Testosterone Deficiency as One of the Major Endocrine Disorders in Chronic Kidney Disease
Abstract
:1. Introduction
2. Testosterone Metabolism
3. Clinical Function of Testosterone
3.1. Testosterone and the Lipid Profile
3.2. Testosterone and the Insulin Sensitivity
3.3. Testosterone and the Cardiovascular System
3.4. Testosterone and the Body Mass
3.5. Testosterone and the Immune Processes
3.6. Testosterone and the Balance of Bone and Muscle Mass
3.7. Testosterone and the Erythropoiesis
3.8. Testosterone and the Nervous System
4. Hypogonadism in Chronic Kidney Disease
5. Hypogonadism after Renal Transplantation
6. Testosterone Supplementation
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ammirati, A.L. Chronic Kidney Disease. Rev. Assoc. Med. Bras. 2020, 66, s3–s9. [Google Scholar] [CrossRef] [PubMed]
- Handelsman, D.J. Hypothalamic-Pituitary Gonadal Dysfunction in Renal Failure, Dialysis and Renal Transplantation. Endocr. Rev. 1985, 6, 151–182. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.B.; Norris, K.; Modi, N.; Sinha-Hikim, I.; Shen, R.; Davidson, T.; Bhasin, S. Pharmacokinetics of a Transdermal Testosterone System in Men with End Stage Renal Disease Receiving Maintenance Hemodialysis and Healthy Hypogonadal Men. J. Clin. Endocrinol. Metab. 2001, 86, 2437–2445. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, I.; Ounissi, M.; Talbi, E.; Azaiez, S.; Bacha, M.M.; Ben Abdallah, T. Prevalence and risk factors of hypogonadism in men with chronic renal failure. Tunis. Med. 2020, 98, 138–143. [Google Scholar] [PubMed]
- Skiba, R.; Matyjek, A.; Syryło, T.; Niemczyk, S.; Rymarz, A. Advanced Chronic Kidney Disease is a Strong Predictor of Hypogonadism and is Associated with Decreased Lean Tissue Mass. Int. J. Nephrol. Renov. Dis. 2020, 13, 319–327. [Google Scholar] [CrossRef]
- Khurana, K.K.; Navaneethan, S.D.; Arrigain, S.; Schold, J.D.; Nally, J.V., Jr.; Shoskes, D.A. Serum Testosterone Levels and Mortality in Men with CKD Stages 3–4. Am. J. Kidney Dis. 2014, 64, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.H.; Saad, F. The effects of testosterone on risk factors for, and the mediators of, the atherosclerotic process. Atherosclerosis 2009, 207, 318–327. [Google Scholar] [CrossRef]
- Kapoor, D.; Goodwin, E.; Channer, K.S.; Jones, T.H. Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur. J. Endocrinol. 2006, 154, 899–906. [Google Scholar] [CrossRef]
- van den Beld, A.W.; De Jong, F.H.; Grobbee, D.E.; Pols, H.A.P.; Lamberts, S.W.J. Measures of Bioavailable Serum Testosterone and Estradiol and Their Relationships with Muscle Strength, Bone Density, and Body Composition in Elderly Men. J. Clin. Endocrinol. Metab. 2000, 85, 3276–3282. [Google Scholar] [CrossRef] [Green Version]
- Gruenewald, D.A.; Matsumoto, A.M. Testosterone Supplementation Therapy for Older Men: Potential Benefits and Risks. J. Am. Geriatr. Soc. 2003, 51, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Laaksonen, D.E.; Niskanen, L.; Punnonen, K.; Nyyssönen, K.; Tuomainen, T.-P.; Valkonen, V.-P.; Salonen, R.; Salonen, J.T. Testosterone and Sex Hormone–Binding Globulin Predict the Metabolic Syndrome and Diabetes in Middle-Aged Men. Diabetes Care 2004, 27, 1036–1041. [Google Scholar] [CrossRef] [Green Version]
- Laughlin, G.A.; Barrett-Connor, E.; Bergstrom, J. Low Serum Testosterone and Mortality in Older Men. J. Clin. Endocrinol. Metab. 2008, 93, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Haring, R.; Völzke, H.; Steveling, A.; Krebs, A.; Felix, S.B.; Schöfl, C.; Dörr, M.; Nauck, M.; Wallaschofski, H. Low serum testosterone levels are associated with increased risk of mortality in a population-based cohort of men aged 20–79. Eur. Heart J. 2010, 31, 1494–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peces, R.; Horcajada, C.; López-Novoa, J.; Frutos, M.; Casado, S.; Hernando, L. Hyperprolactinemia in Chronic Renal Failure: Impaired Responsiveness to Stimulation and Suppression. Normalization after transplantation. Nephron 1981, 28, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.D.; McMahon, C.G.; Guay, A.T.; Morgentaler, A.; Althof, S.E.; Becher, E.F.; Bivalacqua, T.J.; Burnett, A.L.; Buvat, J.; El Meliegy, A.; et al. The International Society for Sexual Medicine’s Process of Care for the Assessment and Management of Testosterone Deficiency in Adult Men. J. Sex. Med. 2015, 12, 1660–1686. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.; Luger, A.; Hörl, W.H. Sexual hormone abnormalities in male patients with renal failure. Nephrol. Dial. Transplant. 2002, 17, 368–371. [Google Scholar] [CrossRef] [Green Version]
- Turner, H.E.; Wass, J.A.H. Gonadal function in men with chronic illness. Clin. Endocrinol. 1997, 47, 379–403. [Google Scholar] [CrossRef]
- Kuczera, P.; Adamczak, M.; Wiecek, A. Changes of Serum Total and Free Testosterone Concentrations in Male Chronic Hemodialysis Patients with Secondary Hyperparathyroidism in Response to Cinacalcet Treatment. Kidney Blood Press. Res. 2016, 41, 1–8. [Google Scholar] [CrossRef]
- Delong, M.; Logan, J.L.; Yong, K.-C.; Lien, Y.-H.H. Renin-angiotensin blockade reduces serum free testosterone in middle-aged men on haemodialysis and correlates with erythropoietin resistance. Nephrol. Dial. Transplant. 2005, 20, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Corona, G.; Boddi, V.; Balercia, G.; Rastrelli, G.; De Vita, G.; Sforza, A.; Forti, G.; Mannucci, E.; Maggi, M. The Effect of Statin Therapy on Testosterone Levels in Subjects Consulting for Erectile Dysfunction. J. Sex. Med. 2010, 7, 1547–1556. [Google Scholar] [CrossRef]
- Zitzmann, M. Testosterone, mood, behaviour and quality of life. Andrology 2020, 8, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, H.; Zhang, X.; Zhang, B.; Wang, F.; Wang, C.; Zhao, M.; Yu, C.; Gao, L.; Zhao, J.; et al. The relationship between endogenous testosterone and lipid profile in middle-aged and elderly Chinese men. Eur. J. Endocrinol. 2014, 170, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Haffner, S.M.; Mykkänen, L.; Valdez, R.A.; Katz, M.S. Relationship of sex hormones to lipids and lipoproteins in nondiabetic men. J. Clin. Endocrinol. Metab. 1993, 77, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
- Dobs, A.S.; Bachorik, P.S.; Arver, S.; Meikle, A.W.; Sanders, S.W.; Caramelli, K.E.; Mazer, N.A. Interrelationships among Lipoprotein Levels, Sex Hormones, Anthropometric Parameters, and Age in Hypogonadal Men Treated for 1 Year with a Permeation-Enhanced Testosterone Transdermal System1. J. Clin. Endocrinol. Metab. 2001, 86, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Giagulli, V.A.; Maseroli, E.; Vignozzi, L.; Aversa, A.; Zitzmann, M.; Saad, F.; Mannucci, E.; Maggi, M. Testosterone supplementation and body composition: Results from a meta-analysis of observational studies. J. Endocrinol. Investig. 2016, 39, 967–981. [Google Scholar] [CrossRef]
- Erenpreiss, J.; Fodina, V.; Pozarska, R.; Zubkova, K.; Dudorova, A.; Pozarskis, A. Prevalence of testosterone deficiency among aging men with and without morbidities. Aging Male 2019, 23, 901–905. [Google Scholar] [CrossRef]
- Yeap, B.B. Are declining testosterone levels a major risk factor for ill-health in aging men? Int. J. Impot. Res. 2008, 21, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, L.B.; Adnan, E.; Windarwati; Mulyono, B. Insulin resistance and testosterone level in Indonesian young adult males. Rom. J. Intern. Med. 2020, 58, 93–98. [Google Scholar] [CrossRef]
- Selvin, E.; Feinleib, M.; Zhang, L.; Rohrmann, S.; Rifai, N.; Nelson, W.G.; Dobs, A.; Basaria, S.; Golden, S.H.; Platz, E.A. Androgens and diabetes in men: Results from the Third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 2007, 30, 234–238, Erratum in Diabetes Care 2007, 30, 1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bain, J. The many faces of testosterone. Clin. Interv. Aging 2008, 2, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Wittert, G.; Bracken, K.; Robledo, K.P.; Grossmann, M.; Yeap, B.B.; Handelsman, D.J.; Stuckey, B.; Conway, A.; Inder, W.; McLachlan, R.; et al. Testosterone treatment to prevent or revert type 2 diabetes in men enrolled in a lifestyle programme (T4DM): A randomised, double-blind, placebo-controlled, 2-year, phase 3b trial. Lancet Diabetes Endocrinol. 2021, 9, 32–45. [Google Scholar] [CrossRef]
- Khaw, K.T.; Barrett-Connor, E. Blood pressure and endogenous testosterone in men: An inverse relationship. J. Hypertens. 1988, 6, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, M.C.; Wang, L.; Buring, J.E.; Manson, J.E.; Forman, J.P.; Sesso, H.D. Association between sex hormones and ambulatory blood pressure. J. Hypertens. 2018, 36, 2237–2244. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.D.; Pugh, P.J.; Jones, T.H.; Channer, K.S. The vasodilatory action of testosterone: A potassium-channel opening or a calcium antagonistic action? Br. J. Pharmacol. 2003, 138, 733–744. [Google Scholar] [CrossRef] [Green Version]
- Scragg, J.L.; Jones, R.D.; Channer, K.S.; Jones, T.; Peers, C. Testosterone is a potent inhibitor of L-type Ca2+ channels. Biochem. Biophys. Res. Commun. 2004, 318, 503–506. [Google Scholar] [CrossRef]
- Yu, J.; Akishita, M.; Eto, M.; Ogawa, S.; Son, B.-K.; Kato, S.; Ouchi, Y.; Okabe, T. Androgen Receptor-Dependent Activation of Endothelial Nitric Oxide Synthase in Vascular Endothelial Cells: Role of Phosphatidylinositol 3-Kinase/Akt Pathway. Endocrinology 2010, 151, 1822–1828. [Google Scholar] [CrossRef] [Green Version]
- Zhabyeyev, P.; Gheblawi, M.; Oudit, G.Y. Testosterone and cardiac remodeling: Why are older men susceptible to heart disease? Am. J. Physiol. Circ. Physiol. 2019, 316, H765–H767. [Google Scholar] [CrossRef]
- Magnani, J.W.; Moser, C.B.; Murabito, J.M.; Sullivan, L.M.; Wang, N.; Ellinor, P.T.; Vasan, R.S.; Benjamin, E.J.; Coviello, A.D. Association of Sex Hormones, Aging, and Atrial Fibrillation in Men: The Framingham Heart Study. Circ. Arrhythmia Electrophysiol. 2014, 7, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Traish, A.M.; Saad, F.; Feeley, R.J.; Guay, A. The Dark Side of Testosterone Deficiency: III. Cardiovascular Disease. J. Androl. 2009, 30, 477–494. [Google Scholar] [CrossRef] [Green Version]
- English, K.M.; Steeds, R.P.; Jones, T.H.; Diver, M.J.; Channer, K.S. Low-Dose Transdermal Testosterone Therapy Improves Angina Threshold in Men with Chronic Stable Angina: A Randomized, Double-Blind, Placebo-Controlled Study. Circulation 2000, 102, 1906–1911. [Google Scholar] [CrossRef] [Green Version]
- Rosano, G.M.C.; Sheiban, I.; Massaro, R.; Pagnotta, P.; Marazzi, G.; Vitale, C.; Mercuro, G.; Volterrani, M.; Aversa, A.; Fini, M. Low testosterone levels are associated with coronary artery disease in male patients with angina. Int. J. Impot. Res. 2006, 19, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Hak, A.E.; Witteman, J.C.M.; De Jong, F.H.; Geerlings, M.I.; Hofman, A.; Pols, H.A.P. Low Levels of Endogenous Androgens Increase the Risk of Atherosclerosis in Elderly Men: The Rotterdam Study. J. Clin. Endocrinol. Metab. 2002, 87, 3632–3639. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; van den Beld, A.W.; Bots, M.L.; Grobbee, D.E.; Lamberts, S.W.; Van Der Schouw, Y.T. Endogenous Sex Hormones and Progression of Carotid Atherosclerosis in Elderly Men. Circulation 2004, 109, 2074–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona, G.G.; Rastrelli, G.; Di Pasquale, G.; Sforza, A.; Mannucci, E.; Maggi, M. Endogenous Testosterone Levels and Cardiovascular Risk: Meta-Analysis of Observational Studies. J. Sex. Med. 2018, 15, 1260–1271. [Google Scholar] [CrossRef] [PubMed]
- Phillips, G.B. Is Atherosclerotic Cardiovascular Disease an Endocrinological Disorder? The Estrogen-Androgen Paradox. J. Clin. Endocrinol. Metab. 2005, 90, 2708–2711. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, A.; Goemaere, S.; Kaufman, J.M. Testosterone, body composition and aging. J. Endocrinol. Investig. 1999, 22, 110–116. [Google Scholar] [PubMed]
- Wake, D.J.; Strand, M.; Rask, E.; Westerbacka, J.; Livingstone, D.E.W.; Soderberg, S.; Andrew, R.; Yki-Jarvinen, H.; Olsson, T.; Walker, B.R. Intra-adipose sex steroid metabolism and body fat distribution in idiopathic human obesity. Clin. Endocrinol. 2007, 66, 440–446. [Google Scholar] [CrossRef]
- Caprio, M.; Isidori, A.M.; Carta, A.R.; Moretti, C.; Dufau, M.L.; Fabbri, A. Expression of Functional Leptin Receptors in Rodent Leydig Cells. Endocrinology 1999, 140, 4939–4947. [Google Scholar] [CrossRef]
- Kalinchenko, S.Y.; Tishova, Y.A.; Mskhalaya, G.J.; Gooren, L.J.; Giltay, E.J.; Saad, F. Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: The double-blinded placebo-controlled Moscow study. Clin. Endocrinol. 2011, 73, 602–612, Erratum in Clin. Endocrinol. 2011, 75, 275. [Google Scholar] [CrossRef]
- Dudek, P.; Kozakowski, J.; Zgliczyński, W. The effects of testosterone replacement therapy in men with age-dependent hypogonadism on body composition, and serum levels of leptin, adiponectin, and C-reactive protein. Endokrynol. Polska 2020, 71, 382–387. [Google Scholar] [CrossRef]
- Cutolo, M.; Seriolo, B.; Villaggio, B.; Pizzorni, C.; Craviotto, C.; Sulli, A. Androgens and estrogens modulate the immune and inflammatory responses in rheumatoid arthritis. Ann. N. Y. Acad. Sci. 2002, 966, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Malkin, C.J.; Pugh, P.J.; Jones, R.D.; Kapoor, D.; Channer, K.S.; Jones, T.H. The Effect of Testosterone Replacement on Endogenous Inflammatory Cytokines and Lipid Profiles in Hypogonadal Men. J. Clin. Endocrinol. Metab. 2004, 89, 3313–3318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggio, M.; Basaria, S.; Ceda, G.P.; Ble, A.; Ling, S.M.; Bandinelli, S.; Valenti, G.; Ferrucci, L. The relationship between testosterone and molecular markers of inflammation in older men. J. Endocrinol. Investig. 2005, 28, 116–119. [Google Scholar] [PubMed]
- Zhang, X.; Zhao, H.; Horney, J.; Johnson, N.; Saad, F.; Haider, K.S.; Haider, A.; Xu, X. Testosterone Deficiency, Long-Term Testosterone Therapy, and Inflammation. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Trigunaite, A.; Dimo, J.; Jørgensen, T.N. Suppressive effects of androgens on the immune system. Cell. Immunol. 2015, 294, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Page, S.T.; Plymate, S.R.; Bremner, W.J.; Matsumoto, A.M.; Hess, D.L.; Lin, D.W.; Amory, J.K.; Nelson, P.S.; Wu, J.D. Effect of medical castration on CD4+CD25+ T cells, CD8+ T cell IFN-γ expression, and NK cells: A physiological role for testosterone and/or its metabolites. Am. J. Physiol.-Endocrinol. Metab. 2006, 290, E856–E863. [Google Scholar] [CrossRef] [Green Version]
- Shabsigh, R.; Katz, M.; Yan, G.; Makhsida, N. Cardiovascular Issues in Hypogonadism and Testosterone Therapy. Am. J. Cardiol. 2005, 96, 67M–72M. [Google Scholar] [CrossRef]
- Wiren, K.M.; Toombs, A.R.; Semirale, A.A.; Zhang, X. Osteoblast and osteocyte apoptosis associated with androgen action in bone: Requirement of increased Bax/Bcl-2 ratio. Bone 2006, 38, 637–651. [Google Scholar] [CrossRef]
- Kasperk, C.; Fitzsimmons, R.; Strong, D.; Mohan, S.; Jennings, J.; Wergedal, J.; Baylink, D. Studies of the Mechanism by which Androgens Enhance Mitogenesis and Differentiation in Bone Cells. J. Clin. Endocrinol. Metab. 1990, 71, 1322–1329. [Google Scholar] [CrossRef]
- Clarke, B.L.; Khosla, S. Androgens and bone. Steroids 2009, 74, 296–305. [Google Scholar] [CrossRef]
- Fink, H.A.; Ewing, S.K.; Ensrud, K.E.; Barrett-Connor, E.; Taylor, B.C.; Cauley, J.A.; Orwoll, E.S. Association of Testosterone and Estradiol Deficiency with Osteoporosis and Rapid Bone Loss in Older Men. J. Clin. Endocrinol. Metab. 2006, 91, 3908–3915. [Google Scholar] [CrossRef] [PubMed]
- Baillie, S.P.; Davison, C.E.; Johnson, F.J.; Francis, R.M. Pathogenesis of Vertebral Crush Fractures in Men. Age Ageing 1992, 21, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Stanley, H.L.; Schmitt, B.P.; Poses, R.M.; Deiss, W.P. Does Hypogonadism Contribute to the Occurrence of a Minimal Trauma Hip Fracture in Elderly Men? J. Am. Geriatr. Soc. 1991, 39, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Katznelson, L.; Finkelstein, J.S.; Schoenfeld, D.A.; Rosenthal, D.I.; Anderson, E.J.; Klibanski, A. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J. Clin. Endocrinol. Metab. 1996, 81, 4358–4365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, P.J.; Peachey, H.; Berlin, J.A.; Hannoush, P.; Haddad, G.; Dlewati, A.; Santanna, J.; Loh, L.; Lenrow, D.A.; Holmes, J.H.; et al. Effects of Testosterone Replacement in Hypogonadal Men. J. Clin. Endocrinol. Metab. 2000, 85, 2670–2677. [Google Scholar] [CrossRef] [PubMed]
- Colleluori, G.; Aguirre, L.; Napoli, N.; Qualls, C.; Villareal, D.T.; Armamento-Villareal, R. Testosterone Therapy Effects on Bone Mass and Turnover in Hypogonadal Men with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2021, 106, e3058–e3068. [Google Scholar] [CrossRef]
- Shores, M.M.; Moceri, V.M.; Gruenewald, D.A.; Brodkin, K.I.; Matsumoto, A.M.; Kivlahan, D.R. Low Testosterone Is Associated with Decreased Function and Increased Mortality Risk: A Preliminary Study of Men in a Geriatric Rehabilitation Unit. J. Am. Geriatr. Soc. 2004, 52, 2077–2081. [Google Scholar] [CrossRef]
- Khaw, K.-T.; Dowsett, M.; Folkerd, E.; Bingham, S.; Wareham, N.; Luben, R.; Welch, A.; Day, N. Endogenous Testosterone and Mortality Due to All Causes, Cardiovascular Disease, and Cancer in Men: European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) Prospective Population Study. Circulation 2007, 116, 2694–2701. [Google Scholar] [CrossRef] [Green Version]
- Moriyama, Y.; Fisher, J.W. Effects of testosterone and erythropoietin on erythroid colony formation in human bone marrow cultures. Blood 1975, 45, 665–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rishpon-Meyerstein, N.; Kilbridge, T.; Simone, J.; Fried, W. The effect of testosterone on erythropoietin levels in anemic patients. Blood 1968, 31, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Teruel, J.L.; Marcen, R.; Navarro, J.F.; Villafruela, J.J.; Fernández Lucas, M.; Liaño, F.; Ortuno, J. Evolution of Serum Erythropoietin after Androgen Administration to Hemodialysis Patients: A Prospective Study. Nephron 1995, 70, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Hennigar, S.R.; Berryman, C.E.; Harris, M.N.; Karl, J.P.; Lieberman, H.R.; McClung, J.P.; Rood, J.C.; Pasiakos, S.M. Testosterone Administration During Energy Deficit Suppresses Hepcidin and Increases Iron Availability for Erythropoiesis. J. Clin. Endocrinol. Metab. 2020, 105, e1316–e1321. [Google Scholar] [CrossRef] [Green Version]
- Valancy, D.; Blachman-Braun, R.; Kuchakulla, M.; Nackeeran, S.; Ramasamy, R. Association between low testosterone and anaemia: Analysis of the National Health and Nutrition Examination Survey. Andrologia 2021, 53, e14210. [Google Scholar] [CrossRef] [PubMed]
- Coviello, A.D.; Kaplan, B.; Lakshman, K.M.; Chen, T.; Singh, A.B.; Bhasin, S. Effects of Graded Doses of Testosterone on Erythropoiesis in Healthy Young and Older Men. J. Clin. Endocrinol. Metab. 2008, 93, 914–919. [Google Scholar] [CrossRef] [Green Version]
- Snyder, P.J.; Bhasin, S.; Cunningham, G.R.; Matsumoto, A.M.; Stephens-Shields, A.J.; Cauley, J.A.; Gill, T.M.; Barrett-Connor, E.; Swerdloff, R.S.; Wang, C.; et al. Lessons From the Testosterone Trials. Endocr. Rev. 2018, 39, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Janowsky, J.S.; Chavez, B.; Orwoll, E. Sex Steroids Modify Working Memory. J. Cogn. Neurosci. 2000, 12, 407–414. [Google Scholar] [CrossRef]
- Azad, N.; Pitale, S.; Barnes, W.E.; Friedman, N. Testosterone Treatment Enhances Regional Brain Perfusion in Hypogonadal Men. J. Clin. Endocrinol. Metab. 2003, 88, 3064–3068. [Google Scholar] [CrossRef] [Green Version]
- Moffat, S.D.; Zonderman, A.B.; Metter, E.J.; Kawas, C.; Blackman, M.R.; Harman, S.M.; Resnick, S.M. Free testosterone and risk for Alzheimer disease in older men. Neurology 2004, 62, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Sobki, S.H.; Al-Etah, H.; El Gezeery, A.; Al Khader, A. Effect of age on pituitary gonadal hormonal responses of saudi male patients on hemodialysis. Saudi J. Kidney Dis. Transplant. 2004, 15, 447–454. [Google Scholar] [PubMed]
- Holley, J.L. The hypothalamic-pituitary axis in men and women with chronic kidney disease. Adv. Chronic Kidney Dis. 2004, 11, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, L.; Raivio, T.; Laine, J.; Holmberg, C. Circulating luteinizing hormone receptor inhibitor(s) in boys with chronic renal failure. Kidney Int. 1997, 51, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrero, J.J.; Qureshi, A.R.; Nakashima, A.; Arver, S.; Parini, P.; Lindholm, B.; Bárány, P.; Heimbürger, O.; Stenvinkel, P. Prevalence and clinical implications of testosterone deficiency in men with end-stage renal disease. Nephrol. Dial. Transplant. 2010, 26, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Sahovic, V.; Sahovic, S.; Grosa, E.; Avdic, E.; Helac-Cvijetic, D.; Kukavica, N. Correlation between parathormone and sexual hormones in patients on haemodialysis. Med. Arch. 2012, 66, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Akbari, F.; Alavi, M.; Esteghamati, A.; Mehrsai, A.; Djaladat, H.; Zohrevand, R.; Pourmand, G. Effect of renal transplantation on sperm quality and sex hormone levels. Br. J. Urol. 2003, 92, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Mulhall, J.P.; Trost, L.W.; Brannigan, R.E.; Kurtz, E.G.; Redmon, J.B.; Chiles, K.A.; Lightner, D.J.; Miner, M.M.; Murad, M.H.; Nelson, C.J.; et al. Evaluation and Management of Testosterone Deficiency: AUA Guideline. J. Urol. 2018, 200, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, E.M.; Contreras, L.N.; Tumilasci, E.G.; Elbert, A.; Aguirre, E.C.; Aquilano, D.R.; Arregger, A.L. Salivary testosterone for the diagnosis of androgen deficiency in end-stage renal disease. Nephrol. Dial. Transplant. 2010, 26, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Gungor, O.; Kircelli, F.; Carrero, J.J.; Asci, G.; Toz, H.; Tatar, E.; Hur, E.; Sever, M.S.; Arinsoy, T.; Ok, E. Endogenous Testosterone and Mortality in Male Hemodialysis Patients: Is It the Result of Aging? Clin. J. Am. Soc. Nephrol. 2010, 5, 2018–2023. [Google Scholar] [CrossRef] [Green Version]
- Haring, R.; Nauck, M.; Völzke, H.; Endlich, K.; Lendeckel, U.; Friedrich, N.; Dörr, M.; Rettig, R.; Kroemer, H.K.; Wallaschofski, H. Low Serum Testosterone Is Associated with Increased Mortality in Men with Stage 3 or Greater Nephropathy. Am. J. Nephrol. 2011, 33, 209–217. [Google Scholar] [CrossRef]
- Kyriazis, J.; Tzanakis, I.; Stylianou, K.; Katsipi, I.; Moisiadis, D.; Papadaki, A.; Mavroeidi, V.; Kagia, S.; Karkavitsas, N.; Daphnis, E. Low serum testosterone, arterial stiffness and mortality in male haemodialysis patients. Nephrol. Dial. Transplant. 2011, 26, 2971–2977. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.; Lunenfeld, B. Investigation, treatment and monitoring of late-onset hypogonadism in males. Official recommendations of ISSAM. International Society for the Study of the Aging Male. Aging Male 2002, 5, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.J.; Qureshi, A.R.; Parini, P.; Arver, S.; Lindholm, B.; Bárány, P.; Heimbürger, O.; Stenvinkel, P. Low Serum Testosterone Increases Mortality Risk among Male Dialysis Patients. J. Am. Soc. Nephrol. 2009, 20, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Noheria, A.; Mosley, T.H., Jr.; Kullo, I.J. Association of Serum Osteoprotegerin with Left Ventricular Mass in African American Adults with Hypertension. Am. J. Hypertens. 2010, 23, 767–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydemir, H.; Guney, I.; Duran, C.; Gencer, V.; Akbayrak, S.; Kurku, H.; Akgul, Y.S.S.; Can, M.; Ecirli, S. The association of decreased testosterone with atherosclerosis and inflammation in male predialysis patients with chronic kidney disease. Clínica E Investig. Arterioscler. 2020, 32, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Karakitsos, D.; Patrianakos, A.P.; De Groot, E.; Boletis, J.; Karabinis, A.; Kyriazis, J.; Samonis, G.; Parthenakis, F.I.; Vardas, P.E.; Daphnis, E. Androgen Deficiency and Endothelial Dysfunction in Men with End-Stage Kidney Disease Receiving Maintenance Hemodialysis. Am. J. Nephrol. 2006, 26, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.I.; Sonmez, A.; Qureshi, A.R.; Saglam, M.; Stenvinkel, P.; Yaman, H.; Eyileten, T.; Caglar, K.; Oguz, Y.; Taslipinar, A.; et al. Endogenous Testosterone, Endothelial Dysfunction, and Cardiovascular Events in Men with Nondialysis Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 1617–1625. [Google Scholar] [CrossRef]
- Handelsman, D.J.; Spaliviero, J.A.; Turtle, J.R. Hypothalamic-Pituitary Function in Experimental Uremic Hypogonadism. Endocrinology 1985, 117, 1984–1995. [Google Scholar] [CrossRef]
- Doumouchtsis, K.K.; Kostakis, A.I.; Doumouchtsis, S.; Grapsa, E.I.; Passalidou, I.A.; Tziamalis, M.P.; Poulakou, M.V.; Vlachos, I.S.; Perrea, D.N. The effect of sexual hormone abnormalities on proximal femur bone mineral density in hemodialysis patients and the possible role of RANKL. Hemodial. Int. 2008, 12, 100–107. [Google Scholar] [CrossRef]
- Seeman, E.; Melton, L.J., 3rd; O’Fallon, W.M.; Riggs, B.L. Risk factors for spinal osteoporosis in men. Am. J. Med. 1983, 75, 977–983. [Google Scholar] [CrossRef]
- Doumouchtsis, K.K.; Perrea, D.N.; Doumouchtsis, S.K. The Impact of Sex Hormone Changes on Bone Mineral Deficit in Chronic Renal Failure. Endocr. Res. 2009, 34, 90–99. [Google Scholar] [CrossRef]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein–energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Koppe, L.; Fouque, D.; Kalantar-Zadeh, K. Kidney cachexia or protein-energy wasting in chronic kidney disease: Facts and numbers. J. Cachexia Sarcopenia Muscle 2019, 10, 479–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatino, A.; Cuppari, L.; Stenvinkel, P.; Lindholm, B.; Avesani, C.M. Sarcopenia in chronic kidney disease: What have we learned so far? J. Nephrol. 2020, 34, 1347–1372. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.J.; Miksza, J.; Yates, T.; Lightfoot, C.J.; Baker, L.A.; Watson, E.L.; Zaccardi, F.; Smith, A.C. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: A UK Biobank study. J. Cachex Sarcopenia Muscle 2021, 12, 586–598. [Google Scholar] [CrossRef]
- Nixon, A.C.; Bampouras, T.M.; Pendleton, N.; Woywodt, A.; Mitra, S.; Dhaygude, A. Frailty and chronic kidney disease: Current evidence and continuing uncertainties. Clin. Kidney J. 2017, 11, 236–245. [Google Scholar] [CrossRef] [Green Version]
- Daya, N.R.; Voskertchian, A.; Schneider, A.L.C.; Ballew, S.; DeMarco, M.M.; Coresh, J.; Appel, L.J.; Selvin, E.; Grams, M.E. Kidney Function and Fracture Risk: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Kidney Dis. 2016, 67, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.A.; Cordeiro, A.C.; Avesani, C.M.; Carrero, J.J.; Lindholm, B.; Amparo, F.C.; Amodeo, C.; Cuppari, L.; Kamimura, M.A. Sarcopenia in chronic kidney disease on conservative therapy: Prevalence and association with mortality. Nephrol. Dial. Transplant. 2015, 30, 1718–1725. [Google Scholar] [CrossRef] [Green Version]
- Rymarz, A.; Matyjek, A.; Gomółka, M.; Niemczyk, S. Lean Tissue Index and Body Cell Mass Can Be Predictors of Low Free Testosterone Levels in Men on Hemodialysis. J. Ren. Nutr. 2019, 29, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Cobo, G.; Gallar, P.; Di Gioia, C.; Lacalle, C.G.; Camacho, R.; Rodriguez, I.; Ortega, O.; Mon, C.; Vigil, A.; Lindholm, B.; et al. Hypogonadism associated with muscle atrophy, physical inactivity and ESA hyporesponsiveness in men undergoing haemodialysis. Nefrologia 2017, 37, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Kojo, G.; Yoshida, T.; Ohkawa, S.; Odamaki, M.; Kato, A.; Takita, T.; Maruyama, Y.; Kumagai, H. Association of serum total testosterone concentration with skeletal muscle mass in men under hemodialysis. Int. Urol. Nephrol. 2013, 46, 985–991. [Google Scholar] [CrossRef]
- Ferrucci, L.; Maggio, M.; Bandinelli, S.; Basaria, S.; Lauretani, F.; Ble, A.; Valenti, G.; Ershler, W.B.; Guralnik, J.M.; Longo, D.L. Low Testosterone Levels and the Risk of Anemia in Older Men and Women. Arch. Intern. Med. 2006, 166, 1380–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrero, J.J.; Barany, P.; Yilmaz, M.I.; Qureshi, A.R.; Sonmez, A.; Heimbürger, O.; Ozgurtas, T.; Yenicesu, M.; Lindholm, B.; Stenvinkel, P. Testosterone deficiency is a cause of anaemia and reduced responsiveness to erythropoiesis-stimulating agents in men with chronic kidney disease. Nephrol. Dial. Transplant. 2011, 27, 709–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, S.; Vecchio, M.; Craig, J.C.; Tonelli, M.; Johnson, D.W.; Nicolucci, A.; Pellegrini, F.; Saglimbene, V.; Logroscino, G.; Fishbane, S.; et al. Prevalence of depression in chronic kidney disease: Systematic review and meta-analysis of observational studies. Kidney Int. 2013, 84, 179–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan, D.; Yang, L.; Zhang, M.; Song, X.; Ren, W. Depression and Associated Factors in Chinese Patients with Chronic Kidney Disease without Dialysis: A Cross-Sectional Study. Front. Public Health 2021, 9, 605–651. [Google Scholar] [CrossRef]
- Waraich, P.; Goldner, E.M.; Somers, J.M.; Hsu, L. Prevalence and Incidence Studies of Mood Disorders: A Systematic Review of the Literature. Can. J. Psychiatry 2004, 49, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Lim, V.S.; Fang, V.S. Gonadal dysfunction in uremic men: A study of the hypothalamo-pituitary-testicular axis before and after renal transplantation. Am. J. Med. 1975, 58, 655–662. [Google Scholar] [CrossRef]
- Reinhardt, W.; Kübber, H.; Dolff, S.; Benson, S.; Führer, D.; Tan, S. Rapid recovery of hypogonadism in male patients with end stage renal disease after renal transplantation. Endocrine 2018, 60, 159–166. [Google Scholar] [CrossRef]
- Prem, A.R.; Punekar, S.V.; Kalpana, M.; Kelkar, A.R.; Acharya, V.N. Male reproductive function in uraemia: Efficacy of haemodialysis and renal transplantation. Br. J. Urol. 1996, 78, 635–638. [Google Scholar] [CrossRef]
- Hamdi, S.M.; Walschaerts, M.; Bujan, L.; Rostaing, L.; Kamar, N. A prospective study in male recipients of kidney transplantation reveals divergent patterns for inhibin B and testosterone secretions. Basic Clin. Androl. 2014, 24, 11. [Google Scholar] [CrossRef] [Green Version]
- Lofaro, D.; Perri, A.; Aversa, A.; Aquino, B.; Bonofiglio, M.; La Russa, A.; Settino, M.G.; Leone, F.; Ilacqua, A.; Armentano, F.; et al. Testosterone in renal transplant patients: Effect on body composition and clinical parameters. J. Nephrol. 2018, 31, 775–783. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Lin, Y.; Lin, H.; Li, M.; Nie, P.; Chen, L.; Qiu, J.; Lu, Y.; Chen, L.; et al. Long-Term Impact of Immunosuppressants at Therapeutic Doses on Male Reproductive System in Unilateral Nephrectomized Rats: A Comparative Study. BioMed Res. Int. 2013, 2013, 690382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.G.; Yang, Y.R.; Wang, H.W.; Qiu, F.; Peng, W.L.; Xu, H.M.; Han, S.; Liu, Y.; Tang, L.G.; Fu, J. Characteristics of male fertility after renal transplantation. Andrologia 2011, 43, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Georgiou, G.K.; Dounousi, E.; Harissis, H.V. Calcineurin inhibitors and male fertility after renal transplantation—A review. Andrologia 2015, 48, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Caneguim, B.H.; Cerri, P.S.; Spolidório, L.C.; Miraglia, S.M.; Sasso-Cerri, E. Structural alterations in the seminiferous tubules of rats treated with immunosuppressor tacrolimus. Reprod. Biol. Endocrinol. 2009, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantarcı, G.; Şahin, S.; Uras, A.R.; Ergin, H. Effects of different calcineurin inhibitors on sex hormone levels in transplanted male patients. Transplant. Proc. 2004, 36, 178–179. [Google Scholar] [CrossRef]
- Tondolo, V.; Citterio, F.; Panocchia, N.; Nanni, G.; Castagneto, M. Sirolimus Impairs Improvement of the Gonadal Function after Renal Transplantation. Am. J. Transplant. 2005, 5, 197. [Google Scholar] [CrossRef]
- Lessan-Pezeshki, M.; Ghazizadeh, S. Sexual and reproductive function in end-stage renal disease and effect of kidney transplantation. Asian J. Androl. 2008, 10, 441–446. [Google Scholar] [CrossRef]
- Shoskes, D.A.; Kerr, H.; Askar, M.; Goldfarb, D.A.; Schold, J. Low Testosterone at Time of Transplantation is Independently Associated with Poor Patient and Graft Survival in Male Renal Transplant Recipients. J. Urol. 2014, 192, 1168–1171. [Google Scholar] [CrossRef]
- Hackett, G.; Kirby, M.; Edwards, D.; Jones, T.H.; Wylie, K.; Ossei-Gerning, N.; David, J.; Muneer, A. British Society for Sexual Medicine Guidelines on Adult Testosterone Deficiency, With Statements for UK Practice. J. Sex. Med. 2017, 14, 1504–1523. [Google Scholar] [CrossRef] [Green Version]
- ISSM. ISSM Quick Reference Guide on Testosterone Deficiency for Men. September 2015. Available online: http://www.issm.info/education/clinical-guidelines/ (accessed on 14 September 2017).
- Jayasena, C.N.; Anderson, R.A.; Llahana, S.; Barth, J.H.; MacKenzie, F.; Wilkes, S.; Smith, N.; Sooriakumaran, P.; Minhas, S.; Wu, F.C.W.; et al. Society for Endocrinology guidelines for testosterone replacement therapy in male hypogonadism. Clin. Endocrinol. 2021, 96, 200–219. [Google Scholar] [CrossRef]
- Johnson, C.A. Use of androgens in patients with renal failure. Semin. Dial. 2000, 13, 36–39. [Google Scholar] [CrossRef]
- Wu, F.C.W.; Von Eckardstein, A. Androgens and Coronary Artery Disease. Endocr. Rev. 2003, 24, 183–217. [Google Scholar] [CrossRef] [PubMed]
- Whitsel, E.A.; Boyko, E.J.; Matsumoto, A.M.; Anawalt, B.D.; Siscovick, D.S. Intramuscular testosterone esters and plasma lipids in hypogonadal men: A meta-analysis. Am. J. Med. 2001, 111, 261–269. [Google Scholar] [CrossRef]
- Basaria, S.; Coviello, A.D.; Travison, T.G.; Storer, T.W.; Farwell, W.R.; Jette, A.M.; Eder, R.; Tennstedt, S.; Ulloor, J.; Zhang, A.; et al. Adverse Events Associated with Testosterone Administration. N. Engl. J. Med. 2010, 363, 109–122. [Google Scholar] [CrossRef] [Green Version]
- Albert, S.G.; Morley, J.E. Testosterone therapy, association with age, initiation and mode of therapy with cardiovascular events: A systematic review. Clin. Endocrinol. 2016, 85, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Maggi, M.; Wu, F.C.; Jones, T.H.; Jackson, G.; Behre, H.M.; Hackett, G.; Martin-Morales, A.; Balercia, G.; Dobs, A.S.; Arver, S.T.; et al. Testosterone treatment is not associated with increased risk of adverse cardiovascular events: Results from the Registry of Hypogonadism in Men (RHYME). Int. J. Clin. Pract. 2016, 70, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Salonia, A.; Bettocchi, C.; Boeri, L.; Capogrosso, P.; Carvalho, J.; Cilesiz, N.C.; Cocci, A.; Corona, G.; Dimitropoulos, K.; Gül, M.; et al. European Association of Urology Guidelines on Sexual and Reproductive Health—2021 Update: Male Sexual Dysfunction. Eur. Urol. 2021, 80, 333–357. [Google Scholar] [CrossRef]
- Bhasin, S.; Singh, A.B.; Mac, R.P.; Carter, B.; Lee, M.I.; Cunningham, G.R. Managing the Risks of Prostate Disease During Testosterone Replacement Therapy in Older Men: Recommendations for a Standardized Monitoring Plan. J. Androl. 2003, 24, 299–311. [Google Scholar] [CrossRef]
- Inoue, Y.; Nakamura, K.; Kuwahara, Y.; Lu, Y.; Masuda, N.; Horie, S.; Okada, H.; Ide, H. Efficacy of Testosterone Treatment in Hemodialysis Patients as Assessed by Aging Males’ Symptoms Scores: A Pilot Study. Am. J. Men’s Health 2018, 12, 1541–1547. [Google Scholar] [CrossRef]
- Bhasin, S.; Brito, J.P.; Cunningham, G.R.; Hayes, F.J.; Hodis, H.N.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Wu, F.C.; Yialamas, M.A. Testosterone Therapy in Men With Hypogonadism: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2018, 103, 1715–1744. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, P.; Carrero, J.J.; Díez, J.J. Gonadal dysfunction in men with chronic kidney disease: Clinical features, prognostic implications and therapeutic options. J. Nephrol. 2011, 25, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Shaldon, S.; Koch, K.M.; Oppermann, F.; Patyna, W.D.; Schoeppe, W. Testosterone Therapy for Anaemia in Maintenance Dialysis. BMJ 1971, 3, 212–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogol, A.D.; Tkachenko, N.; Bryson, N. Natesto™, a novel testosterone nasal gel, normalizes androgen levels in hypogonadal men. Andrology 2015, 4, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arver, S.; Stief, C.; De La Rosette, J.; Jones, T.H.; Neijber, A.; Carrara, D. A new 2% testosterone gel formulation: A comparison with currently available topical preparations. Andrology 2018, 6, 396–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, C.G.; Shusterman, N.; Cohen, B. Pharmacokinetics, Clinical Efficacy, Safety Profile, and Patient-Reported Outcomes in Patients Receiving Subcutaneous Testosterone Pellets 900 mg for Treatment of Symptoms Associated with Androgen Deficiency. J. Sex. Med. 2017, 14, 883–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhasin, S.; Cunningham, G.R.; Hayes, F.J.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Montori, V.M. Testosterone Therapy in Men with Androgen Deficiency Syndromes: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2010, 95, 2536–2559. [Google Scholar] [CrossRef]
- Corona, G.; Maseroli, E.; Maggi, M. Injectable testosterone undecanoate for the treatment of hypogonadism. Expert Opin. Pharmacother. 2014, 15, 1903–1926. [Google Scholar] [CrossRef]
- Pastuszak, A.W.; Bush, M.; Curd, L.; Vijayan, S.; Priestley, T.; Xiang, Q.; Hu, Y. Population Pharmacokinetic Modeling and Simulations to Evaluate a Potential Dose Regimen of Testosterone Undecanoate in Hypogonadal Males. J. Clin. Pharmacol. 2021, 61, 1618–1625. [Google Scholar] [CrossRef]
- Middleton, T.; Turner, L.; Fennell, C.; Savković, S.; Jayadev, V.; Conway, A.J.; Handelsman, D.J. Complications of injectable testosterone undecanoate in routine clinical practice. Eur. J. Endocrinol. 2015, 172, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Dinsmore, W.W.; Wyllie, M.G. The long-term efficacy and safety of a testosterone mucoadhesive buccal tablet in testosterone-deficient men. Br. J. Urol. 2012, 110, 162–169. [Google Scholar] [CrossRef]
- Johansen, K.L. Treatment of hypogonadism in men with chronic kidney disease. Adv. Chronic Kidney Dis. 2004, 11, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Lim, V.S.; Fang, V.S. Restoration of Plasma Testosterone Levels in Uremic Men With Clomiphene Citrate. J. Clin. Endocrinol. Metab. 1976, 43, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Cangüven, O.; Aykose, G.; Albayrak, S.; Goktas, C.; Horuz, R.; Yencilek, F. Efficacy of testosterone gel in the treatment of erectile dysfunction in hypogonadal hemodialysis patients: A pilot study. Int. J. Impot. Res. 2009, 22, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, J.K.; Koo, H.S.; Yu, J.; Park, M.G. Effects of Testosterone Treatment on Quality of Life in Patients with Chronic Kidney Disease. Am. J. Men’s Health 2020, 14, 1557988320917258. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.R., Jr.; Weinstein, M.B. Erythropoietic Response of Dialyzed Patients to Testosterone Administration. Ann. Intern. Med. 1970, 73, 403–407. [Google Scholar] [CrossRef]
- Vircburger, M.I.; Prelević, G.M.; Perić, L.A.; Knežević, J.; Djukanović, L. Testosterone Levels after Bromocriptine Treatment in Patients Undergoing Long-term Hemodialysis. J. Androl. 1985, 6, 113–116. [Google Scholar] [CrossRef]
- Ruilope, L.; Garcia-Robles, R.; Paya, C.; de Villa, L.F.; Miranda, B.; Morales, J.M.; Parada, J.; Sancho, J.; Rodicio, J.L. Influence of Lisuride, A Dopaminergic Agonist, on the Sexual Function of Male Patients with Chronic Renal Failure. Am. J. Kidney Dis. 1985, 5, 182–185. [Google Scholar] [CrossRef]
- Bommer, J.; Kugel, M.; Schwöbel, B.; Ritz, E.; Barth, H.P.; Seelig, R. Improved Sexual Function During Recombinant Human Erythropoietin Therapy. Nephrol. Dial. Transplant. 1990, 5, 204–207. [Google Scholar] [CrossRef]
- Mahajan, S.K.; Abbasi, A.A.; Prasad, A.S.; Rabbani, P.; Briggs, W.A.; McDonald, F.D. Effect of Oral Zinc Therapy on Gonadal Function in Hemodialysis Patients: A Double-Blind Study. Ann. Intern. Med. 1982, 97, 357–361. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romejko, K.; Rymarz, A.; Sadownik, H.; Niemczyk, S. Testosterone Deficiency as One of the Major Endocrine Disorders in Chronic Kidney Disease. Nutrients 2022, 14, 3438. https://doi.org/10.3390/nu14163438
Romejko K, Rymarz A, Sadownik H, Niemczyk S. Testosterone Deficiency as One of the Major Endocrine Disorders in Chronic Kidney Disease. Nutrients. 2022; 14(16):3438. https://doi.org/10.3390/nu14163438
Chicago/Turabian StyleRomejko, Katarzyna, Aleksandra Rymarz, Hanna Sadownik, and Stanisław Niemczyk. 2022. "Testosterone Deficiency as One of the Major Endocrine Disorders in Chronic Kidney Disease" Nutrients 14, no. 16: 3438. https://doi.org/10.3390/nu14163438