Beetroot Juice Produces Changes in Heart Rate Variability and Reduces Internal Load during Resistance Training in Men: A Randomized Double-Blind Crossover
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Anthropometry and Body Composition
2.4. Study Interventions
2.4.1. Familiarization Protocol, One-Repetition Maximum Testing and Resistance Training Performance (Back Squat and Bench Press)
2.4.2. Supplementation Protocol
2.5. Study Outcomes
2.5.1. Blood Pressure
2.5.2. Heart Rate and Heart Rate Variability Measurement
2.5.3. Sample Size
2.5.4. Randomization
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Practical Applications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.; García-Fernández, P.; Serra-Paya, N.; Lozano, M.C.; Herreros, P.; Garnacho-Castaño, M. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhatalo, A.; Fulford, J.; Bailey, S.; Blackwell, J.; Winyard, P.; Jones, A. Dietary Nitrate Reduces Muscle Metabolic Perturbation and Improves Exercise Tolerance in Hypoxia. J. Physiol. 2011, 589, 5517–5528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maughan, R.; Burke, L.; Dvorak, J.; Larson-Meyer, D.; Peeling, P.; Phillips, S.; Rawson, E.; Walsh, N.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Br. J. Sports Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.; Weitzberg, E.; Cole, J.; Benjamin, N. Opinion: Nitrate, Bacteria and Human Health. Nat. Rev. Microbiol. 2004, 2, 593–602. [Google Scholar] [CrossRef]
- Lundberg, J.; Govoni, M. Inorganic Nitrate Is a Possible Source for Systemic Generation of Nitric Oxide. Free Radic. Biol. Med. 2004, 37, 395–400. [Google Scholar] [CrossRef]
- Lundberg, J.; Weitzberg, E.; Gladwin, M.; Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The Nitrate-Nitrite-Nitric Oxide Pathway in Physiology and Therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156–167. [Google Scholar] [CrossRef]
- Lansley, K.; Winyard, P.; Bailey, S.; Vanhatalo, A.; Wilkerson, D.; Blackwell, J.; Gilchrist, M.; Benjamin, N.; Jones, A. Acute Dietary Nitrate Supplementation Improves Cycling Time Trial Performance. Med. Sci. Sports Exerc. 2011, 43, 1125–1131. [Google Scholar] [CrossRef] [Green Version]
- Modin, A.; Björne, H.; Herulf, M.; Alving, K.; Weitzberg, E.; Lundberg, J.O.N. Nitrite-Derived Nitric Oxide: A Possible Mediator of “acidic-Metabolic” Vasodilation. Acta Physiol. Scand. 2001, 171, 9–16. [Google Scholar] [CrossRef]
- Siervo, M.; Lara, J.; Ogbonmwan, I.; Mathers, J. Inorganic Nitrate and Beetroot Juice Supplementation Reduces Blood Pressure in Adults: A Systematic Review and Meta-Analysis. J. Nutr. 2013, 143, 818–826. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, D.; Petro, J.; Vargas Molina, S.; Pérez-Idárraga, A. Dietary Nitrate from Beetroot Juice for Hypertension: A Systematic Review. Biomolecules 2018, 8, 134. [Google Scholar] [CrossRef]
- Ferguson, S.; Hirai, D.; Copp, S.; Holdsworth, C.; Allen, J.; Jones, A.; Musch, T.; Poole, D. Impact of Dietary Nitrate Supplementation via Beetroot Juice on Exercising Muscle Vascular Control in Rats. J. Physiol. 2012, 591, 547–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wylie, L.; Bailey, S.; Kelly, J.; Blackwell, J.; Vanhatalo, A.; Jones, A. Influence of Beetroot Juice Supplementation on Intermittent Exercise Performance. Eur. J. Appl. Physiol. 2016, 116, 415–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cermak, N.M.; Gibala, M.J.; Van Loon, L.J.C. Nitrate Supplementation’s Improvement of 10-Km Time-Trial Performance in Trained Cyclists. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Muggeridge, D.; Howe, C.; Spendiff, O.; Pedlar, C.; James, P.; Easton, C. A Single Dose of Beetroot Juice Enhances Cycling Performance in Simulated Altitude. Med. Sci. Sports Exerc. 2013, 46, 143–150. [Google Scholar] [CrossRef]
- Bailey, S.; Fulford, J.; Vanhatalo, A.; Winyard, P.; Blackwell, J.; Dimenna, F.; Wilkerson, D.; Benjamin, N.; Jones, A. Dietary Nitrate Supplementation Enhances Muscle Efficiency during Knee-Extensor Exercise in Humans. Jpn. J. Phys. Fit. Sports Med. 2011, 60, 86. [Google Scholar] [CrossRef] [Green Version]
- Mosher, S.L.; Andy Sparks, S.; Williams, E.L.; Bentley, D.J.; Naughton, L.R.M. Ingestion of a Nitric Oxide Enhancing Supplement Improves Resistance Exercise Performance. J. Strength Cond. Res. 2016, 30, 3520–3524. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.; Martin, M.; Mintz, J.; Rogers, R.; Ballmann, C. Effect of Acute Beetroot Juice Supplementation on Bench Press Power, Velocity, and Repetition Volume. J. Strength Cond. Res. 2020, 34, 924–928. [Google Scholar] [CrossRef]
- Jurado-Castro, J.M.; Campos-Perez, J.; Ranchal-Sanchez, A.; Durán-López, N.; Domínguez, R. Acute Effects of Beetroot Juice Supplements on Lower-Body Strength in Female Athletes: Double-Blind Crossover Randomized Trial. Sports Health Multidiscip. Approach 2022, 14, 812–821. [Google Scholar] [CrossRef]
- Tan, R.; Pennell, A.; Price, K.M.; Karl, S.T.; Seekamp-Hicks, N.G.; Paniagua, K.K.; Weiderman, G.D.; Powell, J.P.; Sharabidze, L.K.; Lincoln, I.G.; et al. Effects of Dietary Nitrate Supplementation on Performance and Muscle Oxygenation during Resistance Exercise in Men. Nutrients 2022, 14, 3703. [Google Scholar] [CrossRef]
- Simon, J.; Duglan, D.; Casadei, B.; Carnicer, R. Nitric Oxide Synthase Regulation of Cardiac Excitation-Contraction Coupling in Health and Disease. J. Mol. Cell. Cardiol. 2014, 73, 80–91. [Google Scholar] [CrossRef]
- Treuer, A.V.; Gonzalez, D.R. Nitric Oxide Synthases, S-Nitrosylation and Cardiovascular Health: From Molecular Mechanisms to Therapeutic Opportunities (Review). Mol. Med. Rep. 2015, 11, 1555–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhushan, S.; Kondo, K.; Polhemus, D.; Otsuka, H.; Nicholson, C.; Tao, Y.-X.; Huang, H.; Georgiopoulou, V.; Murohara, T.; Calvert, J.; et al. Nitrite Therapy Improves Left Ventricular Function During Heart Failure via Restoration of Nitric Oxide (NO) Mediated Cytoprotective Signaling. Circ. Res. 2014, 114, 1281–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlström, M.; Persson, A.E.G.; Larsson, E.; Hezel, M.; Scheffer, P.; Teerlink, T.; Weitzberg, E.; Lundberg, J. Dietary Nitrate Attenuates Oxidative Stress, Prevents Cardiac and Renal Injuries, and Reduces Blood Pressure in Salt-Induced Hypertension. Cardiovasc. Res. 2011, 89, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Rassaf, T.; Totzeck, M.; Hendgen-Cotta, U.; Shiva, S.; Heusch, G.; Kelm, M. Circulating Nitrite Contributes to Cardioprotection by Remote Ischemic Preconditioning. Circ. Res. 2014, 114, 1601–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiva, S.; Sack, M.; Greer, J.; Duranski, M.; Ringwood, L.; Burwell, L.; Wang, X.; MacArthur, P.; Shoja, A.; Raghavachari, N.; et al. Nitrite Augments Tolerance to Ischemia/Reperfusion Injury via the Modulation of Mitochondrial Electron Transfer. J. Exp. Med. 2007, 204, 2089–2102. [Google Scholar] [CrossRef] [Green Version]
- Ingram, T.; Fraser, A.; Bleasdale, R.; Ellins, E.; Margulescu, A.; Halcox, J.; James, P. Low-Dose Sodium Nitrite Attenuates Myocardial Ischemia and Vascular Ischemia-Reperfusion Injury in Human Models. J. Am. Coll. Cardiol. 2013, 61, 2534–2541. [Google Scholar] [CrossRef] [Green Version]
- He, Z. The Control Mechanisms of Heart Rate Dynamics in a New Heart Rate Nonlinear Time Series Model. Sci. Rep. 2020, 10, 4814. [Google Scholar] [CrossRef] [Green Version]
- Acharya, U.R.; Joseph, P.; Kannathal, N.; Lim, C.; Suri, J. Heart Rate Variability: A Review. Med. Biol. Eng. Comput. 2007, 44, 1031–1051. [Google Scholar] [CrossRef]
- Koenig, J.; Thayer, J.F. Sex Differences in Healthy Human Heart Rate Variability: A Meta-Analysis. Neurosci. Biobehav. Rev. 2016, 64, 288–310. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Pikkujämsä, S.M.; Airaksinen, K.E.J.; Ikäheimo, M.J.; Rantala, A.O.; Kauma, H.; Lilja, M.; Kesäniemi, Y.A. Sex-Related Differences in Autonomic Modulation of Heart Rate in Middle-Aged Subjects. Circulation 1996, 94, 122–125. [Google Scholar] [CrossRef]
- Dong, J.-G. The Role of Heart Rate Variability in Sports Physiology. Exp. Ther. Med. 2016, 11, 1531–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naranjo Orellana, J.; Nieto, C.; Ruso Álvarez, J.F. Recovery Slope of Heart Rate Variability as an Indicator of Internal Training Load. Health 2019, 11, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, J.; Torres, B.; Sarabia-Cachadiña, E.; de Hoyo, M.; Domínguez-Cobo, S. Heart Rate Variability: A Follow-up in Elite Soccer Players Throughout the Season. Int. J. Sports Med. 2015, 36, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, J.; Le, F.; Lahiri, M.; Kannankeril, P.; Ng, J.; Kadish, A. Assesment of Parasympathetic Reactivation after Exercise. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H2446–H2452. [Google Scholar] [CrossRef] [Green Version]
- Saboul, D.; Balducci, P.; Millet, G.; Pialoux, V.; Hautier, C. A Pilot Study on Quantification of Training Load: The Use of HRV in Training Practice. Eur. J. Sport Sci. 2015, 16, 172–181. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.; Ahmaidi, S. Parasympathetic Reactivation after Repeated Sprint Exercise. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H133–H141. [Google Scholar] [CrossRef] [Green Version]
- Ruso Álvarez, J.F.; Nieto, C.; Muñoz-López, A.; Naranjo Orellana, J. Utility of the “RMSSD-Slope” to Assess the Internal Load in Different Sports Situations. Health 2019, 11, 683–691. [Google Scholar] [CrossRef] [Green Version]
- Sammito, S.; Böckelmann, I. Reference Values for Time- and Frequency-Domain Heart Rate Variability Measures. Heart Rhythm 2016, 13, 1309–1316. [Google Scholar] [CrossRef]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR Interval Signal Quality of a Heart Rate Monitor and an ECG Holter at Rest and during Exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef]
- Kingsley, M.; Lewis, M.; Marson, R. Comparison of Polar 810 s and an Ambulatory ECG System for RR Interval Measurement During Progressive Exercise. Int. J. Sports Med. 2005, 26, 39–44. [Google Scholar] [CrossRef]
- Nunan, D.; Gay, D.; Jakovljevic, D.G.; Hodges, L.D.; Sandercock, G.R.H.; Brodie, D.A. Validity and Reliability of Short-Term Heart-Rate Variability from the Polar S810. Med. Sci. Sports Exerc. 2009, 41, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Giles, D.; Draper, N.; Neil, W. Validity of the Polar V800 Heart Rate Monitor to Measure RR Intervals at Rest. Eur. J. Appl. Physiol. 2016, 116, 563–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrotta, A.S.; Jeklin, A.T.; Hives, B.A.; Meanwell, L.E.; Warburton, D.E.R. Validity of the Elite HRV Smartphone Application for Examining Heart Rate Variability in a Field-Based Setting. J. Strength Cond. Res. 2017, 31, 2296–2302. [Google Scholar] [CrossRef]
- Plews, D.J.; Scott, B.; Altini, M.; Wood, M.; Kilding, A.E.; Laursen, P.B. Comparison of Heart-Rate-Variability Recording with Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography. Int. J. Sports Physiol. Perform. 2017, 12, 1324–1328. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-aho, P.O.; Karjalainen, P.A. Kubios HRV–Heart Rate Variability Analysis Software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, M.; Chicos, A.; Bergner, D.; Ng, J.; Banthia, S.; Wang, N.; Subacius, H.; Kadish, A.; Goldberger, J. Recovery of Heart Rate Variability and Ventricular Repolarization Indices Following Exercise. Ann. Noninvasive Electrocardiol. 2012, 17, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Kenttä, T.; Viik, J.; Karsikas, M.; Seppänen, T.; Nieminen, T.; Lehtimäki, T.; Nikus, K.; Lehtinen, R.; Kähönen, M.; Huikuri, H. Postexercise Recovery of the Spatial QRS/T Angle as a Predictor of Sudden Cardiac Death. Heart Rhythm 2012, 9, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- López-Samanes, Á.; Moreno-Pérez, D.; Maté-Muñoz, J.L.; Domínguez, R.; Pallarés, J.G.; Mora-Rodriguez, R.; Ortega, J.F. Circadian Rhythm Effect on Physical Tennis Performance in Trained Male Players. J. Sports Sci. 2016, 35, 2121–2128. [Google Scholar] [CrossRef]
- Dumar, A.M.; Huntington, A.F.; Rogers, R.R.; Kopec, T.J.; Ballmann, C.G. Acute Beetroot Juice Supplementation Attenuates Morning-Associated Decrements in Supramaximal Exercise Performance in Trained Sprinters. Int. J. Environ. Res. Public Health 2021, 18, 412. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects. Bull. World Health Organ. 2001, 79, 373–374. [Google Scholar] [PubMed]
- da Silva, V.; Vieira, F. International Society for the Advancement of Kinanthropometry (ISAK) Global: International Accreditation Scheme of the Competent Anthropometrist. Rev. Bras. Cineantropometria Desempenho Hum. 2020, 22, e70517. [Google Scholar] [CrossRef]
- Ranchal Sánchez, A.; Bernier, D.; De, C.; Llorente-Cantarero, F.; Campos-Pérez, J.; Jurado-Castro, J.M. Acute Effects of Beetroot Juice Supplements on Resistance Training: A Randomized Double-Blind Crossover. Nutrients 2020, 12, 1912. [Google Scholar] [CrossRef] [PubMed]
- Jurado-Castro, J.M.; Campos-Pérez, J.; Vilches-Redondo, M.; Mata, F.; Navarrete Pérez, A.; Ranchal Sánchez, A. Morning Versus Evening Intake of Creatine in Elite Female Handball Players. Int. J. Environ. Res. Public Health 2022, 19, 393. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Weir, J. ASEP Procedures Recommendation I: Accurate Assessment of Muscular Strength and Power. J. Exerc. Physiol. Online 2001, 4, 1–21. [Google Scholar]
- Gallardo, E.; Coggan, A. What Is in Your Beet Juice? Nitrate and Nitrite Content of Beet Juice Products Marketed to Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 29, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, A.; Schiffer, T.; Ivarsson, N.; Cheng, A.; Bruton, J.; Lundberg, J.; Weitzberg, E.; Westerblad, H. Dietary Nitrate Increases Tetanic [Ca2+]i and Contractile Force in Mouse Fast-Twitch Muscle. J. Physiol. 2012, 590, 3575–3583. [Google Scholar] [CrossRef]
- Pérez Castilla, A.; Piepoli, A.; Delgado García, G.; Garrido, G.; García Ramos, A. Reliability and Concurrent Validity of Seven Commercially Available Devices for the Assessment of Movement Velocity at Different Intensities During the Bench Press. J. Strength Cond. Res. 2019, 33, 1258–1265. [Google Scholar] [CrossRef]
- McMahon, S.; Jenkins, D. Factors Affecting the Rate of Phosphocreatine Resynthesis Following Intense Exercise. Sports Med. 2002, 32, 761–784. [Google Scholar] [CrossRef]
- O’Brien, E.; Asmar, R.; Beilin, L.; Imai, Y.; Mancia, G.; Mengden, T.; Myers, M.; Padfield, P.; Palatini, P.; Parati, G.; et al. Practice Guidelines of the European Society of Hypertension for Clinic, Ambulatory, and Self Blood Pressure Measurement. J. Hypertens. 2005, 23, 697–701. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.J.; Winyard, P.; Vanhatalo, A.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Tarr, J.; Benjamin, N.; Jones, A.M. Dietary Nitrate Supplementation Reduces the O2 Cost of Low-Intensity Exercise and Enhances Tolerance to High-Intensity Exercise in Humans. J. Appl. Physiol. 2009, 107, 1144–1155. [Google Scholar] [CrossRef] [Green Version]
- Javorka, M.; Zila, I.; Balhárek, T.; Javorka, K. Heart Rate Recovery after Exercise: Relations to Heart Rate Variability and Coplexity. Braz. J. Med. Biol. Res. 2002, 35, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Ferguson, C.J. An Effect Size Primer: A Guide for Clinicians and Researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Bond, V.; Curry, B.H.; Adams, R.G.; Asadi, M.S.; Stancil, K.A.; Millis, R.M.; Haddad, G.E. Effects of Nitrate Supplementation on Cardiovascular and Autonomic Reactivity in African-American Females. ISRN Physiol. 2014, 2014, 676235. [Google Scholar] [CrossRef] [Green Version]
- Vanhatalo, A.; Bailey, S.; Blackwell, J.; Dimenna, F.; Pavey, T.; Wilkerson, D.; Benjamin, N.; Winyard, P.; Jones, A. Acute and Chronic Effects of Dietary Nitrate Supplementation on Blood Pressure and the Physiological Responses to Moderate-Intensity and Incremental Exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1121–R1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, A.J.; Patel, N.; Loukogeorgakis, S.; Okorie, M.; Aboud, Z.; Misra, S.; Rashid, R.; Miall, P.; Deanfield, J.; Benjamin, N.; et al. Acute Blood Pressure Lowering, Vasoprotective, and Antiplatelet Properties of Dietary Nitrate via Bioconversion to Nitrite. Hypertension 2008, 51, 784–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, B.; Oliveira, L.; Silva, R.; Painelli, V.; Gonçalves, L.; Yamaguchi, G.; Mutti, T.; Maciel, E.; Roschel, H.; Artioli, G.; et al. Placebo in Sports Nutrition: A Proof-of-Principle Study Involving Caffeine Supplementation. Scand. J. Med. Sci. Sports 2016, 27, 1240–1247. [Google Scholar] [CrossRef]
- Stanaway, L.; Rutherfurd-Markwick, K.; Page, R.; Wong, M.; Jirangrat, W.; Teh, K.H.; Ali, A. Acute Supplementation with Nitrate-Rich Beetroot Juice Causes a Greater Increase in Plasma Nitrite and Reduction in Blood Pressure of Older Compared to Younger Adults. Nutrients 2019, 11, 1683. [Google Scholar] [CrossRef] [Green Version]
- Bloomer, R.J.; Fry, A.C.; Falvo, M.J.; Moore, C.A. Protein Carbonyls Are Acutely Elevated Following Single Set Anaerobic Exercise in Resistance Trained Men. J. Sci. Med. Sport 2007, 10, 411–417. [Google Scholar] [CrossRef]
- Lundberg, J.O.; Carlstörm, M.; Larsen, F.J.; Weitzberg, E. Roles of Dietary Inorganic Nitrate in Cardiovascular Health and Disease. Cardiovasc. Res. 2011, 89, 525–532. [Google Scholar] [CrossRef]
- Wink, D.A.; Miranda, K.M.; Espey, M.G.; Pluta, R.M.; Hewett, S.J.; Colton, C.; Vitek, M.; Feelisch, M.; Grisham, M.B. Mechanisms of the Antioxidant Effects of Nitric Oxide. Antioxid. Redox Signal. 2004, 3, 203–213. [Google Scholar] [CrossRef]
- Kujawska, M.; Ignatowicz, E.; Murias, M.; Ewertowska, M.; Mikołajczyk, K.; Jodynis-Liebert, J. Protective Effect of Red Beetroot against Carbon Tetrachloride- and N-Nitrosodiethylamine-Induced Oxidative Stress in Rats. J. Agric. Food Chem. 2009, 57, 2570–2575. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Kabir, A.; Azizi, F.; Ghasemi, A. The Nitrate-Independent Blood Pressure–Lowering Effect of Beetroot Juice: A Systematic Review and Meta-Analysis. Adv. Nutr. 2017, 8, 830–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clifford, T.; Howatson, G.; West, D.J.; Stevenson, E.J. The Potential Benefits of Red Beetroot Supplementation in Health and Disease. Nutrients 2015, 7, 2801. [Google Scholar] [CrossRef]
- Frombaum, M.; Le Clanche, S.; Bonnefont-Rousselot, D.; Borderie, D. Antioxidant Effects of Resveratrol and Other Stilbene Derivatives on Oxidative Stress and NO Bioavailability: Potential Benefits to Cardiovascular Diseases. Biochimie 2012, 94, 269–276. [Google Scholar] [CrossRef]
- Kingsley, J.D.; Figueroa, A. Acute and Training Effects of Resistance Exercise on Heart Rate Variability. Clin. Physiol. Funct. Imaging 2016, 36, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Benjamim, C.J.R.; Francisco, F.W.; de Figueirêdo, M.Í.L.S.; Benjamim, C.J.R.; Cavalcante, T.C.F.; da Silva, A.A.M.; Monteiro, L.R.L.; Santana, M.D.R.; Garner, D.M.; Valenti, V.E. Beetroot (Beta vulgaris L.) Extract Acutely Improves Heart Rate Variability Recovery Following Strength Exercise: A Randomized, Double-Blind, Placebo-Controlled Crossover Trial-Pilot Study. J. Am. Coll. Nutr. 2020, 40, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Hallman, D.M.; Holtermann, A.; Søgaard, K.; Krustrup, P.; Kristiansen, J.; Korshøj, M. Effect of an Aerobic Exercise Intervention on Cardiac Autonomic Regulation: A Worksite RCT among Cleaners. Physiol. Behav. 2017, 169, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.K.D.; Jester, M.; Tryggestad, J.B.; Short, K.R. A Pilot Study of the Effects of a High-Intensity Aerobic Exercise Session on Heart Rate Variability and Arterial Compliance in Adolescents with or without Type 1 Diabetes. Pediatr. Diabetes 2020, 21, 486–495. [Google Scholar] [CrossRef]
- Carrijo, V.H.; Amaral, A.; Moraes Mariano, I.; Souza, T.; Batista, J.; de Oliveira, E.; Puga, G. Beetroot Juice Intake with Different Amounts of Nitrate Does Not Change Aerobic Exercise-Mediated Responses in Heart Rate Variability in Hypertensive Postmenopausal Women: A Randomized, Crossover and Double-Blind Study. J. Exerc. Sci. Fit. 2020, 19, 104–110. [Google Scholar] [CrossRef]
- Saito, M.; Iwase, S.; Hachiya, T. Resistance Exercise Training Enhances Sympathetic Nerve Activity during Fatigue-Inducing Isometric Handgrip Trials. Eur. J. Appl. Physiol. 2008, 105, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Christensen, N.; Galbo, H. Sympathetic Nervous Activity During Exercise. Annu. Rev. Physiol. 1983, 45, 139–153. [Google Scholar] [CrossRef] [PubMed]
- White, D.W.; Raven, P.B.; White, D.W.; Raven, P.B. Autonomic Neural Control of Heart Rate during Dynamic Exercise: Revisited. J. Physiol. 2014, 592, 2491–2500. [Google Scholar] [CrossRef]
- Minarini, G.; Minarini, G. Root Mean Square of the Successive Differences as Marker of the Parasympathetic System and Difference in the Outcome after ANS Stimulation. In Autonomic Nervous System Monitoring; IntechOpen: Rijeka, Croatia, 2020. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, S.; Townend, J.N. Role of Nitric Oxide in the Regulation of Cardiovascular Autonomic Control. Clin. Sci. 1999, 97, 5–17. [Google Scholar] [CrossRef]
- Sartori, C.; Lepori, M.; Scherrer, U. Interaction between Nitric Oxide and the Cholinergic and Sympathetic Nervous System in Cardiovascular Control in Humans. Pharmacol. Ther. 2005, 106, 209–220. [Google Scholar] [CrossRef]
- Mert, K.U.; Ilgüy, S.; Dural, M.; Mert, G.Ö.; Özakin, E. Effects of Creatine Supplementation on Cardiac Autonomic Functions in Bodybuilders. Pacing Clin. Electrophysiol. 2017, 40, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Sarshin, A.; Naderi, A.; Da Cruz, C.J.G.; Feizolahi, F.; Forbes, S.C.; Candow, D.G.; Mohammadgholian, E.; Amiri, M.; Jafari, N.; Rahimi, A.; et al. The Effects of Varying Doses of Caffeine on Cardiac Parasympathetic Reactivation Following an Acute Bout of Anaerobic Exercise in Recreational Athletes. J. Int. Soc. Sports Nutr. 2020, 17, 44. [Google Scholar] [CrossRef]
- Gonzaga, L.A.; Vanderlei, L.C.M.; Gomes, R.L.; Valenti, V.E. Caffeine Affects Autonomic Control of Heart Rate and Blood Pressure Recovery after Aerobic Exercise in Young Adults: A Crossover Study. Sci. Rep. 2017, 7, 14091. [Google Scholar] [CrossRef] [Green Version]
- Sripanidkulchai, B.; Promthep, K.; Tuntiyasawasdikul, S.; Tabboon, P.; Areemit, R. Supplementation of Kaempferia Parviflora Extract Enhances Physical Fitness and Modulates Parameters of Heart Rate Variability in Adolescent Student-Athletes: A Randomized, Double-Blind, Placebo-Controlled Clinical Study. J. Diet. Suppl. 2020, 19, 149–167. [Google Scholar] [CrossRef]
- Escamilla, R.F. Knee Biomechanics of the Dynamic Squat Exercise. Med. Sci. Sports Exerc. 2001, 33, 127–141. [Google Scholar] [CrossRef]
- Yavuz, H.U.; Erdag, D. Kinematic and Electromyographic Activity Changes during Back Squat with Submaximal and Maximal Loading. Appl. Bionics Biomech. 2017, 2017, 9084725. [Google Scholar] [CrossRef] [PubMed]
- Westerblad, H.; Allen, D.G.; Bruton, J.D.; Andrade, F.H.; Lännergren, J. Mechanisms Underlying the Reduction of Isometric Force in Skeletal Muscle Fatigue. Acta Physiol. Scand. 1998, 162, 253–260. [Google Scholar] [CrossRef] [PubMed]
Variable | Beetroot Juice | Placebo | p-Value | ES |
---|---|---|---|---|
Systolic BP Basal (mmHg) | 133 ± 22.2 | 129.5 ± 20.9 | 0.641 | 0.156 |
Systolic BP post-exercise (mmHg) | 122 ± 11.1 | 124.7 ± 10.2 | 0.472 | 0.244 |
Diastolic BP basal (mmHg) | 72.4 ± 11.7 | 76.7 ± 8.1 | 0.271 | 0.411 |
Diastolic BP post-exercise (mmHg) | 68.8 ± 7.6 | 71.5 ± 11.6 | 0.285 | 0.265 |
HR mean (ppm) | 129.3 ± 11.8 | 125.6 ± 12.5 | 0.208 | 0.293 |
HR post-exercise (ppm) | 106.6 ± 12.5 | 101.8 ± 16.9 | 0.161 | 0.311 |
Maximum HR (ppm) | 174.6 ± 9.1 | 168.5 ± 10.2 | 0.022 * | 0.607 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurado-Castro, J.M.; Casanova-Rodriguez, D.; Campos-Perez, J.; Llorente-Cantarero, F.J.; De La Florida-Villagran, C.A.; Diaz-Bernier, V.M.; Ranchal-Sanchez, A. Beetroot Juice Produces Changes in Heart Rate Variability and Reduces Internal Load during Resistance Training in Men: A Randomized Double-Blind Crossover. Nutrients 2022, 14, 5119. https://doi.org/10.3390/nu14235119
Jurado-Castro JM, Casanova-Rodriguez D, Campos-Perez J, Llorente-Cantarero FJ, De La Florida-Villagran CA, Diaz-Bernier VM, Ranchal-Sanchez A. Beetroot Juice Produces Changes in Heart Rate Variability and Reduces Internal Load during Resistance Training in Men: A Randomized Double-Blind Crossover. Nutrients. 2022; 14(23):5119. https://doi.org/10.3390/nu14235119
Chicago/Turabian StyleJurado-Castro, Jose Manuel, David Casanova-Rodriguez, Julian Campos-Perez, Francisco Jesus Llorente-Cantarero, Candelaria Alonso De La Florida-Villagran, Víctor Manuel Diaz-Bernier, and Antonio Ranchal-Sanchez. 2022. "Beetroot Juice Produces Changes in Heart Rate Variability and Reduces Internal Load during Resistance Training in Men: A Randomized Double-Blind Crossover" Nutrients 14, no. 23: 5119. https://doi.org/10.3390/nu14235119