Gerbaud, P.; Gosain, R.; Plante, J.; Norman, K.; et al. Orai1 Channel Inhibition Preserves Left Ventricular Systolic Function and Normal Ca 2+ Handling After Pressure Overload. Circulation 2020, 141, 199–216. [Google Scholar] [CrossRef] [PubMed]
- Cacheux, M.; Strauss, B.; Raad, N.; Ilkan, Z.; Hu, J.; Benard, L.; Feske, S.; Hulot, J.S.; Akar, F.G. Cardiomyocyte-Specific STIM1 (Stromal Interaction Molecule 1) Depletion in the Adult Heart Promotes the Development of Arrhythmogenic Discordant Alternans. Circ. Arrhythm. Electrophysiol. 2019, 12, e007382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rios, F.J.; Zou, Z.; Harvey, A.P.; Harvey, K.Y.; Nosalski, R.; Anyfanti, P.; Camargo, L.L.; Lacchini, S.; Ryazanov, A.G.; Ryazanova, L.; et al. Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovasc. Res. 2020, 116, 721–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saari, J.T. Copper deficiency and cardiovascular disease: Role of peroxidation, glycation, and nitration. Can. J. Physiol. Pharmacol. 2000, 78, 848–855. [Google Scholar] [CrossRef]
- Saari, J.T.; Wold, L.E.; Duan, J.; Ren, J.; Carlson, H.L.; Bode, A.M.; Lentsch, A.B.; Zeng, H.; Schuschke, D.A. Cardiac nitric oxide synthases are elevated in dietary copper deficiency. J. Nutr. Biochem. 2007, 18, 443–448. [Google Scholar] [CrossRef]
- Saari, J.T.; Dahlen, G. Nitric oxide and cyclic GMP are elevated in the hearts of copper-deficient rats. Med. Sci. Res. 1998, 26, 495–497. [Google Scholar]
- Wold, L.E.; Saari, J.T.; Ren, J. Isolated ventricular myocytes from copper-deficient rat hearts exhibit enhanced contractile function. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H476–H481. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Esberg, L.B.; Roughead, Z.K.; Ren, J.; Saari, J.T. Increased contractility of cardiomyocytes from copper-deficient rats is associated with upregulation of cardiac IGF-I receptor. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H78–H84. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.E.; Medeiros, D.M. Diets containing corn oil, coconut oil and cholesterol alter ventricular hypertrophy, dilatation and function in hearts of rats fed copper-deficient diets. J. Nutr. 1993, 123, 1150–1160. [Google Scholar] [PubMed]
- Jalili, T.; Medeiros, D.M.; Wildman, R.E. Aspects of Cardiomyopathy Are Exacerbated by Elevated Dietary Fat in Copper-Restricted Rats. J. Nutr. 1996, 126, 807–816. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.S. Heart failure: The frequent, forgotten, and often fatal complication of diabetes. Diabetes Care 2003, 26, 2433–2441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganguly, P.K.; Pierce, G.N.; Dhalla, K.S.; Dhalla, N.S. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am. J. Physiol. 1983, 244, E528–E535. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.S. Diabetic cardiomyopathy. A unique entity or a complication of coronary artery disease? Diabetes Care 1995, 18, 708–714. [Google Scholar] [CrossRef]
- Zama, N.; Towns, R.L. Cardiac copper, magnesium, and zinc in recent and old myocardial infarction. Biol. Trace Elem. Res. 1986, 10, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Al-Othman, A.A.; Rosenstein, F.; Lei, K.Y. Copper Deficiency Alters Plasma Pool Size, Percent Composition and Concentration of Lipoprotein Components in Rats. J. Nutr. 1992, 122, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.C.; Armstrong, J.K. Long-Chain Fatty Acid Composition of Maternal Liver Lipids during Pregnancy and Lactation in the Rat: Comparison of Triglyceride to Phospholipid. J. Nutr. 1990, 120, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Burkhead, J.; Lutsenko, S. The Role of Copper as a Modifier of Lipid Metabolism. In Lipid Metabolism; InTech Open: London, UK, 2013. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Gasperkova, D.; Xu, J.; Baillie, R.; Lee, J.H.; Clarke, S.D. Copper deficiency induces hepatic fatty acid synthase gene transcription in rats by increasing the nuclear content of mature sterol regulatory element binding protein 1. J. Nutr. 2000, 130, 2915–2921. [Google Scholar] [CrossRef] [PubMed]
- Ovecka, G.D.; Miller, G.; Medeiros, D.M. Fatty acids of liver, cardiac and adipose tissues from copper-deficient rats. J. Nutr. 1988, 118, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Tosco, A.; Fontanella, B.; Danise, R.; Cicatiello, L.; Grober, O.M.; Ravo, M.; Weisz, A.; Marzullo, L. Molecular bases of copper and iron deficiency-associated dyslipidemia: A microarray analysis of the rat intestinal transcriptome. Genes Nutr. 2010, 5, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, S.; Leone, T.C.; Kelly, D.P.; Medeiros, D.M. Mitochondrial Transcription Factor A Is Increased but Expression of ATP Synthase Beta Subunit and Medium-Chain acyl-CoA Dehydrogenase Genes Are Decreased in Hearts of Copper-Deficient Rats. J. Nutr. 2000, 130, 2143–2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Sui, X.; Li, F. Effect of dietary copper addition on lipid metabolism in rabbits. Food Nutr. Res. 2017, 61, 1348866. [Google Scholar]
- Cunnane, S.C.; McAdoo, K.R.; Prohaska, J.R. Lipid and Fatty Acid Composition of Organs from Copper-Deficient Mice. J. Nutr. 1986, 116, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Wahle, E.W.; Davies, N.T. Effect of dietary copper deficiency. in the rat on fatty acid composition of adipose tissue and desaturase activity of liver microsomes. Br. J. Nutr. 1975, 34, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enhle, T.E.; Spears, J.W. Dietary copper effects on lipid metabolism, performance, and ruminal fermentation in finishing steers. J. Anim. Sci. 2000, 78, 2352–2458. [Google Scholar]
- Engle, T.E.; Spears, J.W.; Armstrong, T.A.; Wright, C.L.; Odle, J. Effects of dietary copper source and concentration on carcass characteristics and lipid and cholesterol metabolism in growing and finishing steers. J. Anim. Sci. 2000, 78, 1053–1069. [Google Scholar] [CrossRef] [PubMed]
- Klevay, L.M.; Inman, L.; Johnson, L.K.; Lawler, M.; Mahalko, J.R.; Milne, D.B.; Lukaski, H.C.; Bolonchuk, W.; Sandstead, H.H. Increased cholesterol in plasma in a young man during experimental copper depletion. Metabolism 1984, 33, 1112–1118. [Google Scholar] [CrossRef]
- Kim, S.; Chao, P.Y.; Allen, K.G. Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. FASEB J. 1992, 6, 2467–2471. [Google Scholar] [CrossRef]
- Al-Othman, A.A.; Rosenstein, F.; Lei, K.Y. Pool size and concentration of plasma cholesterol are increased and tissue copper levels are reduced during early stages of copper deficiency in rats. J. Nutr. 1994, 124, 628–635. [Google Scholar] [CrossRef]
- Alarcón-Corredor, O.M.; Guerrero, M.; Fernández, M.R.; D’Jesús, I.; Burguera, M.; Burguera, J.L.; Bernardo, M.L.; García, M.Y.; Alarcón, A.O. Effect of copper supplementation on lipid profile of Venezuelan hyperlipemic patients. Arch. Latinoam. Nutr. 2004, 54, 413–418. [Google Scholar] [PubMed]
- Rayssiguier, Y.; Gueux, E.; Bussiere, L.; Mazur, A. Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. J. Nutr. 1993, 123, 1343–1348. [Google Scholar] [PubMed]
- Prohaska, J.R. Biochemical changes in copper deficiency. J. Nutr. Biochem. 1990, 1, 452–461. [Google Scholar] [CrossRef]
- Lefevre, M.; Keen, C.L.; Lönnerdal, B.; Hurley, L.S.; Schneeman, B.O. Different effects of zinc and copper deficiency on composition of plasma high density lipoproteins in rats. J. Nutr. 1985, 115, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.Y. Alterations in plasma lipid, lipoprotein and apolipoprotein concentrations in copper-deficient rats. J. Nutr. 1983, 113, 2178–2183. [Google Scholar] [CrossRef] [PubMed]
- Lau, B.W.; Klevay, L.M. Plasma lecithin: Cholesterol acyltransferase in copper-deficient rats. J. Nutr. 1981, 111, 1698–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.A.; Disilvestro, R.A.; Coleman, M.; Wagner, T.L. Copper supplementation of adult men: Effects on blood copper enzyme activities and indicators of cardiovascular disease risk. Metabolism 1997, 46, 1380–1383. [Google Scholar] [CrossRef]
- DiSilvestro, R.A.; Joseph, E.L.; Zhang, W.; Raimo, A.E.; Kim, Y.M. A Randomized Trial of Copper Supplementation Effects on Blood Copper Enzyme Activities and Parameters Related to Cardiovascular Health. Metabolism 2012, 61, 1242–1246. [Google Scholar] [CrossRef] [PubMed]
- Bügel, S.; Harper, A.; Rock, E.; O’Connor, J.M.; Bonham, M.P.; Strain, J.J. Effect of copper supplementation on indices of copper status and certain CVD risk markers in young healthy women. Br. J. Nutr. 2005, 94, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Ciccone, M.M.; Cortese, F.; Gesualdo, M.; Carbonara, S.; Zito, A.; Ricci, G.; De, P.F.; Scicchitano, P.; Riccioni, G. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediat. Inflamm. 2013, 2013, 782137. [Google Scholar] [CrossRef] [Green Version]
- Hozawa, A.; Jacobs, D.R., Jr.; Steffes, M.W.; Gross, M.D.; Steffen, L.M.; Lee, D. Relationships of circulating carotenoid concentrations with several markers of inflammation, oxidative stress, and endothelial dysfunction: The Coronary Artery Risk Development in Young Adults (CARDIA)/Young Adult Longitudinal Trends in Antioxidants (YALTA) study. Clin. Chem. 2007, 53, 447–455. [Google Scholar] [PubMed] [Green Version]
- Rock, E.; Mazur, A.; O’connor, J.M.; Bonham, M.P.; Rayssiguier, Y.; Strain, J.J. The effect of copper supplementation on red blood cell oxidizability and plasma antioxidants in middle-aged healthy volunteers. Free Radic. Biol. Med. 2000, 28, 324–329. [Google Scholar] [CrossRef]
- Silva, J.; Williams, R. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life, 2nd ed.; Clarendon: Oxford, UK, 2001; pp. 418–435. [Google Scholar]
- Cooper, G.J.; Phillips, A.R.; Choong, S.Y.; Leonard, B.L.; Crossman, D.J.; Brunton, D.H.; Saafi, ‘E.L.; Dissanayake, A.M.; Cowan, B.R.; Young, A.A.; et al. Regeneration of the heart in diabetes by selective copper chelation. Diabetes 2004, 53, 2501–2508. [Google Scholar] [CrossRef] [Green Version]
- Cooper, G.J.; Chan, Y.K.; Dissanayake, A.M.; Leahy, F.E.; Keogh, G.F.; Frampton, C.M.; Gamble, G.D.; Brunton, D.H.; Baker, J.R.; Poppitt, S.D. Demonstration of a Hyperglycemia-Driven Pathogenic Abnormality of Copper Homeostasis in Diabetes and Its Reversibility by Selective Chelation: Quantitative Comparisons Between the Biology of Copper and Eight Other Nutritionally Essential Elements in Normal and Diabetic Individuals. Diabetes 2005, 54, 1468–1476. [Google Scholar] [PubMed] [Green Version]
- Zargar, A.H.; Shah, N.A.; Masoodi, S.Q.; Laway, B.A.; Dar, F.A.; Khan, A.R.; Sofi, F.A.; Wani, A.I. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad. Med. J. 2013, 74, 665–668. [Google Scholar] [CrossRef] [PubMed]
- el-Yazigi, A.; Hannan, N.; Raines, D.A. Urinary excretion of chromium, copper, and manganese in diabetes mellitus and associated disorders. Diabetes Res. 1991, 18, 129–134. [Google Scholar]
- Ahmed, M.U.; Thorpe, S.R.; Baynes, J.W. Identification of N Epsilon-Carboxymethyllysine as a Degradation Product of Fructoselysine in Glycated Protein. J. Biol. Chem. 1986, 261, 4889–4894. [Google Scholar] [CrossRef]
- Gong, D.; Lu, J.; Chen, X.; Choong, S.Y.; Zhang, S.; Chan, Y.K.; Glyn-Jones, S.; Gamble, G.D.; Phillips, A.R.; Cooper, G.J. Molecular Changes Evoked by Triethylenetetramine Treatment in the Extracellular Matrix of the Heart and Aorta in Diabetic Rats. Mol. Pharmacol. 2006, 70, 2045–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Ward, M.L.; Phillips, A.R.; Zhang, S.; Kennedy, J.; Barry, B.; Cannell, M.B.; Cooper, G.J. Protection of the heart by treatment with a divalent-copper-selective chelator reveals a novel mechanism underlying cardiomyopathy in diabetic rats. Cardiovasc. Diabetol. 2013, 12, 123. [Google Scholar] [PubMed] [Green Version]
- Zhang, S.; Liu, H.; Amarsingh, G.V.; Cheung, C.C.; Wu, D.; Narayanan, U.; Zhang, L.; Cooper, G.J. Restoration of myocellular copper-trafficking proteins and mitochondrial copper enzymes repairs cardiac function in rats with diabetes-evoked heart failure. Metallomics 2019, 12, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, H.; Amarsingh, G.V.; Cheung, C.C.; Hogl, S.; Narayanan, U.; Zhang, L.; McHarg, S.; Xu, J.; Gong, D.; et al. Diabetic cardiomyopathy is associated with defective myocellular copper regulation and both defects are rectified by divalent copper chelation. Cardiovasc. Diabetol. 2014, 13, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, G.J.; Young, A.A.; Gamble, G.D.; Occleshaw, C.J.; Dissanayake, A.M.; Cowan, B.R.; Brunton, D.H.; Baker, J.R.; Phillips, A.R.; Frampton, C.M.; et al. A copper(II)-selective chelator ameliorates left-ventricular hypertrophy in type 2 diabetic patients: A randomised placebo-controlled study. Diabetologia 2009, 52, 715–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, G.J. Selective Divalent Copper Chelation for the Treatment of Diabetes Mellitus. Curr. Med. Chem. 2012, 19, 2828–2860. [Google Scholar] [CrossRef] [PubMed]
Study Object | Gene Modification/Mutation | Finding | Reference |
---|---|---|---|
Human | SCO2 (E140K) | Fetal/infantile cardiac hypertrophy | [10,37,38,39,40] |
Human | SCO1 (G132S) | Early onset cardiac hypertrophy | [41] |
Mice | Myocardiocyte-specific Sco1 knockout | Dilated cardiomyopathy | [42] |
Human | COA6 (W66R) | Cardiac hypertrophy | [8] |
Human | COA6 (W59C/E87X) | Cardiac hypertrophy | [45] |
Mice | Sod1 knockout | Cardiac injury (apoptosis and inflammation) | [46] |
Mice | MT1/2 knockout | Cardiac dysfunction and fibrosis | [47] |
Mice | Sod3 knockout | Cardiac injury (hypertrophy, fibrosis, apoptosis, and inflammation) | [48,49] |
Human | SOD3 (R231G) | Positively associated with IHD, myocardial infarction, and HF in diabetic subjects | [50,51,52,53,54] |
Human | Rs1307255 variant | Moderately increased circulating CP levels and high circulating CP levels are associated with major adverse cardiovascular events | [55,56] |
Mice | Myocardiocyte-specific Ctr1 knockout | Cardiomyopathy with cardiac hypertrophy and endocardial fibrosis | [5] |
Mice | Intestinal-specific Ctr1 knockout | Cardiac hypertrophy | [57] |
Human | ATP7A mutation (Menkes disease) | High frequency of congenital heart disease | [58] |
Study Object | Mutation/Model | Treatment | Treatment Length | Results | Reference |
---|---|---|---|---|---|
A patient of 25 months old | Homozygous E140K mutation in SCO2 | Oral copper supplementation (140 μg/day) | 14 months | Improved cardiac hypertrophy and function | [10] |
A patient’s fibroblasts | Homozygous W66R mutation in COA6 | Copper chloride (25–200 μmol/L) | 7 days | Partially restored protein expression levels of subunits of mitochondrial complex IV | [8] |
Mice | Ascending aortic constriction | Copper dietary treatment | 6 mg/Cu/kg diet for 4 weeks and 20 mg/Cu/kg diet for another 4 weeks | Restored VEGF expression and angiogenesis | [107] |
H9C2 cells | Hydrogen peroxide treatment | Copper sulfate (5 μM) | 48 h | Suppressed cardiomyocyte hypertrophy | [108] |
Mice | Copper-deficient diet from day 3 postdelivery for 4 to 5 weeks | Copper-adequate diet (6 mg/kg) feeding | 4 weeks | Restored cardiac diastolic and systolic function | [122] |
Hypercholesterolemic patients | Hyperlipidemia | Oral copper supplementation (5 mg/day) | 45 days | Decreased total plasma cholesterol and increased HDL cholesterol | [155] |
Adult men | Moderate hypercholesterolemia | Oral copper supplementation (2 mg/day) | 4 weeks | Increased both erythrocyte SOD1 and lipoprotein oxidation lag time | [161] |
Adult women | Moderate hypercholesterolemia | Oral copper supplementation (2 mg/day) | 8 weeks | Elevated erythrocyte SOD1 and plasma CP levels | [162] |
Yong women | Healthy volunteer | Oral copper supplementation (6 mg/day) | 4 weeks | Increased erythrocyte SOD1 activity and decrease fibrinolytic factor plasminogen activator inhibitor type 1 concentrations | [163] |
Rats | Type 2 diabetes | Trientine (8–11 mg/day); TETA (20–30 mg/day per rat) | 7–8 weeks | Prevented excessive cardiac collagen deposition, improved cardiac structure and function, and restored antioxidant defense | [165,171,172,173] |
Diabetic patients | Type 2 diabetes with left ventricular hypertrophy | Trientine (600 mg/day) | 12 months | Decreased left ventricular mass indexed to body surface area (LVMbsa) | [174,175] |
Disease | Mechanism | Reference |
---|---|---|
Cardiac hypertrophy | Decreased CCO activity and ATP synthase function and compensatory enlargement of mitochondria and mitochondrial biogenesis | [19,35,100] |
HF | Diastolic dysfunction and a blunted response to β-adrenergic stimulation | [120,121,122] |
HF | Perturbation of cellular calcium homeostasis | [124,125] |
HF | Elevated NO production | [129,130,131] |
IHD | Accumulation of free fatty acids | [142,143,144,145,146] |
IHD | Changes in fatty acid composition | [148,149] |
IHD | Hypercholesterolemia | [152,153,154] |
IHD | Alterations in plasma lipoprotein levels and compositions | [140,145,156,157,158,159,160] |
DM cardiomyopathy | Increased collagen deposition and the formation of AGEs of collagen | [165,166,170] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Miao, J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients 2022, 14, 700. https://doi.org/10.3390/nu14030700
Liu Y, Miao J. An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients. 2022; 14(3):700. https://doi.org/10.3390/nu14030700
Chicago/Turabian StyleLiu, Yun, and Ji Miao. 2022. "An Emerging Role of Defective Copper Metabolism in Heart Disease" Nutrients 14, no. 3: 700. https://doi.org/10.3390/nu14030700
APA StyleLiu, Y., & Miao, J. (2022). An Emerging Role of Defective Copper Metabolism in Heart Disease. Nutrients, 14(3), 700. https://doi.org/10.3390/nu14030700