Soft-Shelled Turtle Peptides Extend Lifespan and Healthspan in Drosophila
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fly Husbandry and Treatment
2.3. Lifespan Analysis
2.4. Feeding Assay
2.5. Climbing Assay
2.6. Smurf Assay
2.7. Stress Assay
2.8. Determination of Biochemical Index
2.9. Untargeted Metabolomics Analysis
2.10. Real-Time Quantitative PCR
2.11. Peptides Sequence Identification
2.12. Molecular Docking of STP on FKBP12-FRB
2.13. Statistical Analyses
3. Results
3.1. STP Extended Lifespan and Healthspan in Drosophila
3.2. STP Improved Stress Resistance in Drosophila
3.3. STP Impacted the Potential Metabolic Markers in Pathways Associated with Aging in Drosophila
3.4. STP Regulated TOR Signaling-Related Genes in Drosophila
3.5. Prediction of Peptides from STP with Anti-Aging Activity by Molecular Docking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchkonia, T.; Kirkland, J.L. Aging, cell senescence, and chronic disease: Emerging therapeutic strategies. JAMA-J. Am. Med. Assoc. 2018, 320, 1319–1320. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.; Kennedy, B.K. Does longer lifespan mean longer healthspan? Trends Cell Biol. 2016, 26, 565–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, R.Y. A new strategic approach to successful aging and healthy aging. Geriatrics 2018, 3, 86. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Hu, D.Y.; Huang, J.J.; Wang, S.Y. Glycated peptides obtained from cultured crocodile meat hydrolysates via maillard reaction and the anti-aging effects on Drosophila in vivo. Food Chem. Toxicol. 2021, 155, 112376. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.J.; Chen, X.; Tian, Y.Q.; Wu, D.P.; Du, M.; Wang, S.Y. Protection against oxidative stress and anti-aging effect in Drosophila of royal jelly-collagen peptide. Food Chem. Toxicol. 2020, 135, 110881. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, Z.C.; Chen, Y.D.; Wu, T.; Fersht, V.; Jin, Y.; Meng, J.; Zhang, M. Sea cucumber peptides inhibit the malignancy of NSCLC by regulating miR-378a-5p targeted TUSC2. Food Funct. 2021, 12, 12362–12371. [Google Scholar] [CrossRef]
- Wang, S.G.; Zheng, L.; Zhao, T.T.; Zhang, Q.; Liu, Y.; Sun, B.G.; Su, G.W.; Zhao, M.M. Inhibitory effects of walnut (Juglans regia) peptides on neuroinflammation and oxidative stress in lipopolysaccharide-induced cognitive impairment mice. J. Agric. Food Chem. 2020, 68, 2381–2392. [Google Scholar] [CrossRef]
- Zhao, F.R.; Wang, J.; Lu, H.Y.; Fang, L.; Qin, H.X.; Liu, C.L.; Min, W.H. Neuroprotection by walnut-derived peptides through autophagy promotion via Akt/mTOR signaling pathway against oxidative stress in PC12 cells. J. Agric. Food Chem. 2020, 68, 3638–3648. [Google Scholar] [CrossRef]
- Zhong, H.; Shi, J.Y.; Zhang, J.H.; Wang, Q.Q.; Zhang, Y.P.; Yu, P.; Guan, R.F.; Feng, F.Q. Soft-shelled turtle peptide supplementation modifies energy metabolism and oxidative stress, enhances exercise endurance, and decreases physical fatigue in mice. Foods 2022, 11, 600. [Google Scholar] [CrossRef]
- Ma, M.J. Preparation of Antioxidant Peptides from Chinese Soft-Shelled Turtle and Its Anti-Aging Activity. Master’s Thesis, Jiangnan University, Wuxi, China, 2020. [Google Scholar]
- Wu, Y.C.; Liu, X.; Wang, J.L.; Chen, X.L.; Lei, L.; Han, J.; Jiang, Y.S.; Ling, Z.Q. Soft-shelled turtle peptide modulates microRNA profile in human gastric cancer AGS cells. Oncol. Lett. 2018, 15, 3109–3120. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.X.; Chen, S.Y.; Liang, J.P.; Tang, M.Y.; Wang, S.Y. Protective effects of crimson snapper scales peptides against oxidative stress on Drosophila melanogaster and the action mechanism. Food Chem. Toxicol. 2021, 148, 111965. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, M.T.; Feng, Z.P.; Zhu, Y.Y.; Chen, J.C. Antiaging effects of rice protein hydrolysates on Drosophila melanogaster. J. Food Biochem. 2021, 45, e13602. [Google Scholar] [CrossRef]
- Johnson, S.C.; Rabinovitch, P.S.; Kaeberlein, M. mTOR is a key modulator of ageing and age-related disease. Nature 2013, 493, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.Y.; Sabatini, D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef]
- Guimaraes, D.A.; dos Passos, M.A.; Rizzi, E.; Pinheiro, L.C.; Amaral, J.H.; Gerlach, R.F.; Castro, M.M.; Tanus-Santos, J.E. Nitrite exerts antioxidant effects, inhibits the mTOR pathway and reverses hypertension-induced cardiac hypertrophy. Free Radic. Biol. Med. 2018, 120, 25–32. [Google Scholar] [CrossRef]
- Gurel, C.; Kuscu, G.C.; Buhur, A.; Dagdeviren, M.; Oltulu, F.; Karabay Yavasoglu, N.U.; Yavasoglu, A. Fluvastatin attenuates doxorubicin-induced testicular toxicity in rats by reducing oxidative stress and regulating the blood-testis barrier via mTOR signaling pathway. Hum. Exp. Toxicol. 2019, 38, 1329–1343. [Google Scholar] [CrossRef]
- Xin, X.X.; Chen, Y.; Chen, D.; Xiao, F.; Parnell, L.D.; Zhao, J.; Liu, L.; Ordovas, J.M.; Lai, C.Q.; Shen, L.R. Supplementation with major royal-jelly proteins increases lifespan, feeding, and fecundity in Drosophila. J. Agric. Food Chem. 2016, 64, 5803–5812. [Google Scholar] [CrossRef]
- Ulgherait, M.; Midoun, A.M.; Park, S.J.; Gatto, J.A.; Tener, S.J.; Siewert, J.; Klickstein, N.; Canman, J.C.; Ja, W.W.; Shirasu-Hiza, M. Circadian autophagy drives iTRF-mediated longevity. Nature 2021, 598, 353–358. [Google Scholar] [CrossRef]
- Rera, M.; Clark, R.I.; Walker, D.W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc. Natl. Acad. Sci. USA 2012, 9, 21528–21533. [Google Scholar] [CrossRef]
- Rana, A.; Oliveira, M.P.; Khamoui, A.V.; Aparicio, R.; Rera, M.; Rossiter, H.B.; Walker, D.W. Promoting Drp1-mediated mitochondrial fission in midlife prolongs healthy lifespan of Drosophila melanogaster. Nat. Commun. 2017, 8, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.Q.; Fang, J.S.; Qin, X.M.; Gao, L. Metabolomics profiling reveals the mechanism of caffeic acid in extending lifespan in Drosophila melanogaster. Food Funct. 2020, 1, 8202–8213. [Google Scholar] [CrossRef]
- Liao, S.; Amcoff, M.; Nässel, D.R. Impact of high-fat diet on lifespan, metabolism, fecundity and behavioral senescence in Drosophila. Insect Biochem. Mol. Biol. 2021, 133, 103495. [Google Scholar] [CrossRef]
- Liang, L.; Rasmussen, M.H.; Piening, B.; Shen, X.; Chen, S.; Röst, H.; Snyder, J.K.; Tibshirani, R.; Skotte, L.; Lee, N.C.; et al. Metabolic dynamics and prediction of gestational age and time to delivery in pregnant women. Cell 2020, 181, 1680–1692.e15. [Google Scholar] [CrossRef]
- Hu, Y.M.; Lu, S.Z.; Li, Y.S.; Wang, H.; Shi, Y.; Zhang, L.; Tu, Z.C. Protective effect of antioxidant peptides from grass carp scale gelatin on the H2O2-mediated oxidative injured HepG2 cells. Food Chem. 2022, 373, 131539. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Yang, Z.R.; Zhuang, J.C.; Zhang, J.H.; Shen, F.; Yu, P.; Zhong, H.; Feng, F.Q. Antiaging function of Chinese pond turtle (Chinemys reevesii) peptide through activation of the Nrf2/Keap1 signaling pathway and its structure-activity relationship. Front. Nutr. 2022, 9, 961922. [Google Scholar] [CrossRef]
- Lin, L.Z.; Yang, K.; Zheng, L.; Zhao, M.M.; Sun, W.Z.; Zhu, Q.Y.; Liu, S.J. Anti-aging effect of sea cucumber (Cucumaria frondosa) hydrolysate on fruit flies and d-galactose-induced aging mice. J. Funct. Foods 2018, 47, 11–18. [Google Scholar] [CrossRef]
- Chen, S.Y.; Yang, Q.; Chen, X.; Tian, Y.Q.; Liu, Z.Y.; Wang, S.Y. Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster. Food Funct. 2020, 11, 524–533. [Google Scholar] [CrossRef]
- Fuellen, G.; Jansen, L.; Cohen, A.A.; Luyten, W.; Gogol, M.; Simm, A.; Saul, N.; Cirulli, F.; Berry, A.; Antal, P.; et al. Health and aging: Unifying concepts, scores, biomarkers and pathways. Aging Dis. 2019, 10, 883–900. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.Y.; Lee, S.H.; Lee, J.H.; Lee, W.J.; Min, K.J. The role of commensal microbes in the lifespan of Drosophila melanogaster. Aging 2019, 11, 4611–4640. [Google Scholar] [CrossRef]
- Lee, H.Y.; Lee, S.H.; Min, K.J. The increased abundance of commensal microbes decreases drosophila melanogaster lifespan through an age-related intestinal barrier dysfunction. Insects 2022, 13, 219. [Google Scholar] [CrossRef]
- Mitchell, S.J.; Madrigal-Matute, J.; Scheibye-Knudsen, M.; Fang, E.; Aon, M.; González-Reyes, J.A.; Cortassa, S.; Kaushik, S.; Gonzalez-Freire, M.; Patel, B.; et al. Effects of sex, strain, and energy intake on hallmarks of aging in mice. Cell Metab. 2016, 23, 1093–1112. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, R.; Bai, H.; Dolezal, A.G.; Amdam, G.; Tatar, M. Juvenile hormone regulation of Drosophila aging. BMC Biol. 2013, 11, 85. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.H.; Zhang, Y.J.; Cai, Y.; Xu, M.H. The role of mitochondria in mTOR-regulated longevity. Biol. Rev. Camb. Philos. Soc. 2015, 90, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wang, T.; Wu, N.; Li, D.Y.; Fan, X.L.; Xu, Z.X.; Mishra, S.K.; Yang, M.Y. Alpha-ketoglutarate extends Drosophila lifespan by inhibiting mTOR and activating AMPK. Aging 2019, 11, 4183–4197. [Google Scholar] [CrossRef]
- Yamauchi, T.; Oi, A.; Kosakamoto, H.; Akuzawa-Tokita, Y.; Murakami, T.; Mori, H.; Miura, M.; Obata, F. Gut bacterial species distinctively impact host purine metabolites during aging in Drosophila. iScience 2020, 23, 101477. [Google Scholar] [CrossRef]
- Aon, M.A.; Bernier, M.; Mitchell, S.J.; Di Germanio, C.; Mattison, J.A.; Ehrlich, M.R.; Colman, R.J.; Anderson, R.M.; de Cabo, R. Untangling determinants of enhanced health and lifespan through a multi-omics approach in mice. Cell Metab. 2020, 32, 100–116.e4. [Google Scholar] [CrossRef]
- Andres, R.H.; Ducray, A.D.; Schlattner, U.; Wallimann, T.; Widmer, H.R. Functions and effects of creatine in the central nervous system. Brain Res. Bull. 2008, 76, 329–343. [Google Scholar] [CrossRef]
- Ginguay, A.; Regazzetti, A.; Laprevote, O.; Moinard, C.; De Bandt, J.P.; Cynober, L.; Billard, J.M.; Allinquant, B.; Dutar, P. Citrulline prevents age-related LTP decline in old rats. Sci. Rep. 2019, 9, 20138. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.M.; Seo, M.; Seo, J.S.; Rhim, H.; Nahm, S.S.; Cho, I.H.; Chang, B.J.; Kim, H.J.; Choi, S.H.; Nah, S.Y. Ascorbic acid mitigates D-galactose-induced brain aging by increasing hippocampal neurogenesis and improving memory function. Nutrients 2019, 11, 176. [Google Scholar] [CrossRef]
- Pan, M.F.; Liu, K.X.; Yang, J.Y.; Liu, S.M.; Wang, S.; Wang, S. Advances on food-derived peptidic antioxidants-a review. Antioxidants 2020, 9, 799. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.T.; Zhang, J.X.; Zhang, H.H.; Duan, Y.Q.; Ma, H.L. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends Food Sci. Technol. 2020, 105, 308–322. [Google Scholar] [CrossRef]
- Sykiotis, G.P.; Bohmann, D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev. Cell 2008, 14, 76–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinbaugh, M.J.; Sun, L.Y.; Bartke, A.; Miller, R.A. Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E488–E495. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.J.; Bekhit, A.E.A.; Wu, Q.P.; Chen, M.F.; Liao, X.Y.; Wang, J.; Ding, Y. Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci. Technol. 2021, 108, 164–176. [Google Scholar] [CrossRef]
- Robida-Stubbs, S.; Glover-Cutter, K.; Lamming, D.W.; Mizunuma, M.; Narasimhan, S.D.; Neumann-Haefelin, E.; Sabatini, D.M.; Blackwell, T.K. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012, 15, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, R.; Rana, A.; Walker, D.W. Upregulation of the autophagy adaptor p62/SQSTM1 prolongs health and lifespan in middle-aged Drosophila. Cell Rep. 2019, 28, 1029–1040.e5. [Google Scholar] [CrossRef] [Green Version]
- Bjedov, I.; Cochemé, H.M.; Foley, A.; Wieser, D.; Woodling, N.S.; Castillo-Quan, J.I.; Norvaisas, P.; Lujan, C.; Regan, J.C.; Toivonen, J.M.; et al. Fine-tuning autophagy maximises lifespan and is associated with changes in mitochondrial gene expression in Drosophila. PLoS Genet. 2020, 16, e1009083. [Google Scholar] [CrossRef]
- Simonsen, A.; Cumming, R.C.; Brech, A.; Isakson, P.; Schubert, D.R.; Finley, K.D. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 2008, 4, 176–184. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, J.; Zhuang, J.; Shen, F.; Zhao, M.; Du, J.; Yu, P.; Zhong, H.; Feng, F. Soft-Shelled Turtle Peptides Extend Lifespan and Healthspan in Drosophila. Nutrients 2022, 14, 5205. https://doi.org/10.3390/nu14245205
Wang Q, Zhang J, Zhuang J, Shen F, Zhao M, Du J, Yu P, Zhong H, Feng F. Soft-Shelled Turtle Peptides Extend Lifespan and Healthspan in Drosophila. Nutrients. 2022; 14(24):5205. https://doi.org/10.3390/nu14245205
Chicago/Turabian StyleWang, Qianqian, Junhui Zhang, Jiachen Zhuang, Fei Shen, Minjie Zhao, Juan Du, Peng Yu, Hao Zhong, and Fengqin Feng. 2022. "Soft-Shelled Turtle Peptides Extend Lifespan and Healthspan in Drosophila" Nutrients 14, no. 24: 5205. https://doi.org/10.3390/nu14245205
APA StyleWang, Q., Zhang, J., Zhuang, J., Shen, F., Zhao, M., Du, J., Yu, P., Zhong, H., & Feng, F. (2022). Soft-Shelled Turtle Peptides Extend Lifespan and Healthspan in Drosophila. Nutrients, 14(24), 5205. https://doi.org/10.3390/nu14245205