Nutrition Disturbances and Metabolic Complications in Kidney Transplant Recipients: Etiology, Methods of Assessment and Prevention—A Review
Abstract
:1. Etiology of Nutrition Disturbances in Chronic Kidney Disease
2. BMI in KTx Recipients
3. Immunosuppression and the Nutritional Status
4. Dyslipidemia in KTx
5. Post-Transplant Diabetes Mellitus
6. Vitamin Deficiency in KTx
7. Hyperuricemia
8. Macronutrients: Recommendations for KTx
9. Dietary Recommendations in the Early Post-KTx Period
10. Dietary Recommendations in the Long Term after KTx
11. Dietary Patterns in the KTx Population
12. Nutritional Screening
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kovesdy, C.P. Epidemiology of Chronic Kidney Disease: An Update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Ryu, J.; An, J.N.; Kim, C.T.; Kim, H.; Yang, J.; Ha, J.; Chae, D.W.; Ahn, C.; Jung, I.M.; et al. Pretransplant Malnutrition, Inflammation, and Atherosclerosis Affect Cardiovascular Outcomes after Kidney Transplantation Dialysis and Transplantation. BMC Nephrol. 2015, 16, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A Proposed Nomenclature and Diagnostic Criteria for Protein-Energy Wasting in Acute and Chronic Kidney Disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guida, B.; di Maro, M.; di Lauro, M.; di Lauro, T.; Trio, R.; Santillo, M.; Belfiore, A.; Memoli, A.; Cataldi, M. Identification of Sarcopenia and Dynapenia in CKD Predialysis Patients with EGWSOP2 Criteria: An Observational, Cross-Sectional Study. Nutrition 2020, 78, 110815. [Google Scholar] [CrossRef] [PubMed]
- Turshudzhyan, A.; Inyangetor, D. Uremic and Post-Transplant Gastropathy in Patients with Chronic Kidney Disease and End-Stage Renal Disease. Cureus 2020, 12, e10578. [Google Scholar] [CrossRef]
- McIntyre, C.W.; Harrison, L.E.A.; Eldehni, M.T.; Jefferies, H.J.; Szeto, C.C.; John, S.G.; Sigrist, M.K.; Burton, J.O.; Hothi, D.; Korsheed, S.; et al. Circulating Endotoxemia: A Novel Factor in Systemic Inflammation and Cardiovascular Disease in Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Szczecińska, K.; Wajdlich, M.; Nowicka, M.; Nowicki, M.; Kurnatowska, I. Effects of Oral Bicarbonate Supplementation on the Cardiovascular Risk Factors and Serum Nutritional Markers in Non-Dialysed Chronic Kidney Disease Patients. Medicina 2022, 58, 518. [Google Scholar] [CrossRef] [PubMed]
- Carron, C.; de Barros, J.P.P.; Gaiffe, E.; Deckert, V.; Adda-Rezig, H.; Roubiou, C.; Laheurte, C.; Masson, D.; Simula-Faivre, D.; Louvat, P.; et al. End-Stage Renal Disease-Associated Gut Bacterial Translocation: Evolution and Impact on Chronic Inflammation and Acute Rejection after Renal Transplantation. Front. Immunol. 2019, 10, 1630. [Google Scholar] [CrossRef] [Green Version]
- Zarifi, S.H.; Shadnoush, M.; Pahlavani, N.; Malekahmadi, M.; Firouzi, S.; Sabbagh, M.G.; Rezaiyan, M.K.; Islam, S.M.S.; Yahyapoor, F.; Arabi, S.M.; et al. Nutritional Status in Kidney Transplant Patients before and 6-Month after Transplantation: Result of PNSI Study. Clin. Nutr. ESPEN 2021, 41, 268–274. [Google Scholar] [CrossRef]
- Oniscu, G.C.; Abramowicz, D.; Bolignano, D.; Gandolfini, I.; Hellemans, R.; Maggiore, U.; Nistor, I.; O’Neill, S.; Sever, M.S.; Koobasi, M.; et al. Management of Obesity in Kidney Transplant Candidates and Recipients: A Clinical Practice Guideline by the DESCARTES Working Group of ERA. Nephrol. Dial. Transplant. 2021, 37, i1–i15. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Block, G.; Humphreys, M.H.; Kopple, J.D. Reverse Epidemiology of Cardiovascular Risk Factors in Maintenance Dialysis Patients. Kidney Int. 2003, 63, 793–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aminu, M.S.; Sagren, N.; Manga, P.; Nazir, M.S.; Naicker, S. Obesity and Graft Dysfunction among Kidney Transplant Recipients: Increased Risk for Atherosclerosis. Indian J. Nephrol. 2015, 25, 340–343. [Google Scholar] [CrossRef]
- Scheuermann, U.; Babel, J.; Pietsch, U.C.; Weimann, A.; Lyros, O.; Semmling, K.; Hau, H.M.; Seehofer, D.; Rademacher, S.; Sucher, R. Recipient Obesity as a Risk Factor in Kidney Transplantation. BMC Nephrol. 2022, 23, 37. [Google Scholar] [CrossRef] [PubMed]
- Kurnatowska, I.; Małyska, A.; Wysocka, K.; Mazur, K.; Krawczyk, J.; Nowicki, M. Long-Term Effect of Body Mass Index Changes on Graft Damage Markers in Patients after Kidney Transplantation. Ann. Transplant. 2016, 21, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Orazio, L.; Chapman, J.; Isbel, N.M.; Campbell, K.L. Nutrition Care for Renal Transplant Recipients: An Evaluation of Service Delivery and Outcomes. J. Ren. Care 2014, 40, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Djukanović, L.; Ležaić, V.; Blagojević, R.; Radivojević, D.; Stošović, M.; Jovanović, N.; Ristić, S.; Simić-Ogrizović, S. Co-Morbidity and Kidney Graft Failure—Two Main Causes of Malnutrition in Kidney Transplant Patients. Nephrol. Dial. Transplant. 2003, 18, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.F.; Zahmatkesh, G.; Streja, E.; Molnar, M.Z.; Rhee, C.M.; Kovesdy, C.P.; Gillen, D.L.; Steiner, S.; Kalantar-Zadeh, K. Body Mass Index and Mortality in Kidney Transplant Recipients: A Systematic Review and Meta-Analysis. Am. J. Nephrol. 2014, 40, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Haris, S.; Kathryn, A.; Titus, B.; Azmi, A.S. Post-Transplantation Diabetes Mellitus. Diabetes Ther. 2020, 11, 779–801. [Google Scholar] [CrossRef]
- Gores, P.F.; Fryd, D.S.; Sutherland, D.E.R.; Najarian, J.S.; Simmons, R.L. Hyperuricemia after Renal Transplantation. Am. J. Surg. 1988, 156, 397–400. [Google Scholar] [CrossRef]
- Shipkova, M.; Armstrong, V.W.; Oellerich, M.; Wieland, E. Mycophenolate Mofetil in Organ Transplantation: Focus on Metabolism, Safety and Tolerability. Expert Opin. Drug Metab. Toxicol. 2005, 1, 505–526. [Google Scholar] [CrossRef] [PubMed]
- Bunnapradist, S.; Ambühl, P.M. Impact of Gastrointestinal-Related Side Effects on Mycophenolate Mofetil Dosing and Potential Therapeutic Strategies. Clin. Transpl. 2008, 22, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Dunford, E.C.; Riddell, M.C. The Metabolic Implications of Glucocorticoids in a High-Fat Diet Setting and the Counter-Effects of Exercise. Metabolites 2016, 6, 44. [Google Scholar] [CrossRef] [Green Version]
- El Haggan, W.; de Ligny, B.H.; Partiu, A.; Sabatier, J.P.; Lobbedez, T.; Levaltier, B.; Ryckelynck, J.P. The Evolution of Weight and Body Composition in Renal Transplant Recipients: Two-Year Longitudinal Study. Transplant. Proc. 2006, 38, 3517–3519. [Google Scholar] [CrossRef] [PubMed]
- Egashira, K.; Sasaki, H.; Higuchi, S.; Ieiri, I. Food-Drug Interaction of Tacrolimus with Pomelo, Ginger, and Turmeric Juice in Rats. Drug Metab. Pharmacokinet 2012, 27, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.W. Food, Food Components, and Botanicals Affecting Drug Metabolism in Transplantation. J. Ren. Nutr. 2013, 23, e71–e73. [Google Scholar] [CrossRef] [PubMed]
- Jarosław, W. Interactions of Immunosuppressive Drugs: Why They Are so Important in Clinical Practice? Forum Nefrologiczne 2019, 12, 106–113. [Google Scholar]
- Bekersky, I.; Dressler, D.; Mekki, Q. Effect of Time of Meal Consumption on Bioavailability of a Single Oral 5 Mg Tacrolimus Dose. J. Clin. Pharmacol. 2001, 41, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Prasad, G.V.R. Post-Transplant Dyslipidemia: Mechanisms, Diagnosis and Management. World J. Transplant. 2016, 6, 125. [Google Scholar] [CrossRef] [PubMed]
- Riella, L.V.; Gabardi, S.; Chandraker, A. Dyslipidemia and Its Therapeutic Challenges in Renal Transplantation. Am. J. Transplant. 2012, 12, 1975–1982. [Google Scholar] [CrossRef]
- Chmielnicka, K.; Heleniak, Z.; Dębska-Ślizień, A. Dyslipidemia in Renal Transplant Recipients. Transplantology 2022, 3, 188–199. [Google Scholar] [CrossRef]
- Pannu, H.S.; Singh, D.; Sandhu, J.S. Lipid Profile before and after Renal Transplantation—A Longitudinal Study. Ren. Fail 2003, 25, 411–417. [Google Scholar] [CrossRef]
- Geer, E.B.; Islam, J.; Buettner, C. Mechanisms of Glucocorticoid-Induced Insulin Resistance: Focus on Adipose Tissue Function and Lipid Metabolism. Endocrinol. Metab. Clin. N. Am. 2014, 43, 75–102. [Google Scholar] [CrossRef] [Green Version]
- De Groen, P.C. Cyclosporine, Low-Density Lipoprotein, and Cholesterol. Mayo Clin. Proc. 1988, 63, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, H.S.; Ayna, T.K.; Calıskan, Y.K.; Turkmen, A.; Gurtekin, M. Lipid Parameters, Doses and Blood Levels of Calcineurin Inhibitors in Renal Transplant Patients. Indian J. Clin. Biochem. 2013, 28, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.O.; Barr, M.L.; Radovancevic, B.; Renlund, D.G.; Mentzer, R.M.; Smart, F.W.; Tolman, D.E.; Frazier, O.H.; Young, J.B.; Vanveldhuisen, P. A Randomized, Multicenter Comparison of Tacrolimus and Cyclosporine Immunosuppressive Regimens in Cardiac Transplantation: Decreased Hyperlipidemia and Hypertension with Tacrolimus. J. Heart Lung Transplant. 1999, 18, 336–345. [Google Scholar] [CrossRef]
- Morrisett, J.D.; Abdel-Fattah, G.; Hoogeveen, R.; Mitchell, E.; Ballantyne, C.M.; Pownall, H.J.; Opekun, A.R.; Jaffe, J.S.; Oppermann, S.; Kahan, B.D. Effects of Sirolimus on Plasma Lipids, Lipoprotein Levels, and Fatty Acid Metabolism in Renal Transplant Patients. J. Lipid Res. 2002, 43, 1170–1180. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, P.G.; Festuccia, W.T.; Houde, V.P.; St-Pierre, P.; BrÛlé, S.; Turcotte, V.; Côté, M.; Bellmann, K.; Marette, A.; Deshaies, Y. Major Involvement of MTOR in the PPARγ-Induced Stimulation of Adipose Tissue Lipid Uptake and Fat Accretion. J. Lipid Res. 2012, 53, 1117–1125. [Google Scholar] [CrossRef] [Green Version]
- Ai, D.; Chen, C.; Han, S.; Ganda, A.; Murphy, A.J.; Haeusler, R.; Thorp, E.; Accili, D.; Horton, J.D.; Tall, A.R. Regulation of Hepatic LDL Receptors by MTORC1 and PCSK9 in Mice. J. Clin. Investig. 2012, 122, 1262–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurdi, A.; Martinet, W.; de Meyer, G.R.Y. MTOR Inhibition and Cardiovascular Diseases: Dyslipidemia and Atherosclerosis. Transplantation 2018, 102, S44–S46. [Google Scholar] [CrossRef] [PubMed]
- Harari, E.; Guo, L.; Smith, S.L.; Paek, K.H.; Fernandez, R.; Sakamoto, A.; Mori, H.; Kutyna, M.D.; Habib, A.; Torii, S.; et al. Direct Targeting of the MTOR (Mammalian Target of Rapamycin) Kinase Improves Endothelial Permeability in Drug-Eluting Stents-Brief Report. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2217–2224. [Google Scholar] [CrossRef] [PubMed]
- Porrini, E.L.; Díaz, J.M.; Moreso, F.; Mallén, P.I.D.; Torres, I.S.; Ibernon, M.; Bayés-Genís, B.; Benitez-Ruiz, R.; Lampreabe, I.; Lauzurrica, R.; et al. Clinical Evolution of Post-Transplant Diabetes Mellitus. Nephrol. Dial. Transplant. 2016, 31, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Einollahi, B.; Motalebi, M.; Salesi, M.; Ebrahimi, M.; Taghipour, M. The Impact of Cytomegalovirus Infection on New-Onset Diabetes Mellitus after Kidney Transplantation: A Review on Current Findings. J. Nephropathol. 2014, 3, 139–148. [Google Scholar] [CrossRef]
- Soleimanpour, S.A.; Crutchlow, M.F.; Ferrari, A.M.; Raum, J.C.; Groff, D.N.; Rankin, M.M.; Liu, C.; de León, D.D.; Naji, A.; Kushner, J.A.; et al. Calcineurin Signaling Regulates Human Islet β-Cell Survival. JBC 2010, 285, 40050–40059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, A.C.; Woodroffe, R.C.; Taylor, R.S.; Chapman, J.R.; Craig, J.C. Tacrolimus versus Ciclosporin as Primary Immunosuppression for Kidney Transplant Recipients: Meta-Analysis and Meta-Regression of Randomised Trial Data. Br. Med. J. 2005, 331, 810–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wissing, K.M.; Abramowicz, D.; Weekers, L.; Budde, K.; Rath, T.; Witzke, O.; Broeders, N.; Kianda, M.; Kuypers, D.R.J. Prospective Randomized Study of Conversion from Tacrolimus to Cyclosporine A to Improve Glucose Metabolism in Patients with Posttransplant Diabetes Mellitus after Renal Transplantation. Am. J. Transplant. 2018, 18, 1726–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Rodríguez, A.E.; Porrini, E.; Hornum, M.; Donate-Correa, J.; Morales-Febles, R.; Ramchand, S.K.; Lima, M.X.M.; Torres, A. Post-Transplant Diabetes Mellitus and Prediabetes in Renal Transplant Recipients: An Update. Nephron 2021, 145, 317–329. [Google Scholar] [CrossRef]
- Chakkera, H.A.; Kudva, Y.; Kaplan, B. Calcineurin Inhibitors: Pharmacologic Mechanisms Impacting Both Insulin Resistance and Insulin Secretion Leading to Glucose Dysregulation and Diabetes Mellitus. Clin. Pharmacol. Ther. 2017, 101, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Rovira, J.; Ramírez-Bajo, M.J.; Banon-Maneus, E.; Moya-Rull, D.; Ventura-Aguiar, P.; Hierro-Garcia, N.; Lazo-Rodriguez, M.; Revuelta, I.; Torres, A.; Oppenheimer, F.; et al. MTOR Inhibition: Reduced Insulin Secretion and Sensitivity in a Rat Model of Metabolic Syndrome. Transplant. Direct 2016, 2, E65. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rodriguez, A.E.; Donate-Correa, J.; Rovira, J.; Cuesto, G.; Luis-Ravelo, D.; Fernandes, M.X.; Acevedo-Arozena, A.; Diekmann, F.; Acebes, A.; Torres, A.; et al. Inhibition of the MTOR Pathway: A New Mechanism of β Cell Toxicity Induced by Tacrolimus. Am. J. Transplant. 2019, 19, 3240–3249. [Google Scholar] [CrossRef] [PubMed]
- Faucher, Q.; Jardou, M.; Brossier, C.; Picard, N.; Marquet, P.; Lawson, R. Is Intestinal Dysbiosis-Associated With Immunosuppressive Therapy a Key Factor in the Pathophysiology of Post-Transplant Diabetes Mellitus? Front. Endocrinol. 2022, 13, 898878. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.; Moore, R.; Baboolal, K. Influence of Lifestyle Modification in Renal Transplant Recipients with Postprandial Hyperglycemia. Transplantation 2008, 85, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, s1–s127. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chong, A.; Carey, S. Dietary Interventions on the Prevention and Management of Diabetes in Post-Kidney Transplantation—A Systematic Review. Nephrology 2022, 27, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Grzejszczak, P.; Wilimborek, J.; Bednarkiewicz, J.; Makówka, A.; Kurnatowska, I. Vitamin D Metabolites, Body Composition, and Nutritional Status in Patients in the Long Term After Kidney Transplantation. Ann. Transplant. 2022, 27, e936009. [Google Scholar] [CrossRef] [PubMed]
- Jean, G.; Souberbielle, J.C.; Chazot, C. Vitamin D in Chronic Kidney Disease and Dialysis Patients. Nutrients 2017, 9, 328. [Google Scholar] [CrossRef]
- Lee, S.W.; Russell, J.; Avioli, L.V. 25-Hydroxycholecalciferol to 1,25-Dihydroxycholecalciferol: Conversion Impaired by Systemic Metabolic Acidosis. Science 1977, 195, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.H.; Patel, S.R.; Young, E.W.; Vanholder, R. Effects of Purine Derivatives on Calcitriol Metabolism in Rats. Am. J. Physiol. 1991, 260, F596–F601. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.L.; Emond, J.A.; Flatt, S.W.; Heath, D.D.; Karanja, N.; Pakiz, B.; Sherwood, N.E.; Thomson, C.A. Weight Loss Is Associated with Increased Serum 25-Hydroxyvitamin D in Overweight or Obese Women. Obesity 2012, 20, 2296–2301. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Peng, M.; Chen, S.; Wu, S.; Zhang, W. Vitamin D Deficiency Is Associated with Dyslipidemia: A Cross-Sectional Study in 3788 Subjects. Curr. Med. Res. Opin. 2019, 35, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Obi, Y.; Hamano, T.; Ichimaru, N.; Tomida, K.; Matsui, I.; Fujii, N.; Okumi, M.; Kaimori, J.Y.; Yazawa, K.; Kokado, Y.; et al. Vitamin D Deficiency Predicts Decline in Kidney Allograft Function: A Prospective Cohort Study. J. Clin. Endocr. 2014, 99, 527–535. [Google Scholar] [CrossRef]
- Silaghi, C.N.; Ilyés, T.; Filip, V.P.; Farcaș, M.; van Ballegooijen, A.J.; Crăciun, A.M. Vitamin k Dependent Proteins in Kidney Disease. Int. J. Mol. Sci. 2019, 20, 1571. [Google Scholar] [CrossRef] [Green Version]
- Roumeliotis, S.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Association of the Inactive Circulating Matrix Gla Protein with Vitamin K Intake, Calcification, Mortality, and Cardiovascular Disease: A Review. Int. J. Mol. Sci. 2019, 20, 628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keyzer, C.A.; Vermeer, C.; Joosten, M.M.; Knapen, M.H.J.; Drummen, N.E.A.; Navis, G.; Bakker, S.J.L.; de Borst, M.H. Vitamin K Status and Mortality after Kidney Transplantation: A Cohort Study. Am. J. Kidney Dis. 2015, 65, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, A.C.; Pavlic, A.; Petsophonsakul, P.; Halder, M.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K2 Needs an RDI Separate from Vitamin K1. Nutrients 2020, 12, 1852. [Google Scholar] [CrossRef]
- Lim, A.K.H.; Kansal, A.; Kanellis, J. Factors Associated with Anaemia in Kidney Transplant Recipients in the First Year after Transplantation: A Cross-Sectional Study. BMC Nephrol. 2018, 19, 252. [Google Scholar] [CrossRef]
- Briguglio, M.; Hrelia, S.; Malaguti, M.; Lombardi, G.; Riso, P.; Porrini, M.; Perazzo, P.; Banfi, G. The Central Role of Iron in Human Nutrition: From Folk to Contemporary Medicine. Nutrients 2020, 12, 1761. [Google Scholar] [CrossRef]
- Alfieri, C.M.; Binda, V.; Gandolfo, M.T.; Cresseri, D.; Campise, M.R.; Tripodi, F.; Zanoni, F.; Malvica, S.; Gendia, M.; Molinari, P.; et al. Elevated Levels of Uric Acid Are Related to Long Term Graft Loss in a Cohort of Kidney Transplanted Patients. Nephrol. Dial. Transplant. 2018, 33, i579. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Santos, A.B.; Neogi, T. Management of Gout and Hyperuricemia in CKD. Am. J. Kidney Dis. 2017, 70, 422–439. [Google Scholar] [CrossRef]
- Zawiasa, A.; Nowicki, M. Acute Effects of Fructose Consumption on Uric Acid and Plasma Lipids in Patients with Impaired Renal Function. Metabolism 2013, 62, 1462–1469. [Google Scholar] [CrossRef]
- Fong, J.V.N.; Moore, L.W. Nutrition Trends in Kidney Transplant Recipients: The Importance of Dietary Monitoring and Need for Evidence-Based Recommendations. Front. Med. 2018, 5, 302. [Google Scholar] [CrossRef] [PubMed]
- Pulgar, E.V.; Ibarra-Ramírez, F.; Figueroa-Núñez, B.; Alonso, C.G.; Rodríguez-Orozco, A.R. Orozco Macronutrients Consumption and Lifestyle in Patients Whose Received Transplant of Kidney in The Mexican Institute for Social Security. Nutr. Hosp. 2010, 25, 107–119. [Google Scholar]
- Kluch, M.; Kurnatowska, I.; Matera, K.; Łokieć, K.; Puzio, T.; Czkwianianc, E.; Grzelak, P. Nutrition Trends in Patients Over the Long Term After Kidney Transplantation. Transplant. Proc. 2020, 52, 2357–2362. [Google Scholar] [CrossRef] [PubMed]
- el Haggan, W.; Vendrely, B.; Chauveau, P.; Barthe, N.; Castaing, F.; Berger, F.; de Précigout, V.; Potaux, L.; Aparicio, M. Early Evolution of Nutritional Status and Body Composition after Kidney Transplantation. Am. J. Kidney Dis. 2002, 40, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Moreau, K.; Desseix, A.; Germain, C.; Merville, P.; Couzi, L.; Thiébaut, R.; Chauveau, P. Evolution of Body Composition Following Successful Kidney Transplantation Is Strongly Influenced by Physical Activity: Results of the CORPOS Study. BMC Nephrol. 2021, 22, 31. [Google Scholar] [CrossRef]
- Teger, N.B. Owner’s Manual: Nutrition Care for Your Kidney Transplant. J. Ren. Nutr. 2019, 29, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Trombetti, A.; Richert, L.; Hadaya, K.; Graf, J.D.; Herrmann, F.R.; Ferrari, S.L.; Martin, P.Y.; Rizzoli, R. Early Post-Transplantation Hypophosphatemia Is Associated with Elevated FGF-23 Levels. Eur. J. Endocrinol. 2011, 164, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Halloran, P.F.; Fairchild, R.L.; Sandy Feng, U.; Bruce Kaplan, U.; Mark Barr, U.L.; John, U.O.; Hughes, G.; Becker, B.; Emily Blumberg, U.; Andrew Bradley, U.J.; et al. KDIGO 2009 Transplant Recipient Guideline. Am. J. Transplant. 2009, 9, 697–708. [Google Scholar]
- Rizk, J.G.; Lazo, J.G.; Quan, D.; Gabardi, S.; Rizk, Y.; Streja, E.; Kovesdy, C.P.; Kalantar-Zadeh, K. Mechanisms and Management of Drug-Induced Hyperkalemia in Kidney Transplant Patients. Rev. Endocr. Metab. Disord. 2021, 22, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Cupisti, A.; Kovesdy, C.P.; D’Alessandro, C.; Kalantar-Zadeh, K. Dietary Approach to Recurrent or Chronic Hyperkalaemia in Patients with Decreased Kidney Function. Nutrients 2018, 10, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellizzi, V.; Cupisti, A.; Capitanini, A.; Calella, P.; D’Alessandro, C. Physical Activity and Renal Transplantation. Kidney Blood Press. Res. 2014, 39, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Tantisattamo, E.; Kalantar-Zadeh, K.; Halleck, F.; Duettmann, W.; Naik, M.; Budde, K. Novel Approaches to Sarcopenic Obesity and Weight Management before and after Kidney Transplantation. Curr. Opin. Nephrol. Hypertens. 2021, 30, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Akbulut, G.; Gencer-Bingol, F. Medical Nutritional Therapy for Renal Transplantation in the COVID-19 Pandemic. World J. Transplant. 2021, 11, 212–219. [Google Scholar] [CrossRef]
- Baker, R.J.; Mark, P.B.; Patel, R.K.; Stevens, K.K.; Palmer, N. Renal Association Clinical Practice Guideline in Post-Operative Care in the Kidney Transplant Recipient. BMC Nephrol. 2017, 18, 174. [Google Scholar] [CrossRef] [Green Version]
- Nielens, H.; Lejeune, T.M.; Lalaoui, A.; Squifflet, J.P.; Pirson, Y.; Goffin, E. Increase of Physical Activity Level after Successful Renal Transplantation: A 5 Year Follow-up Study. Nephrol. Dial. Transplant. 2001, 16, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calella, P.; Hernández-Sánchez, S.; Garofalo, C.; Ruiz, J.R.; Carrero, J.J.; Bellizzi, V. Exercise Training in Kidney Transplant Recipients: A Systematic Review. J. Nephrol. 2019, 32, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Chadban, S.; Chan, M.; Fry, K.; Patwardhan, A.; Ryan, C.; Trevillian, P.; Westgarth, F. Protein Requirement in Adult Kidney Transplant Recipients. Nephrology 2010, 15, S68–S71. [Google Scholar] [CrossRef] [PubMed]
- Veroux, M.; Corona, D.; Sinagra, N.; Tallarita, T.; Ekser, B.; Giaquinta, A.; Zerbo, D.; Veroux, P. Nutrition in Kidney Transplantation. Int. J. Artif. Organs 2013, 36, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Kurnatowska, I.; Królikowski, J.; Jesionowska, K.; Marczak, A.; Krajewska, J.; Zbróg, Z.; Nowicki, M. Prevalence of Arterial Hypertension and the Number and Classes of Antihypertensive Drugs Prescribed for Patients Late after Kidney Transplantation. Ann. Transplant. 2012, 17, 50–57. [Google Scholar] [CrossRef]
- Osté, M.C.J.; Gomes-Neto, A.W.; Corpeleijn, E.; Gans, R.O.B.; de Borst, M.H.; van den Berg, E.; Soedamah-Muthu, S.S.; Kromhout, D.; Navis, G.J.; Bakker, S.J.L. Dietary Approach to Stop Hypertension (DASH) Diet and Risk of Renal Function Decline and All-Cause Mortality in Renal Transplant Recipients. Am. J. Transplant. 2018, 18, 2523–2533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes-Neto, A.W.; Osté, M.C.J.; Sotomayor, C.G.; van den Berg, E.; Geleijnse, J.M.; Berger, S.P.; Gans, R.O.B.; Bakker, S.J.L.; Navis, G.J. Mediterranean Style Diet and Kidney Function Loss in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2020, 15, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Minelli, P.; Montinari, M.R. The Mediterranean Diet and Cardioprotection: Historical Overview and Current Research. J. Multidiscip. Healthc. 2019, 12, 805–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldfarb Cyrino, L.; Galpern, J.; Moore, L.; Borgi, L.; Riella, L.V. A Narrative Review of Dietary Approaches for Kidney Transplant Patients. Kidney Int. Rep. 2021, 6, 1764–1774. [Google Scholar] [CrossRef] [PubMed]
- Vučković, M.; Radić, J.; Gelemanović, A.; Nenadić, D.B.; Kolak, E.; Radić, M. Associations between Depression, Nutritional Status and Mediterranean Diet in Dalmatian Kidney Transplant Recipients. Nutrients 2021, 13, 4479. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Moore, L.W. Does Kidney Longevity Mean Healthy Vegan Food and Less Meat or Is Any Low-Protein Diet Good Enough? J. Ren. Nutr. 2019, 29, 79–81. [Google Scholar] [CrossRef] [Green Version]
- Chauveau, P.; Combe, C.; Fouque, D.; Aparicio, M. Vegetarianism: Advantages and Drawbacks in Patients with Chronic Kidney Diseases. J. Ren. Nutr. 2013, 23, 399–405. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górska, M.; Kurnatowska, I. Nutrition Disturbances and Metabolic Complications in Kidney Transplant Recipients: Etiology, Methods of Assessment and Prevention—A Review. Nutrients 2022, 14, 4996. https://doi.org/10.3390/nu14234996
Górska M, Kurnatowska I. Nutrition Disturbances and Metabolic Complications in Kidney Transplant Recipients: Etiology, Methods of Assessment and Prevention—A Review. Nutrients. 2022; 14(23):4996. https://doi.org/10.3390/nu14234996
Chicago/Turabian StyleGórska, Monika, and Ilona Kurnatowska. 2022. "Nutrition Disturbances and Metabolic Complications in Kidney Transplant Recipients: Etiology, Methods of Assessment and Prevention—A Review" Nutrients 14, no. 23: 4996. https://doi.org/10.3390/nu14234996
APA StyleGórska, M., & Kurnatowska, I. (2022). Nutrition Disturbances and Metabolic Complications in Kidney Transplant Recipients: Etiology, Methods of Assessment and Prevention—A Review. Nutrients, 14(23), 4996. https://doi.org/10.3390/nu14234996