Practical Nutrition Strategies to Support Basketball Performance during International Short-Term Tournaments: A Narrative Review
Abstract
:1. Introduction
2. Practical Nutritional Strategies Pre-, during, and Post-Games during Tournament
2.1. Fuelling Pre-Games
2.2. Fuel and Fluid during Games
2.3. Refuelling–Recovery–Rehydration Post-Game
3. Nutrition Strategies for Travelling
4. Sport Foods and Supplements
4.1. Caffeine
4.2. Bicarbonate
4.3. Nitrate/Beetroot Juice
4.4. Omega 3
4.5. Anti-Inflammatory (Tart Cherry Juice)
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janeira, M.; Maia, J. Game intensity in basketball. An interactionist view linking time-motion analysis, lactate concentration and heart rate. Coach. Sport. Sci. J. 1998, 3, 26–30. [Google Scholar]
- McInnes, S.; Carlson, J.; Jones, C.; McKenna, M.J. The physiological load imposed on basketball players during competition. J. Sport. Sci. 1995, 13, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Berkelmans, D.M.; Milanović, Z. The Activity Demands and Physiological Responses Encountered During Basketball Match-Play: A Systematic Review. Sport. Med. 2018, 48, 111–135. [Google Scholar] [CrossRef] [PubMed]
- Burke, L. Practical Sports Nutrition; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Williams, C.; Rollo, I. Carbohydrate nutrition and team sport performance. Sport. Med. 2015, 45 (Suppl. 1), S13–S22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, L.B.; Rollo, I.; Stein, K.W.; Jeukendrup, A.E. Acute efects of carbohydrate supplementation on intermittent sports performance. Nutrients 2015, 7, 5733–5763. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, P.G.; Pyne, D.B.; Hopkins, W.G.; Dorman, J.C.; Cook, K.; Minahan, C.L. The effect of recovery strategies on physical performance and cumulative fatigue in competitive basketball. J. Sport. Sci. 2008, 26, 1135–1145. [Google Scholar] [CrossRef]
- Phillips, S.M.; Van Loon, L.J. Dietary protein for athletes: From requirements to optimum adaptation. J. Sport. Sci. 2011, 29, S29–S38. [Google Scholar] [CrossRef]
- Osterberg, K.L.; Horswill, C.A.; Baker, L.B. Pregame urine specifc gravity and fuid intake by National Basketball Association players during competition. J. Athl. Train. 2009, 44, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Vukasinović-Vesić, M.; Andjelković, M.; Stojmenović, T.; Dikić, N.; Kostić, M.; Curcić, D. Sweat rate and fluid intake in young elite basketball players on the FIBA Europe U20 Championship. Vojn. Pregl. 2015, 72, 1063–1068. [Google Scholar] [CrossRef]
- Spencer, M.; Rechichi, C.; Lawrence, S.; Dawson, B.; Bishop, D.; Goodman, C. Time-motion analysis of elite field hockey during several games in succession: A tournament scenario. J. Sci. Med. Sport 2005, 8, 382–391. [Google Scholar] [CrossRef]
- Twist, C.; Eston, R. The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur. J. Appl. Physiol. 2005, 94, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Huyghe, T.; Scanlan, A.T.; Dalbo, V.J.; Calleja-González, J. The negative infuence of air travel on health and performance in the national basketball association: A narrative review. Sports 2018, 6, 89. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R. Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 101. [Google Scholar] [CrossRef]
- Papandreou, D.; Eystathiadis, P.; Bouzoukiu, V.; Hassapidou, M.; Tsitskaris, G.; Garefis, A. Dietary assessment, anthropometric measurements and nutritional status of Greek professional athletes. Nutr. Food Sci. 2007, 37, 338–344. [Google Scholar] [CrossRef]
- Dziedzic, C.E.; Higham, D.G. Performance nutrition guidelines for international rugby sevens tournaments. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.K.; Oikawa, S.Y.; Halson, S.; Stephens, J.; O’Riordan, S.; Luhrs, K.; Sopena, B.; Baker, L.B. In-Season Nutrition Strategies and Recovery Modalities to Enhance Recovery for Basketball Players: A Narrative Review. Sports Med. 2022, 52, 971–993. [Google Scholar] [CrossRef]
- Silva, A.M.; Santos, D.A.; Matias, C.N.; Minderico, C.S.; Schoeller, D.A.; Sardinha, L.B. Total Energy Expenditure Assessment in Elite Junior basketball Players: A validation study using double labeled water. J. Strength Cond. Res. 2012, 27, 1920–1927. [Google Scholar] [CrossRef]
- Nikić, M.; Pedisic, Z.; Satalic, Z.; Jakovljevic, S.; Venus, D. Adequacy of nutrient intakes in elite junior basketball players. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 516–523. [Google Scholar] [CrossRef]
- Zanders, B.R.; Currier, B.S.; Harty, P.S.; Zabriskie, H.A.; Smith, C.R.; Stecker, R.A.; Richmond, S.R.; Jagim, A.R.; Kerksick, C.M. Changes in energy expenditure, dietary intake, and energy availability across an entire collegiate women’s basketball season. J Strength Cond. Res. 2018, 35, 804–810. [Google Scholar] [CrossRef]
- Schröder, H.; Navarro, E.; Mora, J.; Seco, J.; Torregrosa, J.M.; Tramullas, A. Dietary habits and fuid intake of a group of elite spanish basketball players: A need for professional advice? Eur. J. Sport Sci. 2004, 4, 1–15. [Google Scholar] [CrossRef]
- Hassapidou, M.N.; Fourtounopoulos, D.; Efstratiou, E.; Kitsou, S.; Papakitsos, C. Dietary intakes of Greek basketball players. Nutr. Food Sci. 2003, 33, 23–27. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sport. Exerc. 2016, 48, 543–568. [Google Scholar]
- Burke, L.M.; Loucks, A.B.; Broad, N. Energy and carbohydrate for training and recovery. J. Sport. Sci. 2006, 24, 675–685. [Google Scholar] [CrossRef]
- Burke, L. Practical issues in nutrition for athletes. J. Sport. Sci. 1995, 13, S83–S90. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Ekblom, B. The use of recovery methods post-exercise. J. Sport. Sci. 2005, 23, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. Metabolic response and fatigue in soccer. Int. J. Sport. Physiol. Perform. 2007, 2, 111–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, C.; Serratosa, L. Nutrition on match day. J. Sport. Sci. 2006, 24, 687–697. [Google Scholar] [CrossRef]
- Bussau, V.A.; Fairchild, T.J.; Rao, A.; Steele, P.; Fournier, P.A. Carbohydrate loading in human muscle: An improved 1 day protocol. Eur. J. Appl. Physiol. 2002, 87, 290–295. [Google Scholar] [CrossRef]
- Tsoufi, A.; Maraki, M.I.; Dimitrakopoulos, L.; Famisis, K.; Grammatikopoulou, M.G. The effect of professional dietary counseling: Elite basketball players eat healthier during competition days. J. Sport. Med. Phys. Fit. 2017, 57, 1305–1310. [Google Scholar] [CrossRef]
- Institute of Medicine (US). DRI, Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; National Academy Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sport. Exerc. 2007, 39, 377–390. [Google Scholar]
- Maughan, R.; Leiper, J.; Shirreffs, S. Restoration of fluid balance after exercise-induced dehydration: Effects of food and fluid intake. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 317–325. [Google Scholar] [CrossRef]
- Shirreffs, S.M.; Maughan, R.J. Volume repletion after exercise-induced volume depletion in humans: Replacement of water and sodium losses. Am. J. Physiol. Ren. Physiol. 1998, 274, F868–F875. [Google Scholar] [CrossRef]
- Maughan, R.J.; Merson, S.J.; Broad, N.P.; Shirreffs, S.M. Fluid and electrolyte intake and loss in elite soccer players during training. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 333–346. [Google Scholar] [CrossRef]
- Baker, L.B.; Dougherty, K.A.; Chow, M.; Kenney, W.L. Progressive dehydration causes a progressive decline in basketball skill performance. Med. Sci. Sport. Exerc. 2007, 39, 1114–1123. [Google Scholar] [CrossRef] [Green Version]
- Welsh, R.S.; Davis, J.M.; Burke, J.R.; Williams, H.G. Carbohydrates and physical/mental performance during intermittent exercise to fatigue. Med. Sci. Sport. Exerc. 2002, 34, 723–731. [Google Scholar]
- Dougherty, K.A.; Baker, L.B.; Chow, M.; Kenney, W.L. Two percent dehydration impairs and six percent carbohydrate drink improves boys basketball skills. Med. Sci. Sport. Exerc. 2006, 38, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Gray, S.C. Carbohydrate-gel supplementation and endurance performance during intermittent high-intensity shuttle running. Int. J. Sport. Nutr. Exerc. Metab. 2007, 17, 445–455. [Google Scholar] [CrossRef]
- Winnick, J.J.; Davis, J.M.; Welsh, R.S.; Carmichael, M.D.; Murphy, E.A.; Blackmon, J.A. Carbohydrate feedings during team sport exercise preserve physical and CNS function. Med. Sci. Sport. Exerc. 2005, 37, 306–315. [Google Scholar] [CrossRef]
- Eichner, E.R. The role of sodium in ‘heat cramping’. Sport. Med. 2007, 37, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Jung, A.P.; Bishop, P.A.; Al-Nawwas, A.; Dale, R.B. Influence of hydration and electrolyte supplementation on incidence and time to onset of exercise-associated muscle cramps. J. Athl. Train 2005, 40, 71–75. [Google Scholar]
- Miller, K.C.; Mack, G.W.; Knight, K.L.; Hopkins, J.T.; Draper, D.O.; Fields, P.J.; Hunter, I. Reflex inhibition of electrically induced muscle cramps in hypohydrated humans. Med. Sci. Sport. Exerc. 2009, 42, 953–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maughan, R.J.; Shirreffs, S.M. Muscle cramping during exercise: Causes, solutions, and questions remaining. Sport. Med. 2019, 49, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marosek, S.E.H.; Antharam, V.; Dowlatshahi, K. Quantitative analysis of the acetic acid content in substances used by athletes for the possible prevention and alleviation of Exercise-Associated muscle cramps. J. Strength Cond. Res. 2020, 34, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Hausswirth, C.; Le Meur, Y. Physiological and nutritional aspects of post-exercise recovery. Sport. Med. 2011, 41, 861–882. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Katz, A.; Cutler, C.; Sherman, W.; Coyle, E. Muscle glycogen synthesis after exercise: Effect of time of carbohydrate ingestion. J. Appl. Physiol. 1988, 64, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Kiens, B.; Ivy, J.L. Carbohydrates and fat for training and recovery. J. Sport. Sci. 2004, 22, 15–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Loon, L.J.; Kruijshoop, M.; Verhagen, H.; Saris, W.H.; Wagenmakers, A.J. Ingestion of protein hydrolysate and amino acid–carbohydrate mixtures increases postexercise plasma insulin responses in men. J. Nutr. 2000, 130, 2508–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, S.M. The science of muscle hypertrophy: Making dietary protein count. Proc. Nutr. Soc. 2011, 70, 100–103. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.R.; Ascensão, A.; Marques, F.; Seabra, A.; Rebelo, A.; Magalhães, J. Neuromuscular function, hormonal and redox status and muscle damage of professional soccer players after a high-level competitive match. Eur. J. Appl. Physiol. 2013, 113, 2193–2201. [Google Scholar] [CrossRef]
- Macnaughton, L.S.; Wardle, S.L.; Witard, O.C.; McGlory, C.; Hamilton, D.L.; Jeromson, S.; Lawrence, C.E.; Wallis, G.A.; Tipton, K.D. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol. Rep. 2016, 4, e12893. [Google Scholar] [CrossRef]
- Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J. Physiol. 2013, 591, 2319–2331. [Google Scholar] [CrossRef]
- Gai, Z.; Wang, Q.; Yang, C.; Wang, L.; Deng, W.; Wu, G. Structural mechanism for the arginine sensing and regulation of CASTOR1 in the mTORC1 signaling pathway. Cell Discov. 2016, 2, 16051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Res, P.T.; Groen, B.; Pennings, B.; Beelen, M.; Wallis, G.A.; Gijsen, A.P.; Senden, J.M.G.; van Loon, L.J.C. Protein ingestion before sleep improves postexercise overnight recovery. Med. Sci. Sport. Exerc. 2012, 44, 1560–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trommelen, J.; Kouw, I.W.K.; Holwerda, A.M.; Snijders, T.; Halson, S.L.; Rollo, I.; Verdijk, L.B.; van Loon, L.J.C. Presleep dietary protein-derived amino acids are incorporated in myofibrillar protein during postexercise overnight recovery. Am. J. Physiol. Endocrinol. Metab. 2018, 314, E457–E467. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R.; Leiper, J. Sodium intake and post-exercise rehydration in man. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 71, 311–319. [Google Scholar] [CrossRef]
- González-Alonso, J. Hyperthermia impairs brain, heart and muscle function in exercising humans. Sport. Med. 2007, 37, 371–373. [Google Scholar] [CrossRef]
- Mohr, M.; Mujika, I.; Santisteban, J.; Randers, M.B.; Bischoff, R.; Solano, R.; Hewitt, A.; Zubillaga, A.; Peltola, E.; Krustrup, P. Examination of fatigue development in elite soccer in a hot environment: A multi-experimental approach. Scand. J. Med. Sci. Sport. 2010, 20, 125–132. [Google Scholar] [CrossRef]
- McGregor, S.; Nicholas, C.; Lakomy, H.; Williams, C. The influence of intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. J. Sport. Sci. 1999, 17, 895–903. [Google Scholar] [CrossRef]
- Nose, H.; Mack, G.W.; Shi, X.; Nadel, E.R. Role of osmolality and plasma volume during rehydration in humans. J. Appl. Physiol. 1988, 65, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Hespel, P.; Maughan, R.; Greenhaff, P. Dietary supplements for football. J. Sport. Sci. 2006, 24, 749–761. [Google Scholar] [CrossRef]
- Schroder, H.; Navarro, E.; Mora, J.; Seco, J.; Torregrosa, J.; Tramullas, A. The type, amount, frequency and timing of dietary supplement use by elite players in the First Spanish Basketball League. J. Sport. Sci. 2002, 20, 353–358. [Google Scholar] [CrossRef]
- Burke, L.M. Practical Issues in Evidence-Based Use of Performance Supplements: Supplement Interactions, Repeated Use and Individual Responses. Sport. Med. 2017, 47, 79–100. [Google Scholar] [CrossRef] [Green Version]
- Puente, C.; Abián-Vicén, J.; Salinero, J.J.; Lara, B.; Areces, F.; Del Coso, J. Caffeine Improves Basketball Performance in Experienced Basketball Players. Nutrients 2017, 9, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abian-Vicen, J.; Puente, C.; Salinero, J.J.; González-Millán, C.; Areces, F.; Muñoz, G.; Muñoz-Guerra, J.; Del Coso, J. A caffeinated energy drink improves jump performance in adolescent basketball players. Amino Acids 2014, 46, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Karayigit, R.; Forbes, S.C.; Osmanov, Z.; Yilmaz, C.; Yasli, B.C.; Naderi, A.; Buyukcelebi, H.; Benesova, D.; Gabrys, T.; Esen, O. Low and Moderate Doses of Caffeinated Coffee Improve Repeated Sprint Performance in Female Team Sport Athletes. Biology 2022, 11, 1498. [Google Scholar] [CrossRef] [PubMed]
- Karayigit, R.; Aras, D. One week of low or moderate doses of caffeinated coffee consumption does not induce tolerance to the acute effects of caffeine on sprint performance. Eur. J. Hum. Mov. 2021, 47, 49–60. [Google Scholar]
- Ansdell, P.; Dekerle, J. Sodium bicarbonate supplementation delays neuromuscular fatigue without changes in performance outcomes during a basketball match simulation protocol. J. Strength Cond. Res. 2017, 34, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Delextrat, A.; MacKessy, S.; Arceo-Rendon, L.; Scanlan, A.; Ramsbottom, R.; Calleja-González, J. Effects of 3-Day Serial Sodium Bicarbonate Loading on Performance and Physiological Parameters During a Simulated Basketball Test in Female University Players. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 547–552. [Google Scholar] [CrossRef]
- Jones, A.M. Dietary nitrate supplementation and exercise performance. Sport. Med. 2014, 44, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Esen, O.; Dobbin, N.; Callaghan, M.J. The effect of dietary nitrate on the contractile properties of human skeletal muscle: A systematic review and meta-analysis. J. Am. Nutr. Assoc. 2022, 2, 1–12. [Google Scholar] [CrossRef]
- Esen, O.; Domínguez, R.; Karayigit, R. Acute Beetroot Juice Supplementation Enhances Intermittent Running Performance but Does Not Reduce Oxygen Cost of Exercise among Recreational Adults. Nutrients 2022, 14, 2839. [Google Scholar] [CrossRef] [PubMed]
- Nyakayiru, J.; Jonvik, K.L.; Trommelen, J.; Pinckaers, P.J.; Senden, J.M.; van Loon, L.J.; Verdijk, L.B. Beetroot juice supplementation improves high-intensity intermittent type exercise performance in trained soccer players. Nutrients 2017, 9, 314. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Wylie, L.J.; Fulford, J.; Kelly, J.; Black, M.I.; McDonagh, S.T.; Jeukendrup, A.E.; Vanhatalo, A.; Jones, A.M. Dietary nitrate improves sprint performance and cognitive function during prolonged intermittent exercise. Eur. J. Appl. Physiol. 2015, 115, 1825–1834. [Google Scholar] [CrossRef]
- Tipton, K.D. Nutritional support for exercise-induced injuries. Sport. Med. 2015, 45, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jouris, K.B.; McDaniel, J.L.; Weiss, E.P. The effect of omega-3 fatty acid supplementation on the inflammatory response to eccentric strength exercise. J. Sport. Sci. Med. 2011, 10, 432. [Google Scholar]
- Gray, P.; Chappell, A.; Jenkinson, A.M.; Thies, F.; Gray, S.R. Fish oil supplementation reduces markers of oxidative stress but not muscle soreness after eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Bell, P.; McHugh, M.; Stevenson, E.; Howatson, G. The role of cherries in exercise and health. Scand. J. Med. Sci. Sport. 2014, 24, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Coelho Rabello de Lima, L.; de Oliveira Assumpção, C.; Prestes, J.; Sérgio Denadai, B. Consumption of cherries as a strategy to attenuate exercise-induced muscle damage and inflammation in humans. Nutr. Hosp. 2015, 32, 1885–1893. [Google Scholar]
- Buford, T.W.; Kreider, R.B.; Stout, J.R.; Greenwood, M.; Campbell, B.; Spano, M.; Ziegenfuss, T.; Lopez, H.; Landis, J.; Antonio, J. International Society of Sports Nutrition position stand: Creatine supplementation and exercise. J. Int. Soc. Sport. Nutr. 2007, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Juhn, M. Popular sports supplements and ergogenic aids. Sport. Med. 2003, 33, 921–939. [Google Scholar] [CrossRef]
- Rawson, E.S.; Stec, M.J.; Frederickson, S.J.; Miles, M.P. Low-dose creatine supplementation enhances fatigue resistance in the absence of weight gain. Nutrition 2011, 27, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maughan, R.J. Contamination of dietary supplements and positive drug tests in sport. J. Sport. Sci. 2005, 23, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Geyer, H.; Parr, M.K.; Mareck, U.; Reinhart, U.; Schrader, Y.; Schänzer, W. Analysis of non-hormonal nutritional supplements for anabolic-androgenic steroids-results of an international study. Int. J. Sport. Med. 2004, 25, 124–129. [Google Scholar]
- Geyer, H.; Parr, M.K.; Koehler, K.; Mareck, U.; Schänzer, W.; Thevis, M. Nutritional supplements cross-contaminated and faked with doping substances. J. Mass Spectrom. 2008, 43, 892–902. [Google Scholar] [CrossRef] [PubMed]
Aim | Guidelines | Practical Applications |
---|---|---|
| 7–12 g per kg for 24–48 h before tournament (‘Carbohydrate loading’) Optimise hydration status (at least 8–12 h before) Monitor urine colour night before and 2–4 h before matches (pale colour) |
|
| Carnohydrate-rich (1–4 g per kg) pre-match meal 3–4 h and snack 1–2 h before matches 300–600 mL fluid intake 3–4 h before the match 200–250 mL fluid intake 1–2 h before the match 200–250 mL water can be consumed 15 min before the match |
|
| Mouth rinse with carbohydrate fluids or, small amounts of carbohydrates (30–60 g/h) |
|
| ~1 g per kg immediately after match (within 5–30 min) 1 g per h for the first 4 h of recovery (ideally at 1st, 2nd, and 4th h) 0.3–0.4 g/kg of protein within 30 min after match immediately after match. 1.5 L of fluid for each kg of weight loss aim to consume the target volume over the next 2–4 h 30–40 g of protein before bed |
|
|
|
Supplement | Aim | Recommended Protocol of Use | Comments | |
---|---|---|---|---|
Amount | Timing | |||
Caffeine | Performance | 3–6 mg/kg | 1 h pre-match | Different sources such as coffee, coke, sport drinks, and gels |
Sodium bicarbonate | Performance | 0.2–0.4 g/kg | 2–2.5 h pre-match | In case of GI upset, daily smaller doses a couple of day pre-tournament |
Nitrate/beetroot juice | Performance/recovery | 6–12 mmol | 2.5–3 h pre-match | 5–7 days of pre-tournament supplementation may benefit better. |
Omega 3-fatty acids | Recovery | 2 g/day | Before bed | Faster muscle recovery period. |
Anti-inflammatory Supplements: Tart cherry juice | Recovery | 250–300 mL(30 mL. if concentrate) | Post-matchBefore bed | Faster muscle recovery period. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esen, O.; Rozwadowski, K.; Cepicka, L.; Gabrys, T.; Karayigit, R. Practical Nutrition Strategies to Support Basketball Performance during International Short-Term Tournaments: A Narrative Review. Nutrients 2022, 14, 4909. https://doi.org/10.3390/nu14224909
Esen O, Rozwadowski K, Cepicka L, Gabrys T, Karayigit R. Practical Nutrition Strategies to Support Basketball Performance during International Short-Term Tournaments: A Narrative Review. Nutrients. 2022; 14(22):4909. https://doi.org/10.3390/nu14224909
Chicago/Turabian StyleEsen, Ozcan, Kazimierz Rozwadowski, Ladislav Cepicka, Tomasz Gabrys, and Raci Karayigit. 2022. "Practical Nutrition Strategies to Support Basketball Performance during International Short-Term Tournaments: A Narrative Review" Nutrients 14, no. 22: 4909. https://doi.org/10.3390/nu14224909
APA StyleEsen, O., Rozwadowski, K., Cepicka, L., Gabrys, T., & Karayigit, R. (2022). Practical Nutrition Strategies to Support Basketball Performance during International Short-Term Tournaments: A Narrative Review. Nutrients, 14(22), 4909. https://doi.org/10.3390/nu14224909