Association of Food Intake with Sleep Durations in Adolescents from a Capital City in Northeastern Brazil
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Dependent Variable
2.3. Independent Variables
2.4. Adjustment Variables
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AASM | American Academy of Sleep Medicine |
AUDIT | Alcohol Use Disorder Identification Test |
ABEP | Brazilian Association of Research Companies |
CI | Confidence interval |
DAG | Directed acyclic graph |
FFQ | Food frequency questionnaire |
NSF | National Sleep Foundation |
PSQI | Pittsburgh Sleep Quality Index |
SAPAC | Self-Administered Physical Activity Checklist |
TCV | Total caloric value |
References
- Garmy, P.; Ward, T.M. Sleep habits and nighttime texting among adolescents. J. Sch. Nurs. 2018, 34, 121–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavitsky, K.; Saurman, J.L.; McNamara, P.; Cronin-Golomb, A. Sleep in Parkinson’s disease: A comparison of actigraphy and subjective measures. Park. Relat. Disord. 2010, 16, 280–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carone, C.M.D.M.; Silva, B.D.P.D.; Rodrigues, L.T.; Tavares, P.D.S.; Carpena, M.X.; Santos, I.S. Fatores associados a distúrbios do sono em estudantes universitários. Cad. Saúde Pública 2020, 36, e00074919. [Google Scholar] [CrossRef]
- Sousa, R.D.S.; Bragança, M.L.B.M.; Oliveira, B.R.D.; Coelho, C.C.N.D.S.; Silva, A.A.M.D. Association between the degree of processing of consumed foods and sleep quality in adolescents. Nutrients 2020, 12, 462. [Google Scholar] [CrossRef] [Green Version]
- Gajardo, Y.Z.; Ramos, J.N.; Muraro, A.P.; Moreira, N.F.; Ferreira, M.G.; Rodrigues, P.R.M. Problemas com o sono e fatores associados na população brasileira: Pesquisa Nacional de Saúde, 2013. Ciência Saúde Coletiva 2021, 26, 601–610. [Google Scholar] [CrossRef]
- Drager, L.F.; Lorenzi-Filho, G.; Cintra, F.D.; Pedrosa, R.P.; Bittencourt, L.; Poyares, D.; Carvalho, C.G.; Moura, S.M.G.P.T.; Santos-Silva, R.; De Bruin, P.F.C.; et al. 1º Posicionamento Brasileiro sobre o impacto dos distúrbios de sono nas doenças cardiovasculares da Sociedade Brasileira de Cardiologia. Arq. Bras. Cardiol. 2018, 111, 290–340. [Google Scholar] [CrossRef] [PubMed]
- Waters, F.; Bucks, R.S. Neuropsychological effects of sleep loss: Implication for neuropsychologists. J. Int. Neuropsychol. Soc. 2011, 17, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Bellesi, M. The effects of sleep loss on brain functioning. In Handbook of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2019; Volume 30, pp. 545–556. [Google Scholar]
- Barbosa, S.M.M.L.; Batista, R.F.L.; Rodrigues, L.D.S.; Bragança, M.L.B.M.; Oliveira, B.R.D.; Simões, V.M.F.; Eckeli, A.L.; Silva, A.A.M.D. Prevalência de sonolência diurna excessiva e fatores associados em adolescentes da coorte RPS, em São Luís (MA). Rev. Bras. Epidemiol. 2020, 23, e200071. [Google Scholar] [CrossRef]
- Peuhkuri, K.; Sihvola, N.; Korpela, R. Diet promotes sleep duration and quality. Nutr. Res. 2012, 32, 309–319. [Google Scholar] [CrossRef]
- Gonçalves, L.F.; Haas, P. Impacto da alimentação associada ao hábito do sono: Uma revisão sistemática. Res. Soc. Dev. 2020, 9, e57791110238. [Google Scholar] [CrossRef]
- Bayer, O.; Rosario, A.S.; Wabitsch, M.; von Kries, R. Sleep duration and obesity in children: Is the association dependent on age and choice of the outcome parameter? Sleep 2009, 32, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burt, J.; Dube, L.; Thibault, L.; Gruber, R. Sleep and eating in childhood: A potential behavioral mechanism underlying the relationship between poor sleep and obesity. Sleep Med. 2014, 15, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.R.; Hu, F.B. Short sleep duration and weight gain: A systematic review. Obesity 2007, 16, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, L.S. Práticas Alimentares e Consumo de Álcool Entre Universitários; Centro Universitário de Brasília: Brasília, Brazil, 2016. [Google Scholar]
- Martins, G.M.D.S. Associação Entre Consumo de Alimentos Ultraprocessados e Marcadores Inflamatórios em Adolescentes de Escolas Públicas em São Luís-MA; Universidade Federal do Maranhão: São Luís, Brazil, 2018. [Google Scholar]
- St-Onge, M.P.; Roberts, A.; Shechter, A.; Choudhury, A.R. Fiber and saturated fat are associated with sleep arousals and slow wave sleep. J. Clin. Sleep Med. 2016, 12, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Costa Louzada, M.L.; Baraldi, L.G.; Steele, E.M.; Martins, A.P.B.; Canella, D.S.; Moubarac, J.-C.; Levy, R.B.; Cannon, G.; Afshin, A.; Imamura, F.; et al. Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev. Med. 2015, 81, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Beebe, D.W.; Lewin, D.; Zeller, M.; McCabe, M.; MacLeod, K.; Daniels, S.R.; Amin, R. Sleep in overweight adolescents: Shorter sleep, poorer sleep quality, sleepiness, and sleep-disordered breathing. J. Pediatr. Psychol. 2007, 32, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Afaghi, A.; O’Connor, H.; Chow, C.M. High-glycemic-index carbohydrate meals shorten sleep onset. Am. J. Clin. Nutr. 2007, 85, 426–430. [Google Scholar] [CrossRef] [Green Version]
- Grandner, M.A.; Kripke, D.F.; Naidoo, N.; Langer, R.D. Relationships among dietary nutrients and subjective sleep, objective sleep, and napping in women. Sleep Med. 2010, 11, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Werneck, A.O.; Vancampfort, D.; Oyeyemi, A.L.; Stubbs, B.; Silva, D.R. Joint association of ultra-processed food and sedentary behavior with anxiety-induced sleep disturbance among Brazilian adolescents. J. Affect. Disord. 2020, 266, 135–142. [Google Scholar] [CrossRef]
- Arouca, A.B.; Santaliestra-Pasías, A.M.; Moreno, L.A.; Marcos, A.; Widhalm, K.; Molnár, D.; Manios, Y.; Gottrand, F.; Kafatos, A.; Kersting, M.; et al. Diet as a moderator in the association of sedentary behaviors with inflammatory biomarkers among adolescents in the HELENA study. Eur. J. Nutr. 2019, 58, 2051–2065. [Google Scholar] [CrossRef]
- Hyde, M.; O’Driscoll, D.M.; Binette, S.; Galang, C.; Tan, S.K.; Verginis, N.; Davey, M.J.; Horne, R.S. Validation of actigraphy for determining sleep and wake in children with sleep disordered breathing. J. Sleep Res. 2007, 16, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Li, Y.; Rueschman, M.N.; Winkelman, J.W.; Ellenbogen, J.M.; Solet, J.M.; Dulin, H.; Berkman, L.F.; Buxton, O.M. Measuring sleep: Accuracy, sensitivity, and specificity of wrist actigraphy compared to polysomnography. Sleep 2013, 36, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Confortin, S.C.; Ribeiro, M.R.C.; Barros, A.J.; Menezes, A.M.B.; Horta, B.L.; Victora, C.G.; Barros, F.C.; Gonçalves, H.; Bettiol, H.; dos Santos, I.S.; et al. RPS Brazilian Birth Cohorts Consortium (Ribeirão Preto, Pelotas and São Luís): History, objectives and methods. Cad. Saúde Pública 2021, 37, e00093320. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, A.; Sharkey, M.; Carskadon, M.A. Activity-based sleep-wake identification: An empirical test of methodological issues. Sleep 1994, 17, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Meltzer, L.J.; Montgomery-Downs, H.E.; Insana, S.P.; Walsh, C.M. Use of actigraphy for assessment in pediatric sleep research. Sleep Med. Rev. 2012, 16, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sport. Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Glowacki, E.M.; McGlone, M.S.; Bell, R.A. Targeting Type 2: Linguistic agency assignment in diabetes prevention policy messaging. J. Health Commun. 2016, 21, 457–468. [Google Scholar] [CrossRef]
- Van Hees, V.T.; Sabia, S.; Anderson, K.N.; Denton, S.J.; Oliver, J.; Catt, M.; Abell, J.; Kivimaki, M.; Trenell, M.; Singh-Manoux, A. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer. PLoS ONE 2015, 10, e0142533. [Google Scholar] [CrossRef] [Green Version]
- Van Hees, V.T.; Sabia, S.; Jones, S.E.; Wood, A.R.; Anderson, K.N.; Kivimäki, M.; Frayling, T.M.; Pack, A.I.; Bucan, M.; Trenell, M.I.; et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci. Rep. 2018, 8, 12975. [Google Scholar] [CrossRef]
- Schneider, B.C.; Motta, J.V.D.S.; Muniz, L.C.; Bielemann, R.M.; Madruga, S.W.; Orlandi, S.P.; Gigante, D.P.; Assunção, M.C.F. Desenho de um questionário de frequência alimentar digital autoaplicado para avaliar o consumo alimentar de adolescentes e adultos jovens: Coortes de nascimentos de Pelotas, Rio Grande do Sul. Rev. Bras. Epidemiol. 2016, 19, 419–432. [Google Scholar] [CrossRef]
- Bogea, E.G.; França, A.K.T.C.; Bragança, M.L.B.M.; Vaz, J.S.; Assunção, M.C.; Barbieri, M.A.; Bettiol, H.; Silva, A.A.M. Relative validity of a food frequency questionnaire for adolescents from a capital in the Northeastern region of Brazil. Braz. J. Med. Biol. Res. 2020, 54, e9991. [Google Scholar] [CrossRef] [PubMed]
- Núcleo de Estudos e Pesquisas em Alimentação (NEPA-UNICAMP). Tabela Brasileira de Composição de Alimentos—TACO, 4th ed.; Revisada e Ampliada; UNICAMP/NEPA: Campinas, Brazil, 2011. [Google Scholar]
- Souza, A.D.M.; Pereira, R.A.; Yokoo, E.M.; Levy, R.B.; Sichieri, R. Most consumed foods in Brazil: National dietary survey 2008–2009. Rev. Saude Publica 2013, 47, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Moubarac, J.C.; Levy, R.B.; Canella, D.S.; da Costa Louzada, M.L.; Cannon, G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr. 2018, 21, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Ministério do Planejamento, Orçamento e Gestão. Características Étnico-Raciais da População: Um Estudo das Categorias de cor ou Raça; IBGE: Rio de Janeiro, Brazil, 2008. [Google Scholar]
- Associação Brasileira de Empresas de Pesquisa. Critério de Classificação Econômica Brasil—CCEB. 2015. Available online: http://www.abep.org/criterio-brasil (accessed on 8 August 2022).
- Monteiro, C.A.; Levy, R.B.; Claro, R.M.; Castro, I.R.R.D.; Cannon, G. Uma nova classificação de alimentos baseada na extensão e propósito do seu processamento. Cad. Saúde Pública 2010, 26, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Moretti-Pires, R.O.; Corradi-Webster, C.M. Adaptação e validação do Alcohol Use Disorder Identification Test (AUDIT) para população ribeirinha do interior da Amazônia, Brasil. Cad. Saúde Pública 2011, 27, 497–509. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. El Estado Físico: Uso e Interpretación de la Antropometría; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Amorim, P. Mini International Neuropsychiatric Interview (MINI): Validação de entrevista breve para diagnóstico de transtornos mentais. Braz. J. Psychiatry 2000, 22, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.A.M. Introdução à Inferência Causal em Epidemiologia: Uma Abordagem Gráfica e Contrafactual, 1st ed.; Editora Fiocruz: Rio de Janeiro, Brasil, 2021; p. 402. [Google Scholar]
- Greenland, S.; Pearl, J.; Robins, J.M. Causal diagrams for epidemiologic research. Epidemiology 1999, 10, 37–48. [Google Scholar] [CrossRef]
- Hernán, M.A.; Cole, S.R. Invited commentary: Causal diagrams and measurement bias. Am. J. Epidemiol. 2009, 170, 959–962. [Google Scholar] [CrossRef]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef]
- Confortin, S.C.; Batista, R.F.L.; Barbosa, A.R.; Wendt, A.; Crochemore-Silva, I.; Alves, M.T.S.S.D.B.; Simões, V.M.F.; Silva, A.A.M.D. Is sleep time associated with handgrip strength in adolescents from the 1997/1998 São Luís Birth Cohort? Ciência Saúde Coletiva 2022, 27, 1147–1155. [Google Scholar] [CrossRef]
- Bacelar, A.M.; Castro, C.R.; Alves, R.; Araújo, P. Dossiê: Horários Escolares e Implicações no Sono de Adolescentes; Associação Brasileira do Sono: São Paulo, Brazil, 2018. [Google Scholar]
- Weiss, A.; Xu, F.; Storfer-Isser, A.; Thomas, A.; Ievers-Landis, C.E.; Redline, S. The association of sleep duration with adolescents’ fat and carbohydrate consumption. Sleep 2010, 33, 1201–1209. [Google Scholar] [CrossRef] [Green Version]
- Yackobovitch-Gavan, M.; Machtei, A.; Lazar, L.; Shamir, R.; Phillip, M.; Lebenthal, Y. Randomised study found that improved nutritional intake was associated with better sleep patterns in prepubertal children who were both short and lean. Acta Paediatr. 2018, 107, 666–671. [Google Scholar] [CrossRef]
- Ikonte, C.J.; Mun, J.G.; Reider, C.A.; Grant, R.W.; Mitmesser, S.H. Micronutrient inadequacy in short sleep: Analysis of the NHANES 2005–2016. Nutrients 2019, 11, 2335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, A.; Inoue, H.; Kuwano, T. Low energy intake and dietary quality are associated with low objective sleep quality in young Japanese women. Nutr. Res. 2020, 80, 44–54. [Google Scholar] [CrossRef]
- Grummon, A.H.; Sokol, R.L.; Lytle, L.A. Is late bedtime an overlooked sleep behaviour? Investigating associations between sleep timing, sleep duration and eating behaviours in adolescence and adulthood. Public Health Nutr. 2021, 24, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Tabar, Y.R.; Mikkelsen, K.B.; Rank, M.L.; Hemmsen, M.C.; Otto, M.; Kidmose, P. Ear-EEG for sleep assessment: A comparison with actigraphy and PSG. Sleep Breath 2021, 25, 1693–1705. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, A., III. Sleep assessment methods. Monogr. Soc. Res. Child. Dev. 2015, 80, 33–48. [Google Scholar] [CrossRef]
- Martin, J.L.; Hakim, A.D. Wrist actigraphy. Chest 2011, 139, 1514–1527. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Hoch, C.C.; Yeager, A.L.; Kupfer, D.J. Quantification of subjective sleep quality in healthy elderly men and women using the Pittsburgh Sleep Quality Index (PSQI). Sleep 1991, 14, 331–338. [Google Scholar]
- Menegassi, B.; Almeida, J.B.D.; Olimpio, M.Y.M.; Brunharo, M.S.M.; Langa, F.R. A nova classificação de alimentos: Teoria, prática e dificuldades. Cienc. Saude Coletiva 2018, 23, 4165–4176. [Google Scholar] [CrossRef]
- Montoro, J.; Sastre, J.; Bartra, J.; del Cuvillo, A.; Davila, I.; Jauregui, I.; Mullol, J.; Valero, A.L. Effect of H. J. Investig. Allergol. Clin. Immunol. 2006, 16, 24–28. [Google Scholar] [PubMed]
- Benca, R.M.; Obermeyer, W.H.; Thisted, R.A.; Gillin, J.C. Sleep and psychiatric disorders: A meta-analysis. Arch. Gen. Psychiatry 1992, 49, 651–668. [Google Scholar] [CrossRef] [PubMed]
- American Sleep Disorders Association. International Classification of Sleep Disorders. Revised: Diagnostic and Coding Manual. 1997. Available online: http://www.absm.org/PDF/ICSD.pdf (accessed on 10 November 2022).
- Biederman, J.; Wilens, T.; Mick, E.; Milberger, S.; Spencer, T.J.; Faraone, S. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders Washington, DC: American Psychiatric Association. J. Learn. Disabil. 1994, 22, 581–587. [Google Scholar]
- Godfrey, A.; Conway, R.; Meagher, D.; ÓLaighin, G. Direct measurement of human movement by accelerometry. Med. Eng. Phys. 2008, 30, 1364–1386. [Google Scholar] [CrossRef] [PubMed]
- Ermes, M.; Pärkkä, J.; Mäntyjärvi, J.; Korhonen, I. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Wendt, A.; da Silva, I.C.M.; Gonçalves, H.; Assunção, M.C.F.; Menezes, A.M.B.; Wehrmeister, F.C. Sleep parameters measured by accelerometry: Descriptive analyses from the 22-year follow-up of the Pelotas 1993 birth cohort. Sleep Med. 2020, 67, 83–90. [Google Scholar] [CrossRef]
Variable | Accelerometer | p-Value | |||
---|---|---|---|---|---|
No | Yes | ||||
n | % | n | % | ||
Sociodemographic and economic | |||||
Gender | 0.530 | ||||
Male | 725 | 61.0 | 463 | 39.0 | |
Female | 826 | 62.2 | 501 | 37.8 | |
Age | <0.001 | ||||
18 years | 914 | 52.5 | 828 | 47.5 | |
19 years | 637 | 82.4 | 136 | 17.6 | |
Skin Color | 0.305 | ||||
White | 310 | 62.6 | 185 | 37.4 | |
Black | 268 | 64.4 | 148 | 35.6 | |
Brown | 962 | 60.5 | 627 | 39.5 | |
Years of schooling | 0.011 | ||||
None to 8 years | 91 | 66.9 | 45 | 33.1 | |
9 to 11 years | 1238 | 60.4 | 871 | 39.6 | |
12 years or more | 117 | 79.9 | 48 | 29.1 | |
Economic class | <0.001 | ||||
A–B | 403 | 61.1 | 257 | 38.9 | |
C | 634 | 56.8 | 482 | 43.2 | |
D–E | 225 | 50.0 | 225 | 50.0 | |
Family income | 0.743 | ||||
<1 MW | 170 | 58.6 | 120 | 41.4 | |
1 MW | 437 | 59.5 | 298 | 40.5 | |
2 MW | 311 | 61.1 | 198 | 38.9 | |
3 MW | 159 | 60.2 | 105 | 39.8 | |
≥4 MW | 277 | 63.0 | 163 | 37.0 | |
Work | 0.895 | ||||
No | 1305 | 61.6 | 813 | 38.4 | |
Yes | 249 | 62.0 | 151 | 38.0 | |
Lifestyle | |||||
Total Physical Activity | 0.926 | ||||
Insufficiently active | 846 | 61.3 | 534 | 38.7 | |
Active | 679 | 61.1 | 430 | 38.9 | |
Screen time | 0.323 | ||||
No use or use ≤ 2 h | 137 | 56.0 | 108 | 44.0 | |
>2 to ≤5 h | 324 | 55.3 | 262 | 44.7 | |
>5 h | 844 | 58.7 | 594 | 41.3 | |
Consumption of alcoholic beverages | 0.241 | ||||
No | 881 | 60.4 | 578 | 39.6 | |
Yes | 649 | 62.7 | 386 | 37.3 | |
Smoking | 0.256 | ||||
No | 1491 | 61.5 | 935 | 38.5 | |
Yes | 60 | 67.4 | 29 | 32.6 | |
Use of illicit drugs | 0.048 | ||||
Never used | 1108 | 60.0 | 737 | 40.0 | |
Have used or currently use | 412 | 64.5 | 227 | 35.5 | |
Anxiety | 0.598 | ||||
No | 1495 | 61.6 | 933 | 38.4 | |
Yes | 56 | 64.4 | 31 | 35.6 | |
Depression | <0.001 | ||||
No | 1454 | 62.9 | 858 | 37.1 | |
Yes | 97 | 47.8 | 106 | 52.2 | |
Anthropometric variables | |||||
BMI | 0.467 | ||||
Adequate/Low weight | 1225 | 61.3 | 773 | 38.7 | |
Overweight/obesity | 326 | 63.1 | 191 | 36.9 | |
Sleep duration | |||||
Sleep duration (in hours) | 0.966 | ||||
≥6 h | 210 | 24.0 | 665 | 76.0 | |
<6 h | 95 | 24.1 | 299 | 75.9 | |
Food consumption | |||||
In natura or minimally processed | 1531 | 61.4 | 964 | 38.6 | 0.485 |
Processed | 1531 | 61.4 | 964 | 38.6 | 0.024 |
Ultra-processed | 1531 | 61.4 | 964 | 38.6 | 0.281 |
Variable | General | Sleep Duration | |
---|---|---|---|
n (%) | Mean (SD) | p-Value | |
Sociodemographic and economic | |||
Gender (n = 964) | <0.001 a | ||
Male | 463 (48.0) | 5.77 (0.93) | |
Female | 501 (52.0) | 6.20 (0.93) | |
Age (n = 964) | 0.426 a | ||
18 years | 828 (85.9) | 5.99 (0.96) | |
19 years | 136 (14.1) | 6.06 (0.92) | |
Skin Color (n = 960) | 0.776 c | ||
White | 185 (19.3) | 6.10 (0.94) | |
Black | 148 (15.4) | 5.80 (0.99) | |
Brown | 627 (65.3) | 6.00 (0.94) | |
Years of schooling (n = 964) | 0.209 c | ||
0 to 8 years | 45 (4.7) | 5.69 (1.06) | |
9 to 11 years | 871 (90.4) | 6.01 (0.95) | |
12 years or more | 48 (4.9) | 5.99 (0.82) | |
Economic class (n = 964) | 0.769 c | ||
A–B | 257 (26.7) | 5.97 (0.97) | |
C | 482 (50.0) | 5.95 (0.94) | |
D–E | 225 (23.3) | 6.13 (0.95) | |
Family income (n = 884) | 0.804 c | ||
<1 MW | 120 (13.6) | 6.11 (0.96) | |
1 MW | 298 (33.8) | 5.99 (0.95) | |
2 MW | 198 (22.4) | 6.09 (0.98) | |
3 MW | 105 (11.8) | 5.78 (0.93) | |
≥4 MW | 163 (18.4) | 5.99 (0.89) | |
Work (n = 964) | 0.332 a | ||
No | 813 (84.3) | 6.01 (0.95) | |
Yes | 151 (15.7) | 5.93 (0.93) | |
Lifestyle | |||
Total Physical Activity (n = 964) | 0.007 a | ||
Insufficiently active | 534 (55.4) | 6.07 (0.94) | |
Active | 430 (44.6) | 5.91 (0.96) | |
Screen time (n = 964) | 0.247 c | ||
No use or use ≤ 2 h | 108 (11.2) | 6.14 (0.86) | |
>2 to ≤5 h | 262 (27.1) | 6.01 (0.93) | |
>5 h | 594 (61.7) | 5.96 (0.97) | |
Consumption of alcoholic beverages (n = 964) | 0.435 a | ||
No | 578 (59.9) | 6.02 (0.93) | |
Yes | 386 (40.1) | 5.97 (0.99) | |
Smoking (n = 964) | 0.863 a | ||
No | 935 (96.9) | 5.99 (0.95) | |
Yes | 29 (3.1) | 6.03 (0.88) | |
Use of illicit drugs (n = 964) | 0.334 a | ||
Never used | 737 (76.4) | 6.01 (0.94) | |
Have used or currently use | 227 (23.6) | 5.94 (1.00) | |
Anxiety (n = 964) | 0.065 a | ||
No | 933 (96.8) | 6.00 (0.96) | |
Yes | 31 (3.2) | 5.92 (0.75) | |
Depression (n = 964) | 0.181 a | ||
No | 858 (89.0) | 5.99 (0.95) | |
Yes | 106 (11.00) | 6.11 (0.98) | |
Anthropometric variables | |||
BMI (n = 964) | 0.023 b | ||
Adequate/Low weight | 773 (80.2) | 6.03 (0.92) | |
Overweight/obesity | 191 (19.8) | 5.84 (1.05) | |
Food consumption | Mean (SD) | Correlation | p-value |
In natura or minimally processed (n = 964) | 34.72 (13.0) | 57.57 (13.25) | 0.057 |
Processed (n = 964) | 4.41 (3.00) | 4.41 (3.00) | 0.346 |
Ultra-processed (n = 964) | 57.57 (13.25) | 34.72 (13.07) | 0.479 |
Food Consumption | Crude Analysis | Adjusted Analysis * | ||
---|---|---|---|---|
β (95%CI) | p-Value | β (95%CI) | p-Value | |
In natura and minimally processed foods | −0.001 (−0.006; 0.003) | 0.570 | 0.000229 (−0.004; 0.004) | 0.924 |
Processed foods | −0.009 (−0.029; 0.010) | 0.346 | −0.00282 (−0.226; 0.169) | 0.780 |
Ultra-processed foods | 0.001 (−0.003; 0.006) | 0.479 | 0.00003 (−0.004; 0.005) | 0.989 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, E.C.; Carneiro, J.R.; de Almeida Fonseca Viola, P.C.; Confortin, S.C.; da Silva, A.A.M. Association of Food Intake with Sleep Durations in Adolescents from a Capital City in Northeastern Brazil. Nutrients 2022, 14, 5180. https://doi.org/10.3390/nu14235180
da Silva EC, Carneiro JR, de Almeida Fonseca Viola PC, Confortin SC, da Silva AAM. Association of Food Intake with Sleep Durations in Adolescents from a Capital City in Northeastern Brazil. Nutrients. 2022; 14(23):5180. https://doi.org/10.3390/nu14235180
Chicago/Turabian Styleda Silva, Emanuellen Coelho, Juliana Ramos Carneiro, Poliana Cristina de Almeida Fonseca Viola, Susana Cararo Confortin, and Antônio Augusto Moura da Silva. 2022. "Association of Food Intake with Sleep Durations in Adolescents from a Capital City in Northeastern Brazil" Nutrients 14, no. 23: 5180. https://doi.org/10.3390/nu14235180
APA Styleda Silva, E. C., Carneiro, J. R., de Almeida Fonseca Viola, P. C., Confortin, S. C., & da Silva, A. A. M. (2022). Association of Food Intake with Sleep Durations in Adolescents from a Capital City in Northeastern Brazil. Nutrients, 14(23), 5180. https://doi.org/10.3390/nu14235180