Osteoporosis Risk in Hemodialysis Patients: The Roles of Gender, Comorbidities, Biochemical Parameters, Health and Diet Literacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Measurements
2.2.1. The Risk of Osteoporosis
2.2.2. Socio-Demographics
2.2.3. Clinical Parameters
2.2.4. Biochemical Parameters
2.2.5. Physical Activities
2.2.6. Health Literacy, Digital Healthy Diet Literacy, and Hemodialysis Diet Knowledge
2.3. Data Collection Procedure
2.4. Data Analysis
3. Results
3.1. Participants’ Socio-Demographics
3.2. Associated Factors of Osteoporosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liyanage, T.; Ninomiya, T.; Jha, V.; Neal, B.; Patrice, H.M.; Okpechi, I.; Zhao, M.H.; Lv, J.; Garg, A.X.; Knight, J.; et al. Worldwide access to treatment for end-stage kidney disease: A systematic review. Lancet 2015, 385, 1975–1982. [Google Scholar] [CrossRef] [PubMed]
- Thurlow, J.S.; Joshi, M.; Yan, G.; Norris, K.C.; Agodoa, L.Y.; Yuan, C.M.; Nee, R. Global Epidemiology of End-Stage Kidney Disease and Disparities in Kidney Replacement Therapy. Am. J. Nephrol. 2021, 52, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, V.; Jasuja, S.; Tang, S.C.; Bhalla, A.K.; Sagar, G.; Jha, V.; Ramachandran, R.; Sahay, M.; Alexander, S.; Vachharajani, T.; et al. Peritoneal dialysis: Status report in South and South East Asia. Nephrology 2021, 26, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Glaser, D.L.; Kaplan, F.S. Osteoporosis. Definition and clinical presentation. Spine 1997, 22, 12s–16s. [Google Scholar] [CrossRef]
- Slouma, M.; Sahli, H.; Bahlous, A.; Laadhar, L.; Smaoui, W.; Rekik, S.; Gharsallah, I.; Sallami, M.; Moussa, F.B.; Elleuch, M.; et al. Mineral bone disorder and osteoporosis in hemodialysis patients. Adv. Rheumatol. 2020, 60, 15. [Google Scholar] [CrossRef]
- Hashimoto, H.; Shikuma, S.; Mandai, S.; Adachi, S.; Uchida, S. Calcium-based phosphate binder use is associated with lower risk of osteoporosis in hemodialysis patients. Sci. Rep. 2021, 11, 1648. [Google Scholar] [CrossRef]
- Karatas, A.; Erdem, E.; Arıcı, Y.K.; Canakci, E.; Turkmen, E.; Turker, N.T. The frequency of osteoporosis in patients with predialysis chronic renal failure and the factors affecting the development of osteoporosis. Niger. J. Clin. Pract. 2022, 25, 137–143. [Google Scholar] [CrossRef]
- Yenchek, R.H.; Ix, J.H.; Shlipak, M.G.; Bauer, D.C.; Rianon, N.J.; Kritchevsky, S.B.; Harris, T.B.; Newman, A.B.; Cauley, J.A.; Fried, L.F. Bone mineral density and fracture risk in older individuals with CKD. Clin. J. Am. Soc. Nephrol. 2012, 7, 1130–1136. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.Z.; Wang, J.J.; Chung, C.R.; Huang, P.C.; Su, B.A.; Cheng, K.C.; Chio, C.C.; Chien, C.C. Epidemiology and mortality of hip fracture among patients on dialysis: Taiwan National Cohort Study. Bone 2014, 64, 235–239. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chen, L.R.; Chen, K.H. Osteoporosis in Patients with Chronic Kidney Diseases: A Systemic Review. Int. J. Mol. Sci. 2020, 21, 6846. [Google Scholar] [CrossRef]
- Tasnim, N.; Dutta, P.; Nayeem, J.; Masud, P.; Ferdousi, A.; Ghosh, A.S.; Hossain, M.; Rajia, S.; Kubra, K.T.; Sakibuzzaman, M.; et al. Osteoporosis, an Inevitable Circumstance of Chronic Kidney Disease: A Systematic Review. Cureus 2021, 13, e18488. [Google Scholar] [CrossRef] [PubMed]
- Panuccio, V.; Enia, G.; Tripepi, R.; Aliotta, R.; Mallamaci, F.; Tripepi, G.; Zoccali, C. Pro-inflammatory cytokines and bone fractures in CKD patients. An exploratory single centre study. BMC Nephrol. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashid, A.; Chaudhary Hauge, S.; Suetta, C.; Hansen, D. Sarcopenia and risk of osteoporosis, falls and bone fractures in patients with chronic kidney disease: A systematic review. PLoS ONE 2022, 17, e0262572. [Google Scholar] [CrossRef] [PubMed]
- Najar, M.S.; Mir, M.M.; Muzamil, M. Prevalence of osteoporosis in patients with chronic kidney disease (stages 3–5) in comparison with age- and sex-matched controls: A study from Kashmir Valley Tertiary Care Center. Saudi J. Kidney Dis. Transplant. 2017, 28, 538–544. [Google Scholar] [CrossRef]
- Mahzari, M.M.; Alibrahim, A.R.; Alghamdi, N.A.; Alsadhan, M.A.; Almoamary, S.M.; Masuadi, E.M.; Al Shahrani, A.S. Prevalence and Risk Factors of Osteoporosis in Saudi End-Stage Renal Disease Patients on Hemodialysis. Saudi J. Med. Med. Sci. 2022, 10, 259–265. [Google Scholar] [CrossRef]
- Wung, C.H.; Chung, C.Y.; Wu, P.Y.; Huang, J.C.; Tsai, Y.C.; Chen, S.C.; Chiu, Y.W.; Chang, J.M. Associations between Metabolic Syndrome and Obesity-Related Indices and Bone Mineral Density T-Score in Hemodialysis Patients. J. Pers. Med. 2021, 11, 775. [Google Scholar] [CrossRef]
- Sørensen, K.; Van den Broucke, S.; Fullam, J.; Doyle, G.; Pelikan, J.; Slonska, Z.; Brand, H. Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health 2012, 12, 80. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.V.; Pham, K.M.; Do, B.N.; Kim, G.B.; Dam, H.T.B.; Le, V.T.; Nguyen, T.T.P.; Nguyen, H.T.; Nguyen, T.T.; Le, T.T.; et al. Digital Healthy Diet Literacy and Self-Perceived Eating Behavior Change during COVID-19 Pandemic among Undergraduate Nursing and Medical Students: A Rapid Online Survey. Int. J. Environ. Res. Public Health 2020, 17, 7185. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, J.; Driessnack, M.; Liu, X.; Liu, J.; Liu, K.; Peng, J.; You, L. Health literacy as predictors of fluid management in people receiving hemodialysis in China: A structural equation modeling analysis. Patient Educ. Couns. 2021, 104, 1159–1167. [Google Scholar] [CrossRef]
- Dang, L.T.; Luong, T.C.; Nguyen, D.H.; Hoang, T.A.; Nguyen, H.T.; Nguyen, H.C.; Duong, T.H.; Tran, T.T.; Pham, L.V.; Ngo, T.V.; et al. The Associations of Suspected COVID-19 Symptoms with Anxiety and Depression as Modified by Hemodialysis Dietary Knowledge: A Multi-Dialysis Center Study. Nutrients 2022, 14, 2364. [Google Scholar] [CrossRef]
- Panahi, R.; Yekefallah, L.; Shafaei, M.; Dehghankar, L.; Anbari, M.; Hosseini, N.; Hasannia, E. Effect of health literacy among students on the adoption of osteoporosis-preventive behaviors in Iran. J. Educ. Health Promot. 2020, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Roh, Y.H.; Koh, Y.D.; Noh, J.H.; Gong, H.S.; Baek, G.H. Effect of health literacy on adherence to osteoporosis treatment among patients with distal radius fracture. Arch. Osteoporos 2017, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Kung, A.W.; Ho, A.Y.; Ross, P.D.; Reginster, J.Y. Development of a clinical assessment tool in identifying Asian men with low bone mineral density and comparison of its usefulness to quantitative bone ultrasound. Osteoporos Int. 2005, 16, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Koh, L.K.; Sedrine, W.B.; Torralba, T.P.; Kung, A.; Fujiwara, S.; Chan, S.P.; Huang, Q.R.; Rajatanavin, R.; Tsai, K.S.; Park, H.M.; et al. A simple tool to identify asian women at increased risk of osteoporosis. Osteoporos Int. 2001, 12, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.J.; Ying, Q.; Chen, X.N.; Wang, W.M.; Chen, N. Evaluation of three risk assessment tools in discriminating fracture status among Chinese patients undergoing hemodialysis. Osteoporos Int. 2016, 27, 3599–3606. [Google Scholar] [CrossRef]
- Bui, M.H.; Dao, P.T.; Khuong, Q.L.; Le, P.A.; Nguyen, T.T.; Hoang, G.D.; Le, T.H.; Pham, H.T.; Hoang, H.T.; Le, Q.C.; et al. Evaluation of community-based screening tools for the early screening of osteoporosis in postmenopausal Vietnamese women. PLoS ONE 2022, 17, e0266452. [Google Scholar] [CrossRef]
- BMJ Best Practice. Coronavirus Disease 2019 (COVID-19), History and Exam. 2020. Available online: https://bestpractice.bmj.com/topics/en-gb/3000201/history-exam (accessed on 19 May 2021).
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.; Bui, L.; Nguyen, A.; Nguyen, B.; Tran, P.; Vu, P.; Dang, L. The prevalence of depression and associated risk factors among medical students: An untold story in Vietnam. PLoS ONE 2019, 14, e0221432. [Google Scholar] [CrossRef]
- Duong, T.V.; Aringazina, A.; Kayupova, G.; Nurjanah; Pham, T.V.; Pham, K.M.; Truong, T.Q.; Nguyen, K.T.; Oo, W.M.; Su, T.T.; et al. Development and Validation of a New Short-Form Health Literacy Instrument (HLS-SF12) for the General Public in Six Asian Countries. Health Lit. Res. Pract. 2019, 3, e91–e102. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.V.; Chang, P.W.; Yang, S.-H.; Chen, M.-C.; Chao, W.-T.; Chen, T.; Chiao, P.; Huang, H.-L. A new comprehensive short-form health literacy survey tool for patients in general. Asian Nurs. Res. (Korean Soc. Nurs. Sci.) 2017, 11, 30–35. [Google Scholar] [CrossRef]
- Duong, T.V.; Nguyen, T.T.P.; Pham, K.M.; Nguyen, K.T.; Giap, M.H.; Tran, T.D.X.; Nguyen, C.X.; Yang, S.-H.; Su, C.-T. Validation of the short-form health literacy questionnaire (HLS-SF12) and its determinants among people living in rural areas in Vietnam. Int. J. Environ. Res. Public Health 2019, 16, 3346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, H.V.; Hoang, G.T.; Pham, V.T.; Duong, T.V.; Pham, K.M. Factors associated with health literacy among the elderly people in Vietnam. Biomed. Res. Int. 2020, 2020, 3490635. [Google Scholar] [CrossRef] [Green Version]
- HLS-EU Consortium. Comparative Report of Health literacy in Eight EU Member States. The European Health Literacy Project 2009–2012. 2012. Available online: https://www.healthliteracyeurope (accessed on 19 May 2021).
- Ryu, H.; Jeon, H.J.; Sun, H.-K.; Han, K.H.; Whang, C.G.; Han, S.Y. Repeated education improves diet compliance in maintenance Hemodialysis Patients. Int. J. Urol. Nephrol. 2014, 2, 63–68. [Google Scholar]
- WHO. Coronavirus Disease (COVID-19) Technical Guidance: Infection Prevention and Control/Wash. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/infection-prevention-and-control (accessed on 20 May 2020).
- Maldonado, G.; Greenland, S. Simulation study of confounder-selection strategies. Am. J. Epidemiol. 1993, 138, 923–936. [Google Scholar] [CrossRef] [Green Version]
- Kuo, L.-L.; Tsai, W.-H.; Yu, C.-M.; Yang, C.-C. Risk Factors for Osteoporosis among Hemodialysis Patients. Taipei City Med. J. 2012, 9, 234–243. [Google Scholar] [CrossRef]
- Barreto, F.C.; Barreto, D.V.; Moyses, R.M.; Neves, C.L.; Jorgetti, V.; Draibe, S.A.; Canziani, M.E.; Carvalho, A.B. Osteoporosis in hemodialysis patients revisited by bone histomorphometry: A new insight into an old problem. Kidney Int. 2006, 69, 1852–1857. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.L.; Pan, B.B.; Shu, Y.; Gu, Y.F.; Liu, S. Evaluation of two tools for the early screening of osteoporosis in postmenopausal Chinese women with type 2 diabetes mellitus. J. Int. Med. Res. 2020, 48, 300060520903889. [Google Scholar] [CrossRef]
- Maddah, M.; Sharami, S.H.; Karandish, M. Educational difference in the prevalence of osteoporosis in postmenopausal women: A study in northern Iran. BMC Public Health 2011, 11, 845. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Garach, A.; García-Fontana, B.; Muñoz-Torres, M. Nutrients and Dietary Patterns Related to Osteoporosis. Nutrients 2020, 12, 1986. [Google Scholar] [CrossRef]
- Baccaro, L.F.; Conde, D.M.; Costa-Paiva, L.; Pinto-Neto, A.M. The epidemiology and management of postmenopausal osteoporosis: A viewpoint from Brazil. Clin. Interv. Aging 2015, 10, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Do, B.N.; Nguyen, P.A.; Pham, K.M.; Nguyen, H.C.; Nguyen, M.H.; Tran, C.Q.; Nguyen, T.T.P.; Tran, T.V.; Pham, L.V.; Tran, K.V.; et al. Determinants of Health Literacy and Its Associations With Health-Related Behaviors, Depression Among the Older People With and Without Suspected COVID-19 Symptoms: A Multi-Institutional Study. Front. Public Health 2020, 8, 581746. [Google Scholar] [CrossRef] [PubMed]
- Khamis, S.; Emara, M.; Elnashar, M.; Khalil, M.; Kasemy, Z. Development of Health Literacy for Regular Hemodialysis Patients in Menoufia Governorate: A Cross-Sectional Study. Open J. Nephrol. 2021, 11, 199–216. [Google Scholar] [CrossRef]
- Reid, I.R. Fat and bone. Arch. Biochem. Biophys. 2010, 503, 20–27. [Google Scholar] [CrossRef]
- Park, G.R.; Kim, H.S.; Kim, Y.T.; Chung, H.J.; Ha, S.J.; Kim, D.W.; Kang, D.R.; Kim, J.Y.; Lee, M.Y.; Lee, J.Y. Waist circumference and the risk of lumbar and femur fractures: A nationwide population-based cohort study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Ofir, O.; Buch, A.; Rouach, V.; Goldsmith, R.; Stern, N.; Monsonego-Ornan, E. Association between abdominal obesity and fragility fractures among elderly Israeli women. Aging Clin. Exp. Res. 2020, 32, 1459–1467. [Google Scholar] [CrossRef]
- Hua, Y.; Fang, J.; Yao, X.; Zhu, Z. Can waist circumference be a predictor of bone mineral density independent of BMI in middle-aged adults? Endocr. Connect. 2021, 10, 1307–1314. [Google Scholar] [CrossRef]
- Nagayama, Y.; Ebina, K.; Tsuboi, H.; Hirao, M.; Hashimoto, J.; Yoshikawa, H.; Okada, S.; Nakata, K. Low serum albumin concentration is associated with increased risk of osteoporosis in postmenopausal patients with rheumatoid arthritis. J. Orthop. Sci. 2021, 27, 1283–1290. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Voutilainen, A.; Whitehouse, M.R.; Seidu, S.; Kauhanen, J.; Blom, A.W.; Laukkanen, J.A. Serum Albumin and Future Risk of Hip, Humeral, and Wrist Fractures in Caucasian Men: New Findings from a Prospective Cohort Study. Med. Princ. Pract. 2019, 28, 401–409. [Google Scholar] [CrossRef]
- Afshinnia, F.; Wong, K.K.; Sundaram, B.; Ackermann, R.J.; Pennathur, S. Hypoalbuminemia and Osteoporosis: Reappraisal of a Controversy. J. Clin. Endocrinol. Metab. 2016, 101, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Abu-Amer, Y. NF-κB signaling and bone resorption. Osteoporos Int. 2013, 24, 2377–2386. [Google Scholar] [CrossRef] [Green Version]
- Xiu, S.; Mu, Z.; Sun, L.; Zhao, L.; Fu, J. Hemoglobin level and osteoporosis in Chinese elders with type 2 diabetes mellitus. Nutr. Diabetes 2022, 12, 19. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yoo, D.M.; Min, C.; Choi, H.G. Association between Osteoporosis and Low Hemoglobin Levels: A Nested Case-Control Study Using a National Health Screening Cohort. Int. J. Environ. Res. Public Health 2021, 18, 8598. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Lee, B.J. Anthropometric, biochemical, and nutritional risk factors for osteoporosis in Korean adults based on a large cross-sectional study. PLoS ONE 2021, 16, e0261361. [Google Scholar] [CrossRef] [PubMed]
- Alswat, K.A. Gender Disparities in Osteoporosis. J. Clin. Med. Res. 2017, 9, 382–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein-Nulend, J.; van Oers, R.F.; Bakker, A.D.; Bacabac, R.G. Bone cell mechanosensitivity, estrogen deficiency, and osteoporosis. J. Biomech 2015, 48, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Gennari, L.; Khosla, S.; Bilezikian, J.P. Estrogen and fracture risk in men. J. Bone Miner. Res. 2008, 23, 1548–1551. [Google Scholar] [CrossRef]
- Atroshi, I.; Ahlander, F.; Billsten, M.; Ahlborg, H.G.; Mellström, D.; Ohlsson, C.; Ljunggren, O.; Karlsson, M.K. Low calcaneal bone mineral density and the risk of distal forearm fracture in women and men: A population-based case-control study. Bone 2009, 45, 789–793. [Google Scholar] [CrossRef] [Green Version]
- Adami, G.; Fassio, A.; Rossini, M.; Caimmi, C.; Giollo, A.; Orsolini, G.; Viapiana, O.; Gatti, D. Osteoporosis in Rheumatic Diseases. Int. J. Mol. Sci. 2019, 20, 5867. [Google Scholar] [CrossRef] [Green Version]
- Akchurin, O.M.; Kaskel, F. Update on inflammation in chronic kidney disease. Blood Purif. 2015, 39, 84–92. [Google Scholar] [CrossRef]
- Yoon, P.H.; An, S.J.; Jeong, S.H.; Yang, Y.J.; Hong, Y.P. Association between Peptic Ulcer Disease and Osteoporosis: The Population-Based Longitudinal Cohort Study in Korea. Int. J. Environ. Res. Public Health 2019, 16, 2777. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.H.; Tung, Y.C.; Chai, C.Y.; Lu, Y.Y.; Su, Y.F.; Tsai, T.H.; Kuo, K.L.; Lin, C.L. Increased Risk of Osteoporosis in Patients With Peptic Ulcer Disease: A Nationwide Population-Based Study. Medicine 2016, 95, e3309. [Google Scholar] [CrossRef] [PubMed]
- Roux, C.; Briot, K.; Gossec, L.; Kolta, S.; Blenk, T.; Felsenberg, D.; Reid, D.M.; Eastell, R.; Glüer, C.C. Increase in vertebral fracture risk in postmenopausal women using omeprazole. Calcif. Tissue Int. 2009, 84, 13–19. [Google Scholar] [CrossRef] [PubMed]
Variables | Total n (%) | OSTA | p | ||
---|---|---|---|---|---|
Low (n;% = 267; 39.6) | Medium (n;% = 274; 40.6) | High (n;% = 134; 19.8) | |||
Socio-demographics | |||||
Gender | <0.001 a | ||||
Male | 337 (50.1) | 176 (65.9) | 119 (43.6) | 42 (31.6) | |
Female | 336 (49.9) | 91 (34.1) | 154 (56.4) | 91 (68.4) | |
Education | 0.001 a | ||||
Illiterate or elementary | 316 (50.5) | 101 (41.4) | 142 (55.7) | 73 (57.5) | |
Junior high school | 182 (29.1) | 91 (31.3) | 67 (26.3) | 24 (18.9) | |
Senior high school or above | 128(20.4) | 52 (21.3) | 46 (18.0) | 30 (23.6) | |
Working status | 0.660 a | ||||
Not working | 249 (36.9) | 93 (34.8) | 104 (38.0) | 52.0 (38.8) | |
Working | 426 (63.1) | 174 (65.2) | 170 (62.0) | 82 (61.2) | |
Marital status | 0.009 a | ||||
Without partner | 52 (7.8) | 13 (4.9) | 21 (7.8) | 18 (13.6) | |
With partner | 616 (92.2) | 253 (95.1) | 249 (92.2) | 114 (86.4) | |
Social status | 0.318 a | ||||
Low | 198 (29.3) | 70 (26.2) | 88 (32.1) | 40 (29.9) | |
Middle and high | 477 (70.7) | 197 (73.8) | 186 (67.9) | 94 (70.1) | |
Medication payment ability | 0.035 a | ||||
Very or fairly difficult | 521 (782) | 219 (82.3) | 209 (77.7) | 93 (71.0) | |
Very or fairly easy | 145 (21.8) | 47 (17.7) | 60 (22.3) | 38 (29.0) | |
Hemodialysis vintage, years (Median, IQR) | 4.4 (2.2, 7.9) | 4.4 (2.4, 7.9) | 4.4 (2.4, 8.2) | 4.2 (2.0, 7.9) | 0.966 b |
Clinical Parameters | |||||
S-COVID-19-S | 0.057 a | ||||
Without S-COVID-19-S | 204 (30.2) | 94 (35.2) | 77 (28.1) | 33 (24.6) | |
With S-COVID-19-S | 471 (69.8) | 173 (64.8) | 197 (71.9) | 101 (74.4) | |
Rheumatoid arthritis | <0.001 a | ||||
No | 606 (89.8) | 251 (94.0) | 248 (90.5) | 107 (79.9) | |
Yes | 69 (10.2) | 16 (6.0) | 26 (9.5) | 27 (20.1) | |
Stomach ulcers | 0.068 a | ||||
No | 538 (79.7) | 224 (83.9) | 208 (75.9) | 106 (79.1) | |
Yes | 137 (20.3) | 43 (16.1) | 66 (24.1) | 28 (20.9) | |
Diuretic usage | 0.002 a | ||||
No | 351 (73.1) | 156 (81.3) | 135 (69.9) | 60 (63.2) | |
Yes | 129 (26.9) | 36 (18.8) | 58 (30.1) | 35 (36.8) | |
HBsAg | 0.853 a | ||||
Negative | 425 (91.6) | 164 (91.6) | 170 (90.9) | 91 (92.9) | |
Positive | 39 (8.4) | 15 (8.4) | 17 (9.1) | 7 (7.1) | |
HCV | 0.678 a | ||||
Negative | 330 (71.1) | 127 (70.9) | 130 (69.5) | 73 (74.5) | |
Positive | 134 (28.9) | 52 (29.1) | 57 (30.5) | 25 (25.5) | |
WC, cm (Mean ± SD) | 76.9 ± 9.9 | 78.9 ± 9.7 | 75.7 ± 9.8 | 75.5 ±10.4 | 0.001 c |
Biochemical parameters | |||||
Hb, g/dL (Median, IQR) | 9.7 (8.4, 11.1) | 9.8 (8.6, 11.1) | 9.8 (8.3, 11.3) | 9.4 (7.9, 10.7) | 0.064 b |
WBC, 103/μL (Median, IQR) | 5.9 (4.5, 7.3) | 5.8 (4.5, 7.0) | 6.0 (4.5, 7.5) | 6.0 (4.6, 7.4) | 0.606 b |
RBC, 106/μL (Median, IQR) | 3.3 (2.7, 3.7) | 3.3 (2.8, 3.8) | 3.3 (2.7, 3.8) | 3.1 (2.7, 3.7) | 0.593 b |
MCV, fL (Median, IQR) | 90.0 (83.0, 94.6) | 89.7 (83.4, 94.2) | 89.9 (80.7, 94.1) | 91.6 (85.3, 95.9) | 0.099 b |
Hct, % (Mean ± SD) | 30.0 ± 5.8 | 30.1 ± 5.3 | 30.5 ± 6.3 | 28.9 ± 5.7 | 0.095 c |
PLT, 103/μL (Median, IQR) | 205.0 (163.0, 245.0) | 197.0 (163.0, 236.0) | 206.0 (168.0, 252.0) | 208.0 (157.0, 251.0) | 0.200 b |
PO4, mg/dL (Median, IQR) | 1.8 (1.4, 2.6) | 1.8 (1.4, 2.4) | 1.7 (1.4, 2.8) | 2.0 (1.3, 3.4) | 0.800b |
PTH, pg/mL (Median, IQR) | 23.9 (16.4, 45.8) | 23.4 (16.5, 43.5) | 25.2 (14.1, 46.5) | 25.2 (19.1, 51.0) | 0.568 b |
K+, mEq/L (Mean ± SD) | 4.2 ± 0.9 | 4.2 ± 0.9 | 4.3 ± 0.9 | 4.2 ± 0.8 | 0.817 c |
Na+, mmol/L (Mean ± SD) | 135.9 ± 4.7 | 136.3 ± 3.1 | 135.7 ± 5.3 | 135.9 ± 5.9 | 0.518 c |
Cl−, mmol/L (Mean ± SD) | 97.8 ± 5.1 | 97.3 ± 4.4 | 97.9 ± 5.9 | 98.5 ± 4.7 | 0.193 c |
Albumin, mg/dL (Mean ± SD) | 38.7 ± 5.6 | 39.3 ± 6.3 | 38.7 ± 4.9 | 37.3 ± 5.6 | 0.047 c |
Physical activity, MET-min/wk | 0.895 a | ||||
Tertile 1 (MET ≤ 180) | 168 (33.5) | 67 (34.5) | 68 (33.0) | 33 (32.4) | |
Tertile 2 (180 < MET ≤ 723) | 164 (32.7) | 59 (30.4) | 72 (35.0) | 33 (32.4) | |
Tertile 3 (MET > 723) | 170 (33.9) | 68 (35.1) | 66 (32.0) | 36 (35.3) | |
Health/diet literacy and diet knowledge | |||||
HL index (Mean ± SD) | 25.2 ± 9.2 | 25.6 ± 8.6 | 22.9 ± 9.3 | 22.2 ± 9.3 | <0.001 c |
DDL index (Mean ± SD) | 24.1 ± 11.4 | 25.1 ± 11.1 | 21.2 ± 11.3 | 20.6 ± 1.7 | <0.001 c |
HDK (Mean ± SD) | 5.4 ± 2.5 | 5.2 ± 2.5 | 5.3 ± 2.4 | 5.3 ± 2.6 | 0.788 c |
Associated Factors | Medium Risk of Osteoporosis * | High Risk of Osteoporosis * | ||||||
---|---|---|---|---|---|---|---|---|
Unadjusted Model | Adjusted Model | Unadjusted Model | Adjusted Model | |||||
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Socio-demographics | ||||||||
Gender | 1.00 | |||||||
Male | 1.00 | 1.00 | 1.00 | |||||
Female | 2.50 (1.77, 3.55) | <0.001 | 3.46 (1.86, 6.44) | <0.001 a | 4.19 (2.69, 6.54) | <0.001 | 6.86 (2.96, 15.88) | <0.001 a |
Education | ||||||||
Illiterate or elementary | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Junior high school | 0.52 (0.35, 0.79) | 0.002 | 0.63 (0.33, 1.20) | 0.158 a | 0.37 (0.21, 0.63) | <0.001 | 0.37 (0.16, 0.88) | 0.025 a |
Senior high school or above | 0.63 (0.39, 1.01) | 0.054 | 1.02 (0.41, 2.53) | 0.963 a | 0.80 (0.47, 1.37) | 0.414 | 0.82 (0.27, 2.53) | 0.731 a |
Working status | ||||||||
Not working | 1.00 | 1.00 | ||||||
Working | 0.87 (0.62, 1.24) | 0.450 | 0.84 (0.55, 1.29) | 0.435 | ||||
Marital status | ||||||||
Without partner | 1.00 | 1.00 | 1.00 | |||||
With partner | 0.61 (0.30, 1.24) | 0.173 | 0.82 (0.09, 6.97) | 0.817 a | 0.33 (0.15, 0.69) | 0.003 | 0.60 (0.06, 6.46) | 0.674 a |
Social status | ||||||||
Low | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Middle and high | 0.75 (0.52, 0.09) | 0.132 | 1.15 (0.60, 2.23) | 0.673 a | 0.84 (0.53, 1.32) | 0.442 | 1.07 (0.46, 2.50) | 0.874 a |
Medication payment ability | ||||||||
Very or fairly difficult | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Very or fairly easy | 1.34 (0.87, 2.05) | 0.181 | 1.63 (0.69, 3.84) | 0.265 a | 1.90 (1.16, 3.11) | 0.010 | 0.98 (0.32, 2.97) | 0.968 a |
Hemodialysis vintage, years | 1.01 (0.97, 1.05) | 0.620 | 0.99 (0.94, 1.04) | 0.609 | ||||
Clinical parameters | ||||||||
S-COVID-19-S | ||||||||
Without S-COVID-19-S | 1.00 | 1.00 | 1.00 | 1.00 | ||||
With S-COVID-19-S | 1.39 (0.97, 2.00) | 0.076 | 1.18 (0.62, 2.24) | 0.620 b | 1.66 (1.04, 2.65) | 0.033 | 2.37 (0.93, 6.07) | 0.071 b |
Rheumatoid arthritis | ||||||||
No | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Yes | 1.65 (0.86, 3.14) | 0.132 | 0.92 (0.37, 2.33) | 0.865 b | 3.96 (2.05, 7.65) | <0.001 | 4.37 (1.67, 11.52) | 0.003 b |
Stomach ulcers | ||||||||
No | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Yes | 1.65 (1.08, 2.54) | 0.021 | 1.95 (1.01, 3.77) | 0.048 b | 1.38 (0.81, 2.34) | 0.237 | 1.53 (0.66, 3.54) | 0.322 b |
Diuretic usage | ||||||||
No | 1.00 | 1.00 | 1.00 | 1.00 | ||||
Yes | 1.86 (1.16, 2.99) | 0.010 | 1.22 (0.63, 2.34) | 0.562 b | 2.53 (1.46, 4.39) | 0.001 | 2.19 (0.99, 4.86) | 0.053 b |
HBsAg | ||||||||
Negative | 1.00 | 1.00 | ||||||
Positive | 1.09 (0.53, 2.26) | 0.810 | 0.84 (0.33, 2.14) | 0.716 | ||||
HCV | ||||||||
Negative | 1.00 | 1.00 | ||||||
Positive | 1.07 (0.68, 1.68) | 0.765 | 0.84 (0.48, 1.46) | 0.530 | ||||
WC | 0.97 (0.95, 0.99) | 0.001 | 0.95 (0.92, 0.98) | 0.004 b | 0.97 (0.94, 0.99) | 0.008 | 0.93 (0.89, 0.97) | 0.001 b |
Biochemical parameters | ||||||||
Hb | 0.99 (0.87, 1.09) | 0.779 | 0.98 (0.86, 1.13) | 0.802 c | 0.85 (0.75, 0.97) | 0.017 | 0.79 (0.66, 0.95) | 0.014 c |
WBC | 1.05 (0.97, 1.14) | 0.248 | 1.06 (0.96, 1.18) | 0.266 | ||||
RBC | 1.07 (0.85, 1.35) | 0.569 | 0.89 (0.66, 1,21) | 0.465 | ||||
MCV | 0.99 (0.98, 1.01) | 0.814 | 0.99 (0.97, 1.01) | 0.411 c | 1.02 (0.99, 1.04) | 0.124 | 1.01 (0.98, 1.04) | 0.549 c |
Hct | 1.01 (0.98, 1.05) | 0.592 | 1.01 (0.97, 1.06) | 0.679 c | 0.96 (0.92, 1.01) | 0.089 | 0.95 (0.92, 0.99) | 0.041 c |
PLT | 1.01 (0.99, 1.01) | 0.221 | 1.01 (0.99, 1.01) | 0.441 | ||||
PO4 | 1.08 (0.89, 1.32) | 0.435 | 1.06 (0.84, 1.35) | 0.610 | ||||
PTH | 1.01 (0.98, 1.02) | 0.876 | 1.01 (0.99, 1.03) | 0.311 | ||||
K+ | 1.09 (0.84, 1.40) | 0.524 | 1.05 (0.77, 1.43) | 0.768 | ||||
Na+ | 0.97 (0.92, 1.02) | 0.257 | 0.98 (0.92, 1.04) | 0.506 | ||||
Cl− | 1.03 (0.98, 1.08) | 0.200 | 1.02 (0.96, 1.07) | 0.538 c | 1.05 (0.99, 1.11) | 0.083 | 1.02 (0.96, 1.10) | 0.503 c |
Albumin | 0.98 (0.96, 1.02) | 0.395 | 0.98 (0.91, 1.05) | 0.286 c | 0.93 (0.88, 0.98) | 0.012 | 0.91 (0.83, 0.99) | 0.030 c |
Physical activity | ||||||||
Tertile 1 (MET ≤ 180) | 1.00 | 1.00 | ||||||
Tertile 2 (180 < MET ≤ 723) | 1.20 (0.74, 1.95) | 0.454 | 1.14 (0.63, 2.06) | 0.676 | ||||
Tertile 3 (MET > 723) | 0.96 (0.59, 1.54) | 0.855 | 1.08 (0.60, 1.92) | 0.807 | ||||
Health/diet literacy and diet knowledge | ||||||||
HL index | 0.97 (0.95, 0.99) | 0.001 | 0.92 (0.88, 0.96) | <0.001 d | 0.96 (0.94, 0.98) | 0.001 | 0.89 (0.84, 0.94) | <0.001 c |
DDL index | 0.97 (0.95, 0.98) | <0.001 | 0.96 (0.93, 0.99) | 0.017 d | 0.97 (0.95, 0.98) | <0.001 | 0.95 (0.91, 0.99) | 0.008 c |
HDK | 1.02 (0.95, 1.09) | 0.668 | 1.03 (0.95, 1.12) | 0.502 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, L.T.H.; Dang, L.T.; Wang, T.-J.; Do, T.G.; Nguyen, D.H.; Hoang, T.A.; Pham, M.D.; Do, B.N.; Nguyen, H.C.; Tran, T.T.; et al. Osteoporosis Risk in Hemodialysis Patients: The Roles of Gender, Comorbidities, Biochemical Parameters, Health and Diet Literacy. Nutrients 2022, 14, 5122. https://doi.org/10.3390/nu14235122
Le LTH, Dang LT, Wang T-J, Do TG, Nguyen DH, Hoang TA, Pham MD, Do BN, Nguyen HC, Tran TT, et al. Osteoporosis Risk in Hemodialysis Patients: The Roles of Gender, Comorbidities, Biochemical Parameters, Health and Diet Literacy. Nutrients. 2022; 14(23):5122. https://doi.org/10.3390/nu14235122
Chicago/Turabian StyleLe, Lan T. H., Loan T. Dang, Tsae-Jyy Wang, Tuyen G. Do, Dung H. Nguyen, Trung A. Hoang, Minh D. Pham, Binh N. Do, Hoang C. Nguyen, Tu T. Tran, and et al. 2022. "Osteoporosis Risk in Hemodialysis Patients: The Roles of Gender, Comorbidities, Biochemical Parameters, Health and Diet Literacy" Nutrients 14, no. 23: 5122. https://doi.org/10.3390/nu14235122
APA StyleLe, L. T. H., Dang, L. T., Wang, T. -J., Do, T. G., Nguyen, D. H., Hoang, T. A., Pham, M. D., Do, B. N., Nguyen, H. C., Tran, T. T., Pham, L. V., Nguyen, L. T. H., Nguyen, H. T., Trieu, N. T., Do, T. V., Trinh, M. V., Ha, T. H., Phan, D. T., Yang, S. -H., ... Duong, T. V. (2022). Osteoporosis Risk in Hemodialysis Patients: The Roles of Gender, Comorbidities, Biochemical Parameters, Health and Diet Literacy. Nutrients, 14(23), 5122. https://doi.org/10.3390/nu14235122