Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Body Mass Index, Body Composition, Body Fluid Status, and Arterial Blood Pressure Measurement
2.4. 24-h Urine Samples Analysis
2.5. Food Frequency Questionnaire (FFQ)
2.6. Statistical Analysis
3. Results
3.1. Gestational Weight Gain (GWG)
3.2. Body Composition, Body Fluid Status, and Arterial Blood Pressure
3.3. 24-h Urine
3.4. EPIC-Norfolk Food Frequency Questionnaire (FFQ)
3.5. Molar Sodium-to-Potassium Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Popkin, B.M.; Ng, S.W. The nutrition transition to a stage of high obesity and noncommunicable disease prevalence dominated by ultra-processed foods is not inevitable. Obes. Rev. 2022, 23, e13366. [Google Scholar] [CrossRef]
- Danielewicz, H.; Myszczyszyn, G.; Dębińska, A.; Myszkal, A.; Boznański, A.; Hirnle, L. Diet in pregnancy—More than food. Eur. J. Pediatr. 2017, 176, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Bellver, J.; Mariani, G. Impact of parental over- and underweight on the health of offspring. Fertil. Steril. 2019, 111, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.; Naqash, A.; Lim, S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients 2019, 11, 443. [Google Scholar] [CrossRef] [PubMed]
- Most, J.; Dervis, S.; Haman, F.; Adamo, K.B.; Redman, L.M. Energy Intake Requirements in Pregnancy. Nutrients 2019, 11, 1812. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) and National Research Council (US) and Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight Gain during Pregnancy: Reexamining the Guidelines; National Academies Press: Washington, DC, USA, 2009.
- Kominiarek, M.A.; Rajan, P. Nutrition Recommendations in Pregnancy and Lactation. Med. Clin. N. Am. 2016, 100, 1199–1215. [Google Scholar] [CrossRef]
- Morrissey, E.; Giltinan, M.; Kehoe, L.; Nugent, A.P.; McNulty, B.A.; Flynn, A.; Walton, J. Sodium and Potassium Intakes and Their Ratio in Adults (18–90 y): Findings from the Irish National Adult Nutrition Survey. Nutrients 2020, 12, 938. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Rehm, C.D.; Maillot, M.; Monsivais, P. The relation of potassium and sodium intakes to diet cost among US adults. J. Hum. Hypertens. 2015, 29, 14–21. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Binia, A.; Jaeger, J.; Hu, Y.; Singh, A.; Zimmermann, D. Daily potassium intake and sodium-to-potassium ratio in the reduction of blood pressure. J. Hypertens. 2015, 33, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Iwahori, T.; Miura, K.; Ueshima, H. Time to Consider Use of the Sodium-to-Potassium Ratio for Practical Sodium Reduction and Potassium Increase. Nutrients 2017, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Parker, E.A.; Rhodes, D.G.; Goldman, J.D.; Clemens, J.C.; Moshfegh, A.J.; Thuppal, S.V.; Weaver, C.M. Estimating Sodium and Potassium Intakes and Their Ratio in the American Diet: Data from the 2011–2012 NHANES. J. Nutr. 2015, 146, 745–750. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guideline: Sodium Intake for Adults and Children; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Cook, N.R. Joint Effects of Sodium and Potassium Intake on Subsequent Cardiovascular Disease. Arch. Intern. Med. 2009, 169, 32. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.L.; Boyle, J.A.; Harrison, C.L.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; et al. Gestational weight gain across continents and ethnicity: Systematic review and meta-analysis of maternal and infant outcomes in more than one million women. BMC Med. 2018, 16, 153. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, M.; Siega-Riz, A.M.; Moos, M.K.; Deierlein, A.; Mumford, S.; Knaack, J.; Thieda, P.; Lux, L.J.; Lohr, K.N. Outcomes of maternal weight gain. Evid. Rep. Technol. Assess. 2008, 168, 1–223. [Google Scholar]
- Walker, L.O.; Hoke, M.M.; Brown, A. Risk Factors for Excessive or Inadequate Gestational Weight Gain Among Hispanic Women in a U.S.-Mexico Border State. J. Obstet. Gynecol. Neonatal Nurs. 2009, 38, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Weisman, C.S.; Hillemeier, M.M.; Symons Downs, D.; Chuang, C.H.; Dyer, A.-M. Preconception Predictors of Weight Gain During Pregnancy. Women’s Health Issues 2010, 20, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.F.; Abell, S.K.; Ranasinha, S.; Misso, M.; Boyle, J.A.; Black, M.H.; Li, N.; Hu, G.; Corrado, F.; Rode, L.; et al. Association of Gestational Weight Gain With Maternal and Infant Outcomes. JAMA 2017, 317, 2207. [Google Scholar] [CrossRef]
- Keys, A.; Fidanza, F.; Karvonen, M.J.; Kimura, N.; Taylor, H.L. Indices of relative weight and obesity. J. Chronic Dis. 1972, 25, 329–343. [Google Scholar] [CrossRef]
- Mulligan, A.A.; Luben, R.N.; Bhaniani, A.; Parry-Smith, D.J.; O’Connor, L.; Khawaja, A.P.; Forouhi, N.G.; Khaw, K.-T. A new tool for converting food frequency questionnaire data into nutrient and food group values: FETA research methods and availability. BMJ Open 2014, 4, e004503. [Google Scholar] [CrossRef] [PubMed]
- Day, N.; Oakes, S.; Luben, R.; Khaw, K.T.; Bingham, S.; Welch, A.; Wareham, N. EPIC-Norfolk: Study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br. J. Cancer 1999, 80 (Suppl. 1), 95–103. [Google Scholar]
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- Black, A. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Powles, J.; Fahimi, S.; Micha, R.; Khatibzadeh, S.; Shi, P.; Ezzati, M.; Engell, R.E.; Lim, S.S.; Danaei, G.; Mozaffarian, D. Global, regional and national sodium intakes in 1990 and 2010: A systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open 2013, 3, e003733. [Google Scholar] [CrossRef] [PubMed]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef]
- He, F.J.; Li, J.; MacGregor, G.A. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Rehm, C.D.; Maillot, M.; Mendoza, A.; Monsivais, P. The feasibility of meeting the WHO guidelines for sodium and potassium: A cross-national comparison study. BMJ Open 2015, 5, e006625. [Google Scholar] [CrossRef] [PubMed]
- Brown, I.J.; Tzoulaki, I.; Candeias, V.; Elliott, P. Salt intakes around the world: Implications for public health. Int. J. Epidemiol. 2009, 38, 791–813. [Google Scholar] [CrossRef] [PubMed]
- European Commission Directorate-General Health and Consumers Survey on Members States’ Implementation of the EU Salt Reduction Framework. Available online: https://www.aesan.gob.es/AECOSAN/docs/documentos/nutricion/observatorio/encuesta_estados_miembros_sal.pdf (accessed on 30 June 2022).
- United States Department of Agriculture, ARS. What We Eat in America, 2013–2014; United States Department of Agriculture, ARS: Gainesville, FL, USA, 2014. Available online: www.ars.usda.gov/nea/bhnrc/fsrg (accessed on 30 June 2022).
- Jelaković, B.; Kaić-Rak, A.; Milicić, D.; Premuzić, V.; Skupnjak, B.; Reiner, Z. Less salt--more health. Croatian action on salt and health (CRASH). Lijec. Vjesn. 2016, 131, 87–92. [Google Scholar]
- Jelakovic, B. Salt Intake in Croatia—EHUH 2 Report. In Proceedings of the 41st Symposium Hypertension Highlights in 2020, Rijeka, Croatia; 2020. Available online: https://kongresi.emed.hr/course/info.php?id=149 (accessed on 20 October 2022).
- Cobb, L.K.; Anderson, C.A.M.; Elliott, P.; Hu, F.B.; Liu, K.; Neaton, J.D.; Whelton, P.K.; Woodward, M.; Appel, L.J. Methodological Issues in Cohort Studies That Relate Sodium Intake to Cardiovascular Disease Outcomes. Circulation 2014, 129, 1173–1186. [Google Scholar] [CrossRef] [PubMed]
- Buzzard, M.W.W. Nutritional Epidemiology. In 24-h Dietary Recall and Food Record Method, 2nd ed.; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Toft, U.; Kristoffersen, L.; Ladelund, S.; Bysted, A.; Jakobsen, J.; Lau, C.; Jørgensen, T.; Borch-Johnsen, K.; Ovesen, L. Relative validity of a food frequency questionnaire used in the Inter 99 study. Eur. J. Clin. Nutr. 2008, 62, 1038–1046. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Okayama, A.; Okuda, N.; Miura, K.; Okamura, T.; Hayakawa, T.; Akasaka, H.; Ohnishi, H.; Saitoh, S.; Arai, Y.; Kiyohara, Y.; et al. Dietary sodium-to-potassium ratio as a risk factor for stroke, cardiovascular disease and all-cause mortality in Japan: The NIPPON DATA80 cohort study. BMJ Open 2016, 6, e011632. [Google Scholar] [CrossRef]
- Cohen, H.W.; Hailpern, S.M.; Fang, J.; Alderman, M.H. Sodium Intake and Mortality in the NHANES II Follow-up Study. Am. J. Med. 2006, 119, 275.e7–275.e14. [Google Scholar] [CrossRef] [PubMed]
- Intersalt Cooperative Research Group. Intersalt: An international study of electrolyte excretion and blood pressure. Results for 24 h urinary sodium and potassium excretion. BMJ 1988, 297, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Iwahori, T.; Miura, K.; Ueshima, H.; Chan, Q.; Dyer, A.R.; Elliott, P.; Stamler, J. Estimating 24-h urinary sodium/potassium ratio from casual (‘spot’) urinary sodium/potassium ratio: The Intersalt Study. Int. J. Epidemiol. 2016, 46, dyw287. [Google Scholar] [CrossRef] [PubMed]
- Bates, B.; Lennox, A.; Prentice, A.; Bates, C.; Page, P.; Nicholson, S.; Swan, G. National Diet and Nutrition Survey. In Results from Years 1, 2, 3 and 4 (Combined) of the Rolling Programme (2008/2009–2011/2012); Public Health England: London, UK, 2014. [Google Scholar]
- RIVM. Dutch National Food Consumption Survey 2007–2010. In Part 8—A Sources of Micronutrients; RIVM: Utrecht, The Netherlands, 2012. [Google Scholar]
- Hasenegger, V.; Rust, P.; König, J.; Purtscher, A.; Erler, J.; Ekmekcioglu, C. Main Sources, Socio-Demographic and Anthropometric Correlates of Salt Intake in Austria. Nutrients 2018, 10, 311. [Google Scholar] [CrossRef] [PubMed]
- Okuda, N.; Stamler, J.; Brown, I.J.; Ueshima, H.; Miura, K.; Okayama, A.; Saitoh, S.; Nakagawa, H.; Sakata, K.; Yoshita, K.; et al. Individual efforts to reduce salt intake in China, Japan, UK, USA. J. Hypertens. 2014, 32, 2385–2392. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Medeiros, D.M. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Am. J. Clin. Nutr. 2007, 85, 924. [Google Scholar] [CrossRef]
- Barua, S.; Kuizon, S.; Junaid, M.A. Folic acid supplementation in pregnancy and implications in health and disease. J. Biomed. Sci. 2014, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Cogswell, M.E.; Parvanta, I.; Ickes, L.; Yip, R.; Brittenham, G.M. Iron supplementation during pregnancy, anemia, and birth weight: A randomized controlled trial. Am. J. Clin. Nutr. 2003, 78, 773–781. [Google Scholar] [CrossRef]
- Peña-Rosas, J.P.; De-Regil, L.M.; Garcia-Casal, M.N.; Dowswell, T. Daily oral iron supplementation during pregnancy. Cochrane Database Syst. Rev. 2015, 2015, CD004736. [Google Scholar] [CrossRef] [PubMed]
- Baker, H.; DeAngelis, B.; Holland, B.; Gittens-Williams, L.; Barrett, T. Vitamin Profile of 563 Gravidas during Trimesters of Pregnancy. J. Am. Coll. Nutr. 2002, 21, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Coletta, J.M.; Bell, S.J.; Roman, A.S. Omega-3 Fatty acids and pregnancy. Rev. Obstet. Gynecol. 2010, 3, 163–171. [Google Scholar] [PubMed]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef] [PubMed]
- Butte, N.F.; Ellis, K.J.; Wong, W.W.; Hopkinson, J.M.; Smith, E.O. Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am. J. Obstet. Gynecol. 2003, 189, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Lederman, S. Body Fat and Water Changes during Pregnancy in Women with Different Body Weight and Weight Gain. Obstet. Gynecol. 1997, 90, 483–488. [Google Scholar] [CrossRef]
| Characteristics | ||||
|---|---|---|---|---|
| Number | 64 | |||
| Age (years) | 29.4 ± 4.5 | |||
| Period of gestation (weeks) | 37.9 ± 0.9 | |||
| Height (m) | 1.68 ± 0.07 | |||
| Initial body mass index (kg/m2) | 23.8 ± 4.3 | |||
| Body mass index classification | Underweight (BMI ≤ 18.5) | Normal (BMI 18.6–25.0) | Overweight (BMI 25.1–30.0) | Obese (BMI ≥ 30.1) |
| Number (%) | 2 (3.1%) | 45 (70.3%) | 11 (17.2%) | 6 (9.3%) |
| Gestational weight gain (kg) * | 16.8 ± 5.4 | 15.1 ± 6.8 | ||
| Gestational weight gain classification † | ||||
| Number (%) | Low | 7 (14.9%) | Low | 1 (5.9%) |
| Normal | 18 (38.3%) | Normal | 3 (17.6%) | |
| High | 22 (46.8%) | High | 13 (76.5%) | |
| Characteristics | |
|---|---|
| Number of participants | 65 |
| Body mass index (kg/m2) | 29.2 ± 4.6 |
| RMR (kcal) | 1678 ± 93 |
| Fat-free mass (%) | 68.6 ± 7.3 |
| Fat mass (%) | 31.5 ± 7.3 |
| Total body water (%) | 53.7 ± 6.2 |
| Extracellular water (%) | 45.1 ± 1.8 |
| Intracellular water (%) | 54.9 ± 1.8 |
| ECW/ICW | 0.82 ± 0.06 |
| Plasma fluid (L) | 4.07 ± 0.58 |
| Interstitial fluid (L) | 14.2 ± 2.0 |
| Body density (kg/L) | 1.03 ± 0.02 |
| Systolic blood pressure (mmHg) | 111 ± 9 |
| Diastolic blood pressure (mmHg) | 75 ± 6 |
| Mean arterial pressure (mmHg) | 87 ± 6.6 |
| Characteristics | |
|---|---|
| Number of participants | 65 |
| Creatinine coefficient (μmol/24 h/kg) | 116 ± 34 |
| Endogenous creatinine clearance | 1.93 ± 0.54 |
| Proteins (mg/dU) | 202 ± 77 |
| Albumin (mg/dU) | 11 ± 11 |
| Sodium (mmol/dU) | 139.7 ± 46.8 |
| Potassium (mmol/dU) | 55.0 ± 20.7 |
| Estimated daily sodium intake (mg) | 3213 ± 1077 |
| Estimated daily potassium intake (mg) | 2152 ± 808 |
| Estimated daily salt (NaCl) intake (g/day) | 8.2 ± 2.7 |
| Sodium-to-potassium ratio (molar ratio) | 2.74 ± 0.91 |
| Nutrient | RDA * | FFQ | FFQ vs. RDA |
|---|---|---|---|
| Vitamin A (μg/day) | 770 | 880 ± 817 | ↔ |
| Vitamin D (μg/day) | 15 | 2.72 ± 1.29 | ↓ |
| Vitamin E (mg/day) | 15 | 12.1 ± 5.2 | ↓ |
| Folate (μg/day) | 600 | 257 ± 77 | ↓ |
| Niacin (mg/day) | 18 | 23.0 ± 6.6 | ↔ |
| Riboflavin (mg/day) | 1.10 | 1.85 ± 0.62 | ↔ |
| Thiamin (mg/day) | 1.4 | 1.55 ± 0.47 | ↔ |
| Vitamin B6 (mg/day) | 1.9 | 2.11 ± 0.63 | ↔ |
| Vitamin B12 (μg/day) | 2.6 | 6.49 ± 3.74 | ↑ |
| Vitamin C (mg/day) | 85 | 136 ± 76 | ↑ |
| Sodium (mg/day) | <2000 | 3012 ±1015 | ↑ |
| Potassium (mg/day) | >3510 | 3399 ± 938 | ↔ |
| Calcium (mg/day) | 1000 | 945 ± 308 | ↔ |
| Iron (mg/day) | 27 | 9.686 ± 3.17 | ↓ |
| Phosphorus (mg/day) | 700 | 1387 ± 392 | ↑ |
| Selenium (μg/day) | 60 | 102 ± 43 | ↑ |
| Zinc (mg/day) | 11 | 9.01 ± 2.72 | ↓ |
| Sodium-to-potassium ratio (molar ratio) | 1.51 ± 0.45 | ||
| Estimated daily salt (NaCl) intake (g/day) | 7.53 ± 2.54 | ||
| FFQ | |
|---|---|
| EIrep (kcal/day) | 1941 ± 638 |
| Protein (% of total energy/day) | 17.9% |
| Carbohydrates (% of total energy/day) | 45.8% |
| Fats (% of total energy/day) | 38.4% |
| EIrep/RMR | 0.93 ± 0.32 |
| LER, number (%) | 27 (42.2%) |
| NonLER, number (%) | 37 (57.8%) |
| Alcoholic beverages (g/day) | 17 ± 42 |
| Cereals and cereal products (g/day) | 222 ± 104 |
| Eggs and egg dishes (g/day) | 24 ± 23 |
| Fats and oils (g/day) | 15 ± 8 |
| Fish and fish products (g/day) | 27 ± 23 |
| Fruit (g/day) | 330 ± 265 |
| Meat and meat products (g/day) | 157 ± 122 |
| Milk and milk products (g/day) | 391 ± 202 |
| Non-alcoholic beverages (g/day) | 455 ± 279 |
| Nuts and seeds (g/day) | 8.6 ± 8.7 |
| Potatoes (g/day) | 72 ± 42 |
| Soups and sauces (g/day) | 158 ± 83 |
| Sugars (g/day) | 49 ± 43 |
| Vegetables (g/day) | 200 ± 93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulin, M.; Magušić, L.; Metzger, A.-M.; Muller, A.; Drenjančević, I.; Jukić, I.; Šijanović, S.; Lukić, M.; Stanojević, L.; Davidović Cvetko, E.; et al. Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women. Nutrients 2022, 14, 5052. https://doi.org/10.3390/nu14235052
Vulin M, Magušić L, Metzger A-M, Muller A, Drenjančević I, Jukić I, Šijanović S, Lukić M, Stanojević L, Davidović Cvetko E, et al. Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women. Nutrients. 2022; 14(23):5052. https://doi.org/10.3390/nu14235052
Chicago/Turabian StyleVulin, Martina, Lucija Magušić, Ana-Maria Metzger, Andrijana Muller, Ines Drenjančević, Ivana Jukić, Siniša Šijanović, Matea Lukić, Lorena Stanojević, Erna Davidović Cvetko, and et al. 2022. "Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women" Nutrients 14, no. 23: 5052. https://doi.org/10.3390/nu14235052
APA StyleVulin, M., Magušić, L., Metzger, A.-M., Muller, A., Drenjančević, I., Jukić, I., Šijanović, S., Lukić, M., Stanojević, L., Davidović Cvetko, E., & Stupin, A. (2022). Sodium-to-Potassium Ratio as an Indicator of Diet Quality in Healthy Pregnant Women. Nutrients, 14(23), 5052. https://doi.org/10.3390/nu14235052

