The Effect of BMI on Blood Lipids and Dyslipidemia in Lactating Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Laboratory Measurement
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Logistic Regression Results
3.3. BMI and Risk of Dyslipidemia in Lactating Women
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopin, L.; Lowenstein, C. Dyslipidemia. Ann. Intern. Med. 2017, 167, C81–C96. [Google Scholar] [CrossRef] [PubMed]
- Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metab.—Clin. Exp. 2019, 92, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Ma, J.; Tao, R.; Chen, Z.; Yang, Y.; He, Q.; Lv, Y.; Lan, Z.; Zhou, J. The effects of the interaction between BMI and dyslipidemia on hypertension in adults. Sci. Rep. 2022, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Kuwabara, M.; Kuwabara, R.; Niwa, K.; Hisatome, I.; Smits, G.; Roncal-Jimenez, C.A.; MacLean, P.S.; Yracheta, J.M.; Ohno, M.; Lanaspa, M.A.; et al. Different Risk for Hypertension, Diabetes, Dyslipidemia, and Hyperuricemia According to Level of Body Mass Index in Japanese and American Subjects. Nutrients 2018, 10, 1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [PubMed]
- Aune, D.; Sen, A.; Prasad, M.; Norat, T.; Janszky, I.; Tonstad, S.; Romundstad, P.; Vatten, L.J. BMI and all cause mortality: Systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ 2016, 353, i2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Kushner, R.F. Clinical assessment and management of adult obesity. Circulation 2012, 126, 2870–2877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madala, M.C.; Franklin, B.A.; Chen, A.Y.; Berman, A.D.; Roe, M.T.; Peterson, E.D.; Ohman, E.M.; Smith, S.J.; Gibler, W.B.; McCullough, P.A. Obesity and age of first non-ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 2008, 52, 979–985. [Google Scholar] [CrossRef]
- Yan, Y.; Bazzano, L.A.; Juonala, M.; Raitakari, O.T.; Viikari, J.; Prineas, R.; Dwyer, T.; Sinaiko, A.; Burns, T.L.; Daniels, S.R.; et al. Long-Term Burden of Increased Body Mass Index from Childhood on Adult Dyslipidemia: The i3C Consortium Study. J. Clin. Med. 2019, 8, 1725. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, M.M.; Lyass, A.; O’Donnell, C.J.; D’Agostino, R.S.; Levy, D. Association of Maternal Prepregnancy Dyslipidemia With Adult Offspring Dyslipidemia in Excess of Anthropometric, Lifestyle, and Genetic Factors in the Framingham Heart Study. JAMA Cardiol. 2016, 1, 26–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hafner, H.; Chang, E.; Carlson, Z.; Zhu, A.; Varghese, M.; Clemente, J.; Abrishami, S.; Bagchi, D.P.; MacDougald, O.A.; Singer, K.; et al. Lactational High-Fat Diet Exposure Programs Metabolic Inflammation and Bone Marrow Adiposity in Male Offspring. Nutrients 2019, 11, 1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biddulph, C.; Holmes, M.; Kuballa, A.; Carter, R.J.; Maher, J. Beyond the BMI: Validity and Practicality of Postpartum Body Composition Assessment Methods during Lactation: A Scoping Review. Nutrients 2022, 14, 2197. [Google Scholar] [CrossRef] [PubMed]
- Gunderson, E.P. Childbearing and obesity in women: Weight before, during, and after pregnancy. Obs. Gynecol. Clin. N. Am. 2009, 36, 317–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkvist, A.; Bertz, F.; Ellegård, L.; Bosaeus, I.; Brekke, H.K. Metabolic risk profile among overweight and obese lactating women in Sweden. PLoS ONE 2013, 8, e63629. [Google Scholar] [CrossRef] [Green Version]
- Pathirana, M.M.; Andraweera, P.H.; Aldridge, E.; Leemaqz, S.Y.; Harrison, M.; Harrison, J.; Verburg, P.E.; Arstall, M.A.; Dekker, G.A.; Roberts, C.T. Gestational diabetes mellitus and cardio-metabolic risk factors in women and children at 3 years postpartum. Acta Diabetol. 2022, 59, 1237–1246. [Google Scholar] [CrossRef]
- Appiah, D.; Lewis, C.E.; Jacobs, D.R.; Shikany, J.M.; Quesenberry, C.P.; Gross, M.; Carr, J.; Sidney, S.; Gunderson, E.P. The Association of Lactation Duration with Visceral and Pericardial Fat Volumes in Parous Women: The CARDIA Study. J. Clin. Endocrinol. Metab. 2021, 106, 1821–1831. [Google Scholar] [CrossRef]
- Phd, S.; Claydon, E. Eating Disorders Across the Life-Span: From Menstruation to Menopause. Women’s Reproductive Mental Health Across the Lifespan; Springer International Publishing: Berlin/Heidelberg, Germany, 2014; pp. 237–261. [Google Scholar]
- Joint Committee for Developing Chinese guidelines on Prevention and Treatment of Dyslipidemia in Adults. Guidelines for the Prevention and Treatment of Dyslipids in Chinese Adults (Revised 2016). Zhi Zhongguo Xun Huan Za Zhi 2016, 31, 937–953. [Google Scholar]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Sun, T.; Rong, Y.; Hu, X.; Zhu, Y.; Huang, H.; Chen, L.; Li, P.; Li, S.; Yang, W.; Cheng, J.; et al. Plasma Alkylresorcinol Metabolite, a Biomarker of Whole-Grain Wheat and Rye Intake, and Risk of Type 2 Diabetes and Impaired Glucose Regulation in a Chinese Population. Diabetes Care 2018, 41, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Dalrymple, K.V.; Flynn, A.C.; Relph, S.A.; O’Keeffe, M.; Poston, L. Lifestyle Interventions in Overweight and Obese Pregnant or Postpartum Women for Postpartum Weight Management: A Systematic Review of the Literature. Nutrients 2018, 10, 1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, C.M.; Strawderman, M.S.; Hinton, P.S.; Pearson, T.A. Gestational weight gain and postpartum behaviors associated with weight change from early pregnancy to 1 y postpartum. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Keppel, K.G.; Taffel, S.M. Pregnancy-related weight gain and retention: Implications of the 1990 Institute of Medicine guidelines. Am. J. Public Health 1993, 83, 1100–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, S.F.; Hedderson, M.M.; Feng, J.; Davenport, E.R.; Gunderson, E.P.; Ferrara, A. Change in body mass index between pregnancies and the risk of gestational diabetes in a second pregnancy. Obstet. Gynecol. 2011, 117, 1323–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luke, S.; Kirby, R.S.; Wright, L. Postpartum Weight Retention and Subsequent Pregnancy Outcomes. J. Perinat. Neonatal Nurs. 2016, 34, 292–301. [Google Scholar] [CrossRef]
- Wallace, J.M.; Bhattacharya, S.; Campbell, D.M.; Horgan, G.W. Inter-Pregnancy Weight Change and the Risk of Recurrent Pregnancy Complications. PLoS ONE 2016, 11, e154812. [Google Scholar] [CrossRef] [Green Version]
- Téllez-Rojo, M.M.; Trejo-Valdivia, B.; Roberts, E.; Muñoz-Rocha, T.V.; Bautista-Arredondo, L.F.; Peterson, K.E.; Cantoral, A. Influence of post-partum BMI change on childhood obesity and energy intake. PLoS ONE 2019, 14, e224830. [Google Scholar] [CrossRef] [Green Version]
- Gridneva, Z.; Rea, A.; Hepworth, A.R.; Ward, L.C.; Lai, C.T.; Hartmann, P.E.; Geddes, D.T. Relationships between Breastfeeding Patterns and Maternal and Infant Body Composition over the First 12 Months of Lactation. Nutrients 2018, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Putz, E.J.; Putz, A.M.; Jeon, H.; Lippolis, J.D.; Ma, H.; Reinhardt, T.A.; Casas, E. MicroRNA profiles of dry secretions through the first three weeks of the dry period from Holstein cows. Sci. Rep. 2019, 9, 19658. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Zheng, Z.; Zhang, F.; Wu, Y.; Trzaskowski, M.; Maier, R.; Robinson, M.R.; McGrath, J.J.; Visscher, P.M.; Wray, N.R.; et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 2018, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, W.C.; Saudek, C.D.; Giobbie-Hurder, A.; Henderson, W.G.; Henry, R.R.; Kelley, D.E.; Edelman, S.V.; Zieve, F.J.; Adler, R.A.; Anderson, J.W.; et al. The Veterans Affairs Implantable Insulin Pump Study: Effect on cardiovascular risk factors. Diabetes Care 1998, 21, 1596–1602. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, N.; Ranathunga, I.; Gunawardana, K.; Ahamed, M.; Ediriweera, D.; Antonypillai, C.N.; Kalupahana, N. High Prevalence of Overweight/Obesity in Urban Sri Lanka: Findings from the Colombo Urban Study. J. Diabetes Res. 2019, 2019, 2046428. [Google Scholar] [CrossRef] [Green Version]
- Amundsen, A.L.; Khoury, J.; Iversen, P.O.; Bergei, C.; Ose, L.; Tonstad, S.; Retterstøl, K. Marked changes in plasma lipids and lipoproteins during pregnancy in women with familial hypercholesterolemia. Atherosclerosis 2006, 189, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Osae, E.A.; Bullock, T.; Chintapalati, M.; Brodesser, S.; Hanlon, S.; Redfern, R.; Steven, P.; Smith, C.W.; Rumbaut, R.E.; Burns, A.R. Obese Mice with Dyslipidemia Exhibit Meibomian Gland Hypertrophy and Alterations in Meibum Composition and Aqueous Tear Production. Int. J. Mol. Sci. 2020, 21, 8772. [Google Scholar] [CrossRef] [PubMed]
- Borlaug, B.A.; Reddy, Y.N. Getting at the Heart of Central Obesity and the Metabolic Syndrome. Circ. Cardiovasc. Imaging 2016, 9, e005110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himes, R.W.; Smith, C.W. Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J. 2010, 24, 731–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mensah, G.A.; Mokdad, A.H.; Ford, E.; Narayan, K.M.; Giles, W.H.; Vinicor, F.; Deedwania, P.C. Obesity, metabolic syndrome, and type 2 diabetes: Emerging epidemics and their cardiovascular implications. Cardiol. Clin. 2004, 22, 485–504. [Google Scholar] [CrossRef]
- Pietiläinen, K.H.; Sysi-Aho, M.; Rissanen, A.; Seppänen-Laakso, T.; Yki-Järvinen, H.; Kaprio, J.; Oresic, M. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects—A monozygotic twin study. PLoS ONE 2007, 2, e218. [Google Scholar] [CrossRef]
- Mu, Q.; Zhu, J.; Si, Y.; Chen, X.; Duan, G.; Sun, S.; Fang, G.; Zeng, Y.; Yang, N. Overexpression of PID1 reduces high density lipoprotein level and functionality in swine. IUBMB Life 2019, 71, 1946–1951. [Google Scholar] [CrossRef]
- Bays, H.E.; Chapman, R.H.; Grandy, S. The relationship of body mass index to diabetes mellitus, hypertension and dyslipidaemia: Comparison of data from two national surveys. Int. J. Clin. Pract. 2007, 61, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Ohta, T.; Nagashima, J.; Sasai, H.; Ishii, N. Relationship of Cardiorespiratory Fitness and Body Mass Index with the Incidence of Dyslipidemia among Japanese Women: A Cohort Study. Int. J. Environ. Res. Public Health 2019, 16, 4647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juonala, M.; Magnussen, C.G.; Berenson, G.S.; Venn, A.; Burns, T.L.; Sabin, M.A.; Srinivasan, S.R.; Daniels, S.R.; Davis, P.H.; Chen, W.; et al. Childhood adiposity, adult adiposity, and cardiovascular risk factors. N. Engl. J. Med. 2011, 365, 1876–1885. [Google Scholar] [CrossRef] [Green Version]
- Shabnam, A.A.; Homa, K.; Reza, M.T.; Bagher, L.; Hossein, F.M.; Hamidreza, A. Cut-off points of waist circumference and body mass index for detecting diabetes, hypercholesterolemia and hypertension according to National Non-Communicable Disease Risk Factors Surveillance in Iran. Arch. Med. Sci. 2012, 8, 614–621. [Google Scholar] [CrossRef]
- Zhou, B.F. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults—Study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed. Environ. Sci. 2002, 15, 83–96. [Google Scholar] [PubMed]
Quartile of BMI (kg/m2) | F/χ2 | p | ||||
---|---|---|---|---|---|---|
Q1 (Reference), <21.45 (n = 574) | Q2, 21.45 to <23.72 (n = 574) | Q3, 23.72 to <26.42 (n = 573) | Q4, >26.42 (n = 574) | |||
Age (years) | 28.2 (4.77) | 29.7 (5.09) | 30.3 (5.44) | 30.9 (5.58) | 9.93 | 0.0016 |
BMI | 19.72 (1.26) | 22.60 (0.65) | 25.04 (0.78) | 29.48 (2.58) | 8222.1 | <0.0001 |
Parity numbers | 1.60 (0.58) | 1.71 (0.58) | 1.76 (0.56) | 1.78 (0.56) | 7.71 | 0.0055 |
Age of children (months) | 8.62 (5.17) | 7.51 (4.74) | 7.69 (5.02) | 7.62 (5.10) | 11.22 | 0.0008 |
Drinker (%) | 10 (1.7) | 11 (1.9) | 13 (2.3) | 9 (1.6) | 0.4559 | 0.4996 |
Smoker (%) | 8 (1.4) | 1 (0.2) | 6 (1.1) | 3 (0.5) | 0.1352 | 0.7131 |
Physical activity level | ||||||
Light | 474 (83.60) | 468 (81.68) | 454 (80.78) | 449 (80.04) | 0.6511 | 0.4197 |
Moderate | 89 (15.70) | 99 (17.28) | 102 (18.15) | 112 (19.96) | ||
Vigorous | 4 (0.71) | 6 (1.05) | 6 (1.07) | 0 | ||
History of gestational diabetes (%) | 16 (2.8) | 20 (3.5) | 28 (4.9) | 39 (6.8) | 5.665 | 0.0173 |
History of gestational hypertension (%) | 8 (1.4) | 15 (2.6) | 15 (2.6) | 37 (6.5) | 1.482 | 0.2235 |
TC (mmol/L) | 4.13 (0.74) | 4.26 (0.84) | 4.42 (0.9) | 4.50 (0.93) | 22.18 | <0.0001 |
TG (mmol/L) | 0.81 (0.5) | 0.98 (0.64) | 1.13 (0.71) | 1.35 (0.87) | 72.11 | <0.0001 |
HDL (mmol/L) | 1.67 (0.37) | 1.53 (0.34) | 1.46 (0.34) | 1.36 (0.31) | 145.52 | <0.0001 |
LDL (mmol/L) | 2.25 (0.65) | 2.44 (0.76) | 2.60 (0.8) | 2.70 (0.84) | 57.05 | <0.0001 |
Serum zinc (μg/dL) | 83.18 (17.94) | 83.39 (23.21) | 83.75 (23.54) | 84.63 (23.35) | 1.16 | 0.2813 |
Blood glucose (mmol/L) | 4.68 (0.59) | 4.80 (0.58) | 4.88 (0.73) | 5.11 (1.2) | 28.7 | <0.0001 |
Ferritin (ng/mL) | 47.91 (36.25) | 47.99 (41.77) | 52.84 (47.69) | 53.48 (41.53) | 1.54 | 0.2155 |
Transferrin receptor (mg/L) | 3.20 (1.32) | 3.36 (2.11) | 3.44 (1.86) | 3.50 (1.60) | 15.26 | <0.0001 |
Hemoglobin (g/L) | 130.69 (12.20) | 130.96 (12.59) | 131.77 (13.94) | 132.98 (14.28) | 17.61 | <0.0001 |
Serum Vitamin B12 (pg/mL) | 469.70 (236.76) | 454.13 (245.92) | 449.64 (238.22) | 444.42 (209.6) | 9.76 | 0.0018 |
Serum folic acid (ng/mL) | 6.38 (3.54) | 6.23 (3.52) | 6.16 (3.57) | 5.53 (3.08) | 12.10 | 0.0005 |
Hs-CRP (mg/L) | 1.17 (3.96) | 1.51 (3.83) | 1.72 (3.94) | 2.70 (4.32) | 25.05 | <0.0001 |
Albumin (g/L) | 48.06 (3.16) | 47.50 (3.29) | 47.56 (3.73) | 47.49 (3.22) | 13.88 | 0.0002 |
Total protein (g/L) | 75.82 (4.89) | 75.69 (5.27) | 76.12 (5.31) | 76.24 (4.98) | 2.00 | 0.1571 |
Serum Vitamin A (µmol/L)) | 0.46 (0.34) | 0.47 (0.14) | 0.50 (0.28) | 0.50 (0.16) | 7.51 | 0.0062 |
Serum Vitamin D (ng/mL) | 17.78 (7.13) | 17.23 (5.83) | 17.32 (5.9) | 17.38 (5.98) | 0.25 | 0.6164 |
Systolic pressure (mmHg) | 112.37 (11.20) | 114.49 (10.54) | 117.61 (10.68) | 122.81 (12.67) | 87.29 | <0.0001 |
Diastolic pressure (mmHg) | 68.65 (8.95) | 70.76 (8.94) | 72.52 (8.79) | 75.67 (10.19) | 2.70 | 0.1005 |
Age of Children (Months) | Q1 (Reference), <21.45 (n = 574) | Q2, 21.45 to <23.72 (n = 574) | Q3, 23.72 to <26.42 (n = 573) | Q4, >26.42 (n = 574) | F Value | p |
---|---|---|---|---|---|---|
<12 months | n = 431 | n = 473 | n = 467 | n = 460 | ||
TC (mmol/L) | 4.19 (0.78) | 4.31 (0.82) | 4.46 (0.92) | 4.56 (0.95) | 15.07 | 0.0001 |
TG (mmol/L) | 0.80 (0.41) | 0.99 (0.64) | 1.14 (0.72) | 1.36 (0.87) | 57.48 | <0.0001 |
HDL-C (mmol/L) | 1.68 (0.38) | 1.53 (0.34) | 1.48 (0.34) | 1.37 (0.31) | 102.28 | <0.0001 |
LDL-C (mmol/L) | 2.29 (0.67) | 2.47 (0.75) | 2.63 (0.83) | 2.74 (0.86) | 38.93 | <0.0001 |
12–23 months | n = 143 | n = 101 | n = 106 | n = 114 | ||
TC (mmol/L) | 3.96 (0.59) | 4.07 (0.93) | 4.25 (0.78) | 4.27 (0.82) | 4.37 | 0.0372 |
TG (mmol/L) | 0.83 (0.71) | 0.94 (0.62) | 1.09 (0.63) | 1.31 (0.89) | 14.76 | 0.0001 |
HDL-C (mmol/L) | 1.62 (0.34) | 1.5 (0.3) | 1.41 (0.32) | 1.31 (0.29) | 40.82 | <0.0001 |
LDL-C (mmol/L) | 2.13 (0.56) | 2.28 (0.8) | 2.5 (0.69) | 2.54 (0.7) | 12.39 | 0.0005 |
Q1 (Reference), <21.45 (n = 574) | Q2, 21.45 to < 23.72 (n = 574) | Q3, 23.72 to < 26.42 (n = 573) | Q4, >26.42 (n = 574) | χ2 | p for Trend | |
---|---|---|---|---|---|---|
Hypercholesterolemia | ||||||
Case/control subjects, n | 6/568 | 10/564 | 20/553 | 29/545 | ||
Crude OR (95% CI) | 1 | 1.68 (0.61, 4.66) | 3.42 (1.37, 8.59) | 5.04 (2.08, 12.23) | 17.85 | 0.0005 |
Adjusted OR * (95% CI) | 1 | 1.57 (0.56, 4.35) | 2.85 (1.12, 7.29) | 4.48 (1.82, 11.01) | 15.10 | 0.0017 |
Adjusted OR † (95% CI) | 1 | 1.38 (0.50, 3.87) | 2.35 (0.91, 6.09) | 3.15 (1.25, 7.93) | 8.45 | 0.0376 |
Hypertriglyceridemia | ||||||
Case/control subjects, n | 8/566 | 27/547 | 35/538 | 52/522 | ||
Crude OR (95% CI) | 1 | 3.50 (1.58, 7.77) | 4.60 (2.12, 10.01) | 7.05 (3.32, 14.98) | 28.90 | <0.0001 |
Adjusted OR * (95% CI) | 1 | 3.32 (1.49, 7.40) | 4.28 (1.96, 9.38) | 6.84 (3.2, 14.63) | 27.93 | <0.0001 |
Adjusted OR † (95% CI) | 1 | 3.17 (1.42, 7.06) | 3.93 (1.79, 8.64) | 5.49 (2.54, 11.88) | 19.92 | 0.0002 |
Hypo-HDL-cholesterolemia | ||||||
Case/control subjects, n | 17/557 | 24/550 | 39/534 | 53/521 | ||
Crude OR (95% CI) | 1 | 1.43 (0.76, 2.70) | 2.39 (1.34, 4.28) | 3.33 (1.91, 5.83) | 23.05 | <0.0001 |
Adjusted OR * (95% CI) | 1 | 1.49 (0.79, 2.82) | 2.56 (1.42, 4.6) | 3.66 (2.08, 6.45) | 25.78 | <0.0001 |
Adjusted OR † (95% CI) | 1 | 1.59 (0.84, 3.01) | 2.66 (1.48, 4.8) | 3.69 (2.07, 6.58) | 24.10 | <0.0001 |
Hyper-LDL-cholesterolemia | ||||||
Case/control subjects, n | 8/566 | 11/563 | 21/552 | 33/541 | ||
Crude OR (95% CI) | 1 | 1.38 (0.55, 3.47) | 2.69 (1.18, 6.12) | 4.31 (1.98, 9.42) | 19.43 | 0.0002 |
Adjusted OR * (95% CI) | 1 | 1.29 (0.52, 3.25) | 2.40 (1.04, 5.52) | 3.88 (1.75, 8.58) | 16.70 | 0.0008 |
Adjusted OR † (95% CI) | 1 | 1.20 (0.48, 3.03) | 2.15 (0.92, 4.99) | 3.09 (1.37, 6.97) | 11.18 | 0.0108 |
Dyslipidemia | ||||||
Case/control subjects, n | 32/542 | 54/520 | 82/491 | 115/459 | ||
Crude OR (95% CI) | 1 | 1.76 (1.12, 2.77) | 2.83 (1.85, 4.33) | 4.24 (2.81, 6.40) | 57.51 | <0.0001 |
Adjusted OR * (95% CI) | 1 | 1.72 (1.09, 2.71) | 2.68 (1.74, 4.12) | 4.20 (2.77, 6.37) | 55.31 | <0.0001 |
Adjusted OR † (95% CI) | 1 | 1.70 (1.08, 2.69) | 2.61 (1.69, 4.02) | 3.83 (2.50, 5.85) | 45.73 | <0.0001 |
Q1 (Reference), <21.45 (n = 574) | Q2, 21.45 to <23.72 (n = 574) | Q3, 23.72 to <26.42 (n = 573) | Q4, >26.42 (n = 574) | χ2 | p for Trend | p Value for Interaction | |
---|---|---|---|---|---|---|---|
Age (years) | 0.9138 | ||||||
<30 | 1 | 1.93 (1.04, 3.57) | 3.16 (1.75, 5.70) | 4.43 (2.48, 7.94) | 28.6503 | <0.0001 | |
≥30 | 1 | 1.31 (0.66, 2.6) | 1.99 (1.04, 3.80) | 3.01 (1.61, 5.62) | 17.4998 | 0.0006 | |
Age of children (months) | 0.5652 | ||||||
<12 months | 1 | 1.62 (0.96, 2.73) | 2.25 (1.36, 3.72) | 3.69 (2.26, 6.00) | 33.9332 | <0.0001 | |
12–23 months | 1 | 2.08 (0.75, 5.76) | 4.09 (1.66, 10.08) | 4.05 (1.59, 10.34) | 11.883 | 0.0078 | |
Parity | 0.7659 | ||||||
Primiparous | 1 | 1.83 (0.92, 3.65) | 2.87 (1.47, 5.61) | 4.57 (2.38, 8.79) | 23.1572 | <0.0001 | |
Multiparous | 1 | 1.58 (0.85, 2.93) | 2.41 (1.35, 4.31) | 3.43 (1.94, 6.05) | 23.1981 | <0.0001 | |
Physical activity level | 0.2562 | ||||||
Light | 1 | 1.44 (0.86, 2.4) | 2.61 (1.63, 4.2) | 3.59 (2.25, 5.73) | 38.0361 | <0.0001 | |
Moderate & Vigorous | 1 | 3.58 (1.16, 11.07) | 3.14 (1, 9.88) | 6.80 (2.25, 20.54) | 12.4692 | 0.0059 | |
Fasting Blood glucose (mmol/L) | 0.3006 | ||||||
<4.81 (median) | 1 | 2.88 (1.51, 5.47) | 3.05 (1.61, 5.81) | 4.72 (2.47, 9.03) | 22.0424 | <0.0001 | |
≥4.81 (median) | 1 | 0.97 (0.50, 1.90) | 2.20 (1.22, 4.00) | 3.12 (1.77, 5.52) | 28.1374 | <0.0001 | |
Hemoglobin (g/L) | 0.7389 | ||||||
<132 (median) | 1 | 2.28 (1.14, 4.56) | 3.08 (1.56, 6.05) | 5.41 (2.79,10.48) | 27.5986 | <0.0001 | |
≥132 (median) | 1 | 1.26 (0.68, 2.34) | 2.21 (1.25, 3.91) | 2.80 (1.60,4.89) | 18.7677 | 0.0003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Xu, X.; Yu, W.; Chen, L.; Zhang, S.; Li, Y.; Tian, M.; Liu, C.; Luo, X.; Liu, Y. The Effect of BMI on Blood Lipids and Dyslipidemia in Lactating Women. Nutrients 2022, 14, 5174. https://doi.org/10.3390/nu14235174
Yu L, Xu X, Yu W, Chen L, Zhang S, Li Y, Tian M, Liu C, Luo X, Liu Y. The Effect of BMI on Blood Lipids and Dyslipidemia in Lactating Women. Nutrients. 2022; 14(23):5174. https://doi.org/10.3390/nu14235174
Chicago/Turabian StyleYu, Lianlong, Xiaohui Xu, Wei Yu, Liyong Chen, Shixiu Zhang, Yanmo Li, Meina Tian, Changqing Liu, Xiaoyan Luo, and Yiya Liu. 2022. "The Effect of BMI on Blood Lipids and Dyslipidemia in Lactating Women" Nutrients 14, no. 23: 5174. https://doi.org/10.3390/nu14235174
APA StyleYu, L., Xu, X., Yu, W., Chen, L., Zhang, S., Li, Y., Tian, M., Liu, C., Luo, X., & Liu, Y. (2022). The Effect of BMI on Blood Lipids and Dyslipidemia in Lactating Women. Nutrients, 14(23), 5174. https://doi.org/10.3390/nu14235174