Liver Enzymes in a Cohort of Community-Dwelling Older Persons: Focus on Sex Contribution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Frailty Index
2.3. Determination of Serum Liver Enzyme Concentrations
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 10 October 2022).
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- De Reuck, J.; Maurage, C.-A.; Deramecourt, V.; Pasquier, F.; Cordonnier, C.; Leys, D.; Bordet, R. Aging and Cerebrovascular Lesions in Pure and in Mixed Neurodegenerative and Vascular Dementia Brains: A Neuropathological Study. Folia Neuropathol. 2018, 56, 81–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, B.D.; Bennett, D.A.; Boyle, P.A.; Leurgans, S.; Schneider, J.A. Dementia from Alzheimer Disease and Mixed Pathologies in the Oldest Old. JAMA 2012, 307, 1798–1800. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.R.; Ribeiro, F.C.; Frozza, R.L.; De Felice, F.G.; Lourenco, M.V. Metabolic Dysfunction in Alzheimer’s Disease: From Basic Neurobiology to Clinical Approaches. J. Alzheimers Dis. JAD 2018, 64, S405–S426. [Google Scholar] [CrossRef]
- Kapogiannis, D.; Mattson, M.P. Disrupted Energy Metabolism and Neuronal Circuit Dysfunction in Cognitive Impairment and Alzheimer’s Disease. Lancet Neurol. 2011, 10, 187–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledo, J.B.; Arnold, M.; Kastenmüller, G.; Chang, R.; Baillie, R.A.; Han, X.; Thambisetty, M.; Tenenbaum, J.D.; Suhre, K.; Thompson, J.W.; et al. Metabolic Network Failures in Alzheimer’s Disease: A Biochemical Road Map. Alzheimers Dement. J. Alzheimers Assoc. 2017, 13, 965–984. [Google Scholar] [CrossRef] [PubMed]
- Nho, K.; Kueider-Paisley, A.; Ahmad, S.; Mahmoudian Dehkordi, S.; Arnold, M.; Risacher, S.L.; Louie, G.; Blach, C.; Baillie, R.; Han, X.; et al. Association of Altered Liver Enzymes With Alzheimer Disease Diagnosis, Cognition, Neuroimaging Measures, and Cerebrospinal Fluid Biomarkers. JAMA Netw. Open 2019, 2, e197978. [Google Scholar] [CrossRef]
- Lu, Y.; Pike, J.R.; Selvin, E.; Mosley, T.; Palta, P.; Sharrett, A.R.; Thomas, A.; Loehr, L.; Sidney Barritt, A.; Hoogeveen, R.C.; et al. Low Liver Enzymes and Risk of Dementia: The Atherosclerosis Risk in Communities (ARIC) Study. J. Alzheimers Dis. JAD 2021, 79, 1775–1784. [Google Scholar] [CrossRef]
- Kamada, Y.; Hashimoto, R.; Yamamori, H.; Yasuda, Y.; Takehara, T.; Fujita, Y.; Hashimoto, K.; Miyoshi, E. Impact of Plasma Transaminase Levels on the Peripheral Blood Glutamate Levels and Memory Functions in Healthy Subjects. BBA Clin. 2016, 5, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yue, L.; Sun, L.; Xiao, S. An Increased Aspartate to Alanine Aminotransferase Ratio Is Associated With a Higher Risk of Cognitive Impairment. Front. Med. 2022, 9, 780174. [Google Scholar] [CrossRef]
- King, J.A.; Nephew, B.C.; Choudhury, A.; Poirier, G.L.; Lim, A.; Mandrekar, P. Chronic Alcohol-Induced Liver Injury Correlates with Memory Deficits: Role for Neuroinflammation. Alcohol 2020, 83, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Estrada, L.D.; Ahumada, P.; Cabrera, D.; Arab, J.P. Liver Dysfunction as a Novel Player in Alzheimer’s Progression: Looking Outside the Brain. Front. Aging Neurosci. 2019, 11, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sookoian, S.; Pirola, C.J. Alanine and Aspartate Aminotransferase and Glutamine-Cycling Pathway: Their Roles in Pathogenesis of Metabolic Syndrome. World J. Gastroenterol. 2012, 18, 3775–3781. [Google Scholar] [CrossRef] [PubMed]
- Sookoian, S.; Castaño, G.O.; Scian, R.; Fernández Gianotti, T.; Dopazo, H.; Rohr, C.; Gaj, G.; San Martino, J.; Sevic, I.; Flichman, D.; et al. Serum Aminotransferases in Nonalcoholic Fatty Liver Disease Are a Signature of Liver Metabolic Perturbations at the Amino Acid and Krebs Cycle Level. Am. J. Clin. Nutr. 2016, 103, 422–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellinger, J.J.; Lewis, I.A.; Markley, J.L. Role of Aminotransferases in Glutamate Metabolism of Human Erythrocytes. J. Biomol. NMR 2011, 49, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, P.; Cheng, M.; Yu, L.; Cheng, Z.; Fan, L.; Chen, C. AST to ALT Ratio and Arterial Stiffness in Non-Fatty Liver Japanese Population:A Secondary Analysis Based on a Cross-Sectional Study. Lipids Health Dis. 2018, 17, 275. [Google Scholar] [CrossRef] [Green Version]
- Giannini, E.; Botta, F.; Fasoli, A.; Ceppa, P.; Risso, D.; Lantieri, P.B.; Celle, G.; Testa, R. Progressive Liver Functional Impairment Is Associated with an Increase in AST/ALT Ratio. Dig. Dis. Sci. 1999, 44, 1249–1253. [Google Scholar] [CrossRef]
- Vespasiani-Gentilucci, U.; De Vincentis, A.; Ferrucci, L.; Bandinelli, S.; Antonelli Incalzi, R.; Picardi, A. Low Alanine Aminotransferase Levels in the Elderly Population: Frailty, Disability, Sarcopenia, and Reduced Survival. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 925–930. [Google Scholar] [CrossRef] [Green Version]
- Koehler, E.M.; Sanna, D.; Hansen, B.E.; van Rooij, F.J.; Heeringa, J.; Hofman, A.; Tiemeier, H.; Stricker, B.H.; Schouten, J.N.L.; Janssen, H.L.A. Serum Liver Enzymes Are Associated with All-Cause Mortality in an Elderly Population. Liver Int. Off. J. Int. Assoc. Study Liver 2014, 34, 296–304. [Google Scholar] [CrossRef]
- Le Couteur, D.G.; Blyth, F.M.; Creasey, H.M.; Handelsman, D.J.; Naganathan, V.; Sambrook, P.N.; Seibel, M.J.; Waite, L.M.; Cumming, R.G. The Association of Alanine Transaminase with Aging, Frailty, and Mortality. J. Gerontol. Ser. A 2010, 65, 712–717. [Google Scholar] [CrossRef]
- Ramaty, E.; Maor, E.; Peltz-Sinvani, N.; Brom, A.; Grinfeld, A.; Kivity, S.; Segev, S.; Sidi, Y.; Kessler, T.; Sela, B.A.; et al. Low ALT Blood Levels Predict Long-Term All-Cause Mortality among Adults. A Historical Prospective Cohort Study. Eur. J. Intern. Med. 2014, 25, 919–921. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.H.; Sullivan, D.R.; Nicholson, G.C.; George, J.; Jenkins, A.J.; Januszewski, A.S.; Gebski, V.J.; Manning, P.; Tan, Y.M.; Donoghoe, M.W.; et al. Opposite Associations between Alanine Aminotransferase and γ-Glutamyl Transferase Levels and All-Cause Mortality in Type 2 Diabetes: Analysis of the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Metabolism 2016, 65, 783–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vozarova, B.; Stefan, N.; Lindsay, R.S.; Saremi, A.; Pratley, R.E.; Bogardus, C.; Tataranni, P.A. High Alanine Aminotransferase Is Associated with Decreased Hepatic Insulin Sensitivity and Predicts the Development of Type 2 Diabetes. Diabetes 2002, 51, 1889–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.-H.; Chen, J.-D.; Lin, Y.-C. A Better Parameter in Predicting Insulin Resistance: Obesity plus Elevated Alanine Aminotransferase. World J. Gastroenterol. 2009, 15, 5598–5603. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, X.; Hong, J.; Chao, M.; Gu, W.; Wang, W.; Ning, G. Positive Correlations of Liver Enzymes with Metabolic Syndrome Including Insulin Resistance in Newly Diagnosed Type 2 Diabetes Mellitus. Endocrine 2010, 38, 181–187. [Google Scholar] [CrossRef]
- Buday, B.; Pach, P.F.; Literati-Nagy, B.; Vitai, M.; Kovacs, G.; Vecsei, Z.; Koranyi, L.; Lengyel, C. Sex Influenced Association of Directly Measured Insulin Sensitivity and Serum Transaminase Levels: Why Alanine Aminotransferase Only Predicts Cardiovascular Risk in Men? Cardiovasc. Diabetol. 2015, 14, 55. [Google Scholar] [CrossRef] [Green Version]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.-F.; Montagner, A.; Gourdy, P. Sex Differences in Metabolic Regulation and Diabetes Susceptibility. Diabetologia 2020, 63, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Della Torre, S.; Mitro, N.; Meda, C.; Lolli, F.; Pedretti, S.; Barcella, M.; Ottobrini, L.; Metzger, D.; Caruso, D.; Maggi, A. Short-Term Fasting Reveals Amino Acid Metabolism as a Major Sex-Discriminating Factor in the Liver. Cell Metab. 2018, 28, 256–267.e5. [Google Scholar] [CrossRef] [Green Version]
- Petroff, D.; Bätz, O.; Jedrysiak, K.; Kramer, J.; Berg, T.; Wiegand, J. Age Dependence of Liver Enzymes: An Analysis of Over 1,300,000 Consecutive Blood Samples. Clin. Gastroenterol. Hepatol. 2022, 20, 641–650. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Montagnese, S.; Jalan, R. Hepatic Encephalopathy in Patients with Acute Decompensation of Cirrhosis and Acute-on-Chronic Liver Failure. J. Hepatol. 2015, 62, 437–447. [Google Scholar] [CrossRef]
- Rose, C.F.; Amodio, P.; Bajaj, J.S.; Dhiman, R.K.; Montagnese, S.; Taylor-Robinson, S.D.; Vilstrup, H.; Jalan, R. Hepatic Encephalopathy: Novel Insights into Classification, Pathophysiology and Therapy. J. Hepatol. 2020, 73, 1526–1547. [Google Scholar] [CrossRef] [PubMed]
- Bosoi, C.R.; Rose, C.F. Identifying the Direct Effects of Ammonia on the Brain. Metab. Brain Dis. 2009, 24, 95–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa-Sanchez, R.; Rose, C.F. Pathogenesis of Hepatic Encephalopathy in Chronic Liver Disease. J. Clin. Exp. Hepatol. 2018, 8, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Beraza, N.; Trautwein, C. The Gut-Brain-Liver Axis: A New Option to Treat Obesity and Diabetes? Hepatology 2008, 48, 1011–1013. [Google Scholar] [CrossRef]
- Poulose, S.M.; Miller, M.G.; Scott, T.; Shukitt-Hale, B. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function. Adv. Nutr. Int. Rev. J. 2017, 8, 804–811. [Google Scholar] [CrossRef] [Green Version]
- Wahl, D.; Solon-Biet, S.M.; Cogger, V.C.; Fontana, L.; Simpson, S.J.; Le Couteur, D.G.; Ribeiro, R.V. Aging, Lifestyle and Dementia. Neurobiol. Dis. 2019, 130, 104481. [Google Scholar] [CrossRef]
- Popa-Wagner, A.; Dumitrascu, D.I.; Capitanescu, B.; Petcu, E.B.; Surugiu, R.; Fang, W.-H.; Dumbrava, D.-A. Dietary Habits, Lifestyle Factors and Neurodegenerative Diseases. Neural Regen. Res. 2020, 15, 394–400. [Google Scholar] [CrossRef]
- Butterworth, R.F. The Liver-Brain Axis in Liver Failure: Neuroinflammation and Encephalopathy. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 522–528. [Google Scholar] [CrossRef]
- Giambattistelli, F.; Bucossi, S.; Salustri, C.; Panetta, V.; Mariani, S.; Siotto, M.; Ventriglia, M.; Vernieri, F.; Dell’Acqua, M.L.; Cassetta, E.; et al. Effects of Hemochromatosis and Transferrin Gene Mutations on Iron Dyshomeostasis, Liver Dysfunction and on the Risk of Alzheimer’s Disease. Neurobiol. Aging 2012, 33, 1633–1641. [Google Scholar] [CrossRef]
- Magni, E.; Binetti, G.; Bianchetti, A.; Rozzini, R.; Trabucchi, M. Mini-Mental State Examination: A Normative Study in Italian Elderly Population. Eur. J. Neurol. 1996, 3, 198–202. [Google Scholar] [CrossRef]
- Global Database on Body Mass Index—World Health Organization. Available online: http://www.assessmentpsychology.com/icbmi.htm (accessed on 10 October 2022).
- Dubois, B.; Feldman, H.H.; Jacova, C.; Hampel, H.; Molinuevo, J.L.; Blennow, K.; DeKosky, S.T.; Gauthier, S.; Selkoe, D.; Bateman, R.; et al. Advancing Research Diagnostic Criteria for Alzheimer’s Disease: The IWG-2 Criteria. Lancet Neurol. 2014, 13, 614–629. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013; ISBN 978-0-89042-555-8. [Google Scholar]
- Fierini, F. Mixed Dementia: Neglected Clinical Entity or Nosographic Artifice? J. Neurol. Sci. 2020, 410, 116662. [Google Scholar] [CrossRef] [PubMed]
- Mitnitski, A.B.; Mogilner, A.J.; Rockwood, K. Accumulation of Deficits as a Proxy Measure of Aging. Sci. World J. 2001, 1, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arosio, B.; Rossi, P.D.; Ferri, E.; Cesari, M.; Vitale, G. Characterization of Vitamin D Status in Older Persons with Cognitive Impairment. Nutrients 2022, 14, 1142. [Google Scholar] [CrossRef]
- Rockwood, K.; Song, X.; MacKnight, C.; Bergman, H.; Hogan, D.B.; McDowell, I.; Mitnitski, A. A Global Clinical Measure of Fitness and Frailty in Elderly People. CMAJ Can. Med. Assoc. J. 2005, 173, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockwood, K.; Song, X.; Mitnitski, A. Changes in Relative Fitness and Frailty across the Adult Lifespan: Evidence from the Canadian National Population Health Survey. CMAJ Can. Med. Assoc. J. 2011, 183, E487–E494. [Google Scholar] [CrossRef] [Green Version]
- Pacifico, L.; Ferraro, F.; Bonci, E.; Anania, C.; Romaggioli, S.; Chiesa, C. Upper Limit of Normal for Alanine Aminotransferase: Quo Vadis? Clin. Chim. Acta 2013, 422, 29–39. [Google Scholar] [CrossRef]
- Elinav, E.; Ben-Dov, I.Z.; Ackerman, E.; Kiderman, A.; Glikberg, F.; Shapira, Y.; Ackerman, Z. Correlation Between Serum Alanine Aminotransferase Activity and Age: An Inverted U Curve Pattern. Am. J. Gastroenterol. 2005, 100, 2201–2204. [Google Scholar] [CrossRef]
- Qian, K.; Zhong, S.; Xie, K.; Yu, D.; Yang, R.; Gong, D.-W. Hepatic ALT Isoenzymes Are Elevated in Gluconeogenic Conditions Including Diabetes and Suppressed by Insulin at the Protein Level: Regulation of ALT Isoforms in Diabetes. Diabetes Metab. Res. Rev. 2015, 31, 562–571. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, H.; Kamitani, T.; Matsui, T.; Yamamoto, Y.; Fukuhara, S. Association of Low Alanine Aminotransferase with Loss of Independence or Death: A 5-Year Population-Based Cohort Study. J. Gastroenterol. Hepatol. 2019, 34, 1793–1799. [Google Scholar] [CrossRef]
- Reis, H.; Guatimosim, C.; Paquet, M.; Santos, M.; Ribeiro, F.; Kummer, A.; Schenatto, G.; Salgado, J.; Vieira, L.; Teixeira, A.; et al. Neuro-Transmitters in the Central Nervous System & Their Implication in Learning and Memory Processes. Curr. Med. Chem. 2009, 16, 796–840. [Google Scholar] [CrossRef] [PubMed]
- Elinav, E.; Ackerman, Z.; Maaravi, Y.; Ben-Dov, I.Z.; Ein-Mor, E.; Stessman, J. Low Alanine Aminotransferase Activity in Older People Is Associated with Greater Long-Term Mortality. J. Am. Geriatr. Soc. 2006, 54, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F.; Clegg, D.J.; Hevener, A.L. The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis. Endocr. Rev. 2013, 34, 309–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggi, A.; Della Torre, S. Sex, Metabolism and Health. Mol. Metab. 2018, 15, 3–7. [Google Scholar] [CrossRef]
- Bai, G.; Wang, Y.; Kuja-Halkola, R.; Li, X.; Tomata, Y.; Karlsson, I.K.; Pedersen, N.L.; Hägg, S.; Jylhävä, J. Frailty and the Risk of Dementia: Is the Association Explained by Shared Environmental and Genetic Factors? BMC Med. 2021, 19, 248. [Google Scholar] [CrossRef]
- De Bruijn, R.F.A.G.; Schrijvers, E.M.C.; de Groot, K.A.; Witteman, J.C.M.; Hofman, A.; Franco, O.H.; Koudstaal, P.J.; Ikram, M.A. The Association between Physical Activity and Dementia in an Elderly Population: The Rotterdam Study. Eur. J. Epidemiol. 2013, 28, 277–283. [Google Scholar] [CrossRef]
- Ogino, E.; Manly, J.J.; Schupf, N.; Mayeux, R.; Gu, Y. Current and Past Leisure Time Physical Activity in Relation to Risk of Alzheimer’s Disease in Older Adults. Alzheimers Dement. J. Alzheimers Assoc. 2019, 15, 1603–1611. [Google Scholar] [CrossRef]
Overall Cohort (n 419) | Women (n 294) | Men (n 125) | p | |
---|---|---|---|---|
Age (years) | 79.9 (5.5) | 79.8 (5.6) | 79.9 (5.0) | 0.86 |
Education (years) | 9.1 (4.6) | 8.5 (4.4) | 10.3 (4.8) | 0.001 |
MMSE score | 23.1 (5.6) | 23.0 (5.7) | 23.3 (5.3) | 0.64 |
GDS score | 12.4 (6.7) | 13.4 (6.6) | 9.6 (6.0) | <0.001 |
FI | 0.28 (0.21–0.37) | 0.27 (0.19–0.37) | 0.32 (0.23–0.40) | 0.02 |
BMI (kg/m2) | 25.6 (4.8) | 25.4 (5.1) | 26.2 (3.9) | 0.09 |
AST (U/L) | 19.0 (16.0–22.0) | 19.0 (16.0–22.0) | 19.0 (16.0–23.5) | 0.28 |
ALT (U/L) | 15.0 (11.0–19.0) | 14.0 (11.0–18.0) | 15.0 (12.0–20.0) | 0.007 |
AST/ALT ratio | 1.31 (1.08–1.54) | 1.33 (1.15–1.55) | 1.23 (1.04–1.46) | 0.003 |
Controls (n 171) | Dementia (n 248) | p | |
---|---|---|---|
Age (years) | 79.5 (5.7) | 80.1 (5.3) | 0.22 |
Sex (% women) | 69.6% | 70.6% | 0.46 |
Education (years) | 10.2 (4.5) | 8.2 (4.4) | <0.001 |
MMSE score | 27.0 (3.4) | 20.4 (5.2) | <0.001 |
GDS score | 12.4 (6.6) | 12.5 (6.8) | 0.97 |
FI | 0.24 (0.17–0.32) | 0.32 (0.24–0.41) | <0.001 |
BMI (kg/m2) | 26.1 (5.0) | 25.3 (4.6) | 0.13 |
AST (U/L) | 19.0 (16.0–23.0) | 19.0 (16.0–22.0) | 0.42 |
ALT (U/L) | 15.0 (12.0–20.0) | 14.0 (11.0–18.0) | 0.005 |
AST/ALT ratio | 1.26 (1.05–1.47) | 1.36 (1.12–1.60) | 0.003 |
Women | Men | |||||
---|---|---|---|---|---|---|
Controls (n 119) | Dementia (n 175) | p | Controls (n 52) | Dementia (n 73) | p | |
Age (years) | 79.5 (5.9) | 80.1 (5.4) | 0.37 | 79.4 (5.3) | 80.3 (4.8) | 0.35 |
Education (years) | 9.4 (4.2) a | 7.9 (4.4) | 0.004 | 12.0 (4.8) | 9.0 (4.4) | 0.001 |
MMSE score | 27.1 (3.3) | 20.2 (5.3) | <0.001 | 26.8 (3.6) | 21.0 (4.9) | <0.001 |
GDS score | 13.3 (6.6) b | 13.6 (6.8) c | 0.79 | 9.9 (6.1) | 9.2 (6.0) | 0.70 |
FI | 0.23 (0.17–0.31) | 0.30 (0.23–0.40) d | <0.001 | 0.26 (0.19–0.34) | 0.35 (0.26–0.43) | <0.001 |
BMI (kg/m2) | 26.1 (5.6) | 24.9 (4.7) | 0.07 | 26.2 (3.0) | 26.3 (4.4) | 0.88 |
AST (U/L) | 19.0 (16.0–22.0) | 18.0 (16.0–22.0) | 0.42 | 19.0 (16.0–24.0) | 19.0 (16.0–22.0) | 0.77 |
ALT (U/L) | 15.0 (12.0–18.0) a | 13.0 (10.0–18.0) | 0.09 | 17.0 (14.0–23.0) | 14.0 (12.0–19.0) | 0.009 |
AST/ALT ratio | 1.31 (1.11–1.50) a | 1.36 (1.15–1.60) | 0.11 | 1.14 (0.97–1.32) | 1.31 (1.06–1.60) | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri, E.; Rossi, P.D.; Scichilone, M.; Lucchi, T.A.; Arosio, B. Liver Enzymes in a Cohort of Community-Dwelling Older Persons: Focus on Sex Contribution. Nutrients 2022, 14, 4973. https://doi.org/10.3390/nu14234973
Ferri E, Rossi PD, Scichilone M, Lucchi TA, Arosio B. Liver Enzymes in a Cohort of Community-Dwelling Older Persons: Focus on Sex Contribution. Nutrients. 2022; 14(23):4973. https://doi.org/10.3390/nu14234973
Chicago/Turabian StyleFerri, Evelyn, Paolo D. Rossi, Martina Scichilone, Tiziano A. Lucchi, and Beatrice Arosio. 2022. "Liver Enzymes in a Cohort of Community-Dwelling Older Persons: Focus on Sex Contribution" Nutrients 14, no. 23: 4973. https://doi.org/10.3390/nu14234973
APA StyleFerri, E., Rossi, P. D., Scichilone, M., Lucchi, T. A., & Arosio, B. (2022). Liver Enzymes in a Cohort of Community-Dwelling Older Persons: Focus on Sex Contribution. Nutrients, 14(23), 4973. https://doi.org/10.3390/nu14234973