Vitamin A Ameliorated Irinotecan-Induced Diarrhea in a Piglet Model Involving Enteric Glia Modulation and Immune Cells Infiltration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Animals and CPT-Induced Experimental Diarrhea of Piglets
2.3. Cell Culture and Treatment
2.4. Morphological Examination
2.5. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction
2.6. Western Blot (WB) Analysis and Enzyme-Linked Immunosorbent Assay (ELISA)
2.7. Immunofluorescence
2.8. Statistical Analysis
3. Results
3.1. Dietary VA Reduced Diarrhea Incidence and Attenuated Intestinal Damage Induced by CPT-11
3.2. VA Suppresses Immune Cell Infiltration and Inflammatory Responses
3.3. VA Inhibits Reactive Enteric Gliosis and Modulates Neuropeptides Production Following CPT-11 Challenge
3.4. RA Regulates the Functions of Macrophages and EGCs In Vitro
3.5. GDNF Modulates Macrophage Functions In Vitro
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cunningham, D.; Pyrhonen, S.; James, R.D.; Punt, C.J.; Hickish, T.F.; Heikkila, R.; Johannesen, T.B.; Starkhammar, H.; Topham, C.A.; Awad, L.; et al. Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 1998, 352, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.; Voigt, W.; Jordan, K. Chemotherapy-induced diarrhea: Pathophysiology, frequency and guideline-based management. Ther. Adv. Med. Oncol. 2010, 2, 51–63. [Google Scholar] [CrossRef] [Green Version]
- McQuade, R.M.; Stojanovska, V.; Abalo, R.; Bornstein, J.C.; Nurgali, K. Chemotherapy-induced constipation and diarrhea: Pathophysiology, current and emerging treatments. Front. Pharmacol. 2016, 7, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abigerges, D.; Armand, J.; Chabot, G.G.; Costa, L.D.; Fadel, E.; Cote, C.; Hérait, P.; Gandia, D. Irinotecan (CPT-11) high-dose escalation using intensive high-dose loperamide to control diarrhea. J. Natl. Cancer Inst. 1994, 86, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.T. Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 2010, 10, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Klose, C.S.; Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 2016, 17, 765–774. [Google Scholar]
- Koliaraki, V.; Prados, A.; Armaka, M.; Kollias, G. The mesenchymal context in inflammation, immunity and cancer. Nat. Immunol. 2020, 21, 974–982. [Google Scholar] [CrossRef]
- Progatzky, F.; Shapiro, M.; Chng, S.H.; Garcia-Cassani, B.; Classon, C.H.; Sevgi, S.; Laddach, A.; Bon-Frauches, A.C.; Lasrado, R.; Rahim, M.; et al. Regulation of intestinal immunity and tissue repair by enteric glia. Nature 2021, 599, 125–130. [Google Scholar] [CrossRef]
- Cheadle, G.A.; Costantini, T.W.; Lopez, N.; Bansal, V.; Eliceiri, B.P.; Coimbra, R. Enteric glia cells attenuate cytomix-induced intestinal epithelial barrier breakdown. PLoS ONE 2013, 8, e69042. [Google Scholar]
- Cabarrocas, J.; Savidge, T.C.; Liblau, R.S. Role of enteric glial cells in inflammatory bowel disease. Glia 2003, 41, 81–93. [Google Scholar] [CrossRef]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the pig as a human biomedical model. Sci. Transl. Med. 2021, 13, d5758. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.C.; Noelle, R.J. Seeing through the dark: New insights into the immune regulatory functions of vitamin A. Eur. J. Immunol. 2015, 45, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blomhoff, R.; Blomhoff, H.K. Overview of retinoid metabolism and function. J. Neurobiol. 2006, 66, 606–630. [Google Scholar] [CrossRef] [PubMed]
- Wolf, G. Identification of a membrane receptor for retinol-binding protein functioning in the cellular uptake of retinol. Nutr. Rev. 2007, 65, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Gattu, S.; Bang, Y.J.; Pendse, M.; Dende, C.; Chara, A.L.; Harris, T.A.; Wang, Y.; Ruhn, K.A.; Kuang, Z.; Sockanathan, S.; et al. Epithelial retinoic acid receptor β regulates serum amyloid A expression and vitamin A-dependent intestinal immunity. Proc. Natl. Acad. Sci. USA 2019, 116, 10911–10916. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.M.; Teixeira, F.; Sato, M.N. Impact of Retinoic Acid on Immune Cells and Inflammatory Diseases. Mediators Inflamm. 2018, 2018, 3067126. [Google Scholar] [CrossRef] [Green Version]
- Bhaskaram, P. Micronutrient malnutrition, infection, and immunity: An overview. Nutr. Rev. 2002, 60, S40–S45. [Google Scholar] [CrossRef]
- Mayo-Wilson, E.; Imdad, A.; Herzer, K.; Yakoob, M.Y.; Bhutta, Z.A. Vitamin A supplements for preventing mortality, illness, and blindness in children aged under 5: Systematic review and meta-analysis. BMJ 2011, 343, d5094. [Google Scholar] [CrossRef] [Green Version]
- Cantorna, M.T.; Snyder, L.; Arora, J. Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Crit. Rev. Biochem. Mol. Biol. 2019, 54, 184–192. [Google Scholar] [CrossRef]
- Ikuno, N.; Soda, H.; Watanabe, M.; Oka, M. Irinotecan (CPT-11) and characteristic mucosal changes in the mouse ileum and cecum. J. Natl. Cancer Inst. 1995, 87, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.J.; Bowen, J.M.; Inglis, M.R.; Cummins, A.G.; Keefe, D.M. Irinotecan causes severe small intestinal damage, as well as colonic damage, in the rat with implanted breast cancer. J. Gastroenterol. Hepatol. 2003, 18, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, J.; Wang, Y.; Wang, L.; Yin, Y.; Yin, L.; Yang, H.; Yin, Y. Dietary vitamin A affects growth performance, intestinal development, and functions in weaned piglets by affecting intestinal stem cells. J. Anim. Sci. 2020, 98, skaa020. [Google Scholar] [CrossRef]
- Maciel, A.A.; Oria, R.B.; Braga-Neto, M.B.; Braga, A.B.; Carvalho, E.B.; Lucena, H.B.; Brito, G.A.; Guerrant, R.L.; Lima, A.A. Role of retinol in protecting epithelial cell damage induced by Clostridium difficile toxin A. Toxicon 2007, 50, 1027–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germain, P.; Chambon, P.; Eichele, G.; Evans, R.M.; Lazar, M.A.; Leid, M.; De Lera, A.R.; Lotan, R.; Mangelsdorf, D.J.; Gronemeyer, H. International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol. Rev. 2006, 58, 712–725. [Google Scholar] [CrossRef]
- Iwata, M.; Hirakiyama, A.; Eshima, Y.; Kagechika, H.; Kato, C.; Song, S.Y. Retinoic acid imprints gut-homing specificity on T cells. Immunity 2004, 21, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Kontek, R.; Jakubczak, M.; Matlawska-Wasowska, K. The antioxidants, vitamin A and E but not vitamin C and melatonin enhance the proapoptotic effects of irinotecan in cancer cells in vitro. Toxicol. Vitr. 2014, 2, 282–291. [Google Scholar] [CrossRef]
- Wang, C.; Kang, S.G.; HogenEsch, H.; Love, P.E.; Kim, C.H. Retinoic acid determines the precise tissue tropism of inflammatory Th17 cells in the intestine. J. Immunol. 2010, 184, 5519–5526. [Google Scholar] [CrossRef] [Green Version]
- Jijon, H.B.; Suarez-Lopez, L.; Diaz, O.E.; Das, S.; De Calisto, J.; Parada-kusz, M.; Yaffe, M.B.; Pittet, M.J.; Mora, J.R.; Belkaid, Y.; et al. Intestinal epithelial cell-specific RARalpha depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system. Mucosal Immunol. 2018, 11, 703–715. [Google Scholar] [CrossRef] [Green Version]
- Derebe, M.G.; Zlatkov, C.M.; Gattu, S.; Ruhn, K.A.; Vaishnava, S.; Diehl, G.E.; MacMillan, J.B.; Williams, N.S.; Hooper, L.V. Serum amyloid A is a retinol binding protein that transports retinol during bacterial infection. eLife 2014, 3, e3206. [Google Scholar] [CrossRef]
- Sano, T.; Huang, W.; Hall, J.A.; Yang, Y.; Chen, A.; Gavzy, S.J.; Lee, J.Y.; Ziel, J.W.; Miraldi, E.R.; Domingos, A.I.; et al. An IL-23R/IL-22 Circuit Regulates Epithelial Serum Amyloid A to Promote Local Effector Th17 Responses. Cell 2015, 163, 381–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, M.L.; Brito, G.A.; Soares, R.C.; Carvalho, S.B.; Silva, J.V.; Soares, P.M.; Vale, M.L.; Souza, M.H.; Cunha, F.Q.; Ribeiro, R.A. Role of cytokines (TNF-alpha, IL-1beta and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: Effect of pentoxifylline and thalidomide. Cancer Chemother. Pharmacol. 2008, 61, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, X.; Wang, W.; Li, L.; Xu, Q.; Wu, X.; Gu, Y. CPT-11 activates NLRP3 inflammasome through JNK and NF-kappaB signalings. Toxicol. Appl. Pharmacol. 2015, 289, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.; Kolls, J.K.; Zheng, Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008, 28, 454–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinkamp, M.; Geerling, I.; Seufferlein, T.; von Boyen, G.; Egger, B.; Grossmann, J.; Ludwig, L.; Adler, G.; Reinshagen, M. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology 2003, 124, 1748–1757. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.B.; Li, Y.Q. Enteric glial cells and their role in the intestinal epithelial barrier. World J. Gastroenterol. 2014, 20, 11273–11280. [Google Scholar] [CrossRef]
- Delvalle, N.M.; Dharshika, C.; Morales-Soto, W.; Fried, D.E.; Gaudette, L.; Gulbransen, B.D. Communication between Enteric Neurons, Glia, and Nociceptors Underlies the Effects of Tachykinins on Neuroinflammation. Cell Mol. Gastroenterol. Hepatol. 2018, 6, 321–344. [Google Scholar] [CrossRef] [Green Version]
- Di Giovangiulio, M.; Verheijden, S.; Bosmans, G.; Stakenborg, N.; Boeckxstaens, G.E.; Matteoli, G. The Neuromodulation of the Intestinal Immune System and Its Relevance in Inflammatory Bowel Disease. Front. Immunol. 2015, 6, 590. [Google Scholar] [CrossRef] [Green Version]
- Ibiza, S.; Garcia-Cassani, B.; Ribeiro, H.; Carvalho, T.; Almeida, L.; Marques, R.; Misic, A.M.; Bartow-McKenney, C.; Larson, D.M.; Pavan, W.J.; et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 2016, 535, 440–443. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.X.; Yang, Y.X.; Yan, J.; Zhang, T.; Zou, Y.P.; Huang, X.L.; Gan, H.T. Glial-derived neurotrophic factor reduces inflammation and improves delayed colonic transit in rat models of dextran sulfate sodium-induced colitis. Int. Immunopharmacol. 2014, 19, 145–152. [Google Scholar] [CrossRef]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440. [Google Scholar] [CrossRef] [PubMed]
Items | Primer Sequence (5′–3′) | Accession Number | Size (bp) |
---|---|---|---|
Rattus norvegicus β-actin | F: GGCTGTATTCCCCTCCATCG R: CCAGTTGGTAACAATGCCATGT | NM_001083538.3 | 154 |
Rattus norvegicus Gapdh | F: TGGCAAAGTGGAGATTGTTGCC R: CCAGTTGGTAACAATGCCATGT | XM_017005081.2 | 33 |
Rattus norvegicus Gdnf | F: TCCAACTGGGGGTCTACGG R: GCCACGACATCCCATAACTTCAT | NM_001301332.1 | 82 |
Rattus norvegicus Bdnf | F: TCATACTTCGGTTGCATGAAGG R: ACACCTGGGTAGGCCAAGTT | XM_051183802.1 | 102 |
Rattus norvegicus Il1b | F: CAGAAGTACCTGAGCTCGCC R: AGATTCGTAGCTGGATGCCG | NM_000576.3 | 153 |
Mouse β-actin | F: GGCTGTATTCCCCTCCATCG R: CCAGTTGGTAACAATGCCATGT | NM_001083538.3 | 154 |
Mouse Gapdh | F: TGGCAAAGTGGAGATTGTTGCC R: AAGATGGTGATGGGCTTCCCG | NM_001411843.1 | 114 |
Mouse Tnfa | F: CCCTCACACTCAGATCATCTTCT R: GCTACGACGTGGGCTACAG | NM_000594.4 | 61 |
Mouse Il1b | F: GCAACTGTTCCTGAACTCAACT R: ATCTTTTGGGGTCCGTCAACT | NM_008361.4 | 89 |
Mouse Il6 | F: CTACTGCCTTCCCTACCC R: ACCTCCTTGCTGTTTTCA | NM_001289394.2 | 102 |
Mouse Inos | F: AAGTCAAATCCTACCAAAGTGA R: CCATAATACTGGTTGATGAACT | NM_010927.4 | 409 |
Mouse Cox2 | F: GGGTGTGAAGGGAAATAAGG R: TCTCCACCAATGACCTGAT | NM_011198.4 | 291 |
Sus sucrofa Actin | F: CCACGAAACTACCTTCAACTCC R: GTGATCTCCTTCTGCATCCTGT | XM_021086047.1 | 132 |
Sus sucrofa apdh | F: AGAACATCATCCCAGCGTCC R: CGGCAGGTCAGGTCAACAAC | XM_021097231.1 | 133 |
Sus sucrofa Saa | F: AGCTTTCCACGGGCATCATT R: TCTTTAGCCCCTTGACCAGC | XM_013994503.2 | 97 |
Sus sucrofa Rara | F: GCATCCAGAAGAACATGGTGT R: CCTGCTTGGCGAACTCCACAGT | XM_003131473.4 | 393 |
Sus sucrofa Cebpα | F: GGTGGACAAGAACAGCAACG R: AGGCACCGGAATCTCCTAGT | XM_003127015.4 | 369 |
Sus sucrofa Cebpβ | F: GCTTGAACAAGTTCCGCAGG R: CAAGAAGACGGTGGACAAGC | NM_001199889.1 | 209 |
Sus sucrofa Il6 | F: GGAGACCTGCTTGATGAGAATC R: GTACTAATCTGCACAGCCTCGAC | NM_214399.1 | 117 |
Sus sucrofa Il1b | F: GAGCTGAAGGCTCTCCACCTC R: ATCGCTGTCATCTCCTTGCAC | NM_001302388.2 | 87 |
Sus sucrofa Il17 | F: CCAGACGGCCCTCAGATTAC R: CACTTGGCCTCCCAGATCAC | NM_001005729.1 | 103 |
Sus sucrofa Cox2 | F: GTGTGAAAGGGAGGAAAGA R: AAACTGATGGGTGAAGTGC | NM_214321.1 | 137 |
Sus sucrofa p65 | F: GTGTGTAAAGAAGCGGGACCT R: CACTGTCACCTGGAAGCAGAG | NM_001114281.1 | 139 |
Sus sucrofa p38 | F: CTTACGGATGACCCACGTTCAGT R: GCTCACAGTCTTCATTCACAGC | XM_013977842.2 | 128 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Huang, Y.; Jin, H.; Yuan, D.; Huang, K.; Wang, J.; Tan, B.; Yin, Y. Vitamin A Ameliorated Irinotecan-Induced Diarrhea in a Piglet Model Involving Enteric Glia Modulation and Immune Cells Infiltration. Nutrients 2022, 14, 5120. https://doi.org/10.3390/nu14235120
Li M, Huang Y, Jin H, Yuan D, Huang K, Wang J, Tan B, Yin Y. Vitamin A Ameliorated Irinotecan-Induced Diarrhea in a Piglet Model Involving Enteric Glia Modulation and Immune Cells Infiltration. Nutrients. 2022; 14(23):5120. https://doi.org/10.3390/nu14235120
Chicago/Turabian StyleLi, Meng, Yonggang Huang, Huimin Jin, Daixiu Yuan, Ke Huang, Jing Wang, Bie Tan, and Yulong Yin. 2022. "Vitamin A Ameliorated Irinotecan-Induced Diarrhea in a Piglet Model Involving Enteric Glia Modulation and Immune Cells Infiltration" Nutrients 14, no. 23: 5120. https://doi.org/10.3390/nu14235120
APA StyleLi, M., Huang, Y., Jin, H., Yuan, D., Huang, K., Wang, J., Tan, B., & Yin, Y. (2022). Vitamin A Ameliorated Irinotecan-Induced Diarrhea in a Piglet Model Involving Enteric Glia Modulation and Immune Cells Infiltration. Nutrients, 14(23), 5120. https://doi.org/10.3390/nu14235120