Urinary and Daily Assumption of Polyphenols and Hip-Fracture Risk: Results from the InCHIANTI Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Dietary Assessment
2.3. Urinary Total Polyphenols (UTPs)
2.4. Tibial pQCT
2.5. Covariates
2.5.1. Laboratory Tests
2.5.2. Physical Performance and Strength
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Russo, C.R.; Lauretani, F.; Bandinelli, S.; Bartali, B.; Di Iorio, A.; Volpato, S.; Guralnik, J.M.; Harris, T.; Ferrucci, L. Aging bone in men and women: Beyond changes in bone mineral density. Osteoporos. Int. 2003, 14, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.R.; Lauretani, F.; Seeman, E.; Bartali, B.; Bandinelli, S.; Di Iorio, A.; Guralnik, J.; Ferrucci, L. Structural adaptations to bone loss in aging men and women. Bone 2006, 38, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Hauger, A.V.; Bergland, A.; Holvik, K.; Ståhle, A.; Emaus, N.; Strand, B.H. Osteoporosis and osteopenia in the distal forearm predict all-cause mortality independent of grip strength: 22-year follow-up in the population-based Tromsø Study. Osteoporos. Int. 2018, 29, 2447–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iolascon, G.; de Sire, A.; Curci, C.; Paoletta, M.; Liguori, S.; Calafiore, D.; Gimigliano, F.; Moretti, A. Osteoporosis guidelines from a rehabilitation perspective: Systematic analysis and quality appraisal using AGREE II. Eur. J. Phys. Rehabil. Med. 2021, 57, 273–279. [Google Scholar] [CrossRef]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef] [Green Version]
- Levis, S.; Lagari, V.S. The role of diet in osteoporosis prevention and management. Curr. Osteoporos. Rep. 2012, 10, 296–302. [Google Scholar] [CrossRef]
- Tangestani, H.; Djafarian, K.; Emamat, H.; Arabzadegan, N.; Shab-Bidar, S. Efficacy of vitamin D fortified foods on bone mineral density and serum bone biomarkers: A systematic review and meta-analysis of interventional studies. Crit. Rev. Food Sci. Nutr. 2020, 60, 1094–1103. [Google Scholar] [CrossRef]
- Bolland, M.J.; Leung, W.; Tai, V.; Bastin, S.; Gamble, G.D.; Grey, A.; Reid, I.R. Calcium intake and risk of fracture: Systematic review. BMJ 2015, 351, h4580. [Google Scholar] [CrossRef] [Green Version]
- Bolland, M.J.; Grey, A.; Avenell, A. Effects of vitamin D supplementation on musculoskeletal health: A systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol. 2018, 6, 847–858. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Z.; Duan, L.; Ji, Y.; Yang, S.; Zhang, Y.; Li, H.; Wang, Y.; Wang, P.; Chen, J.; et al. Effect of Low-Dose Vitamin K2 Supplementation on Bone Mineral Density in Middle-Aged and Elderly Chinese: A Randomized Controlled Study. Calcif. Tissue Int. 2020, 106, 476–485. [Google Scholar] [CrossRef]
- Torre, E. Molecular signaling mechanisms behind polyphenol-induced bone anabolism. Phytochem. Rev. 2017, 16, 1183–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, R.; Cao, W.T.; Tian, H.Y.; He, J.; Chen, G.D.; Chen, Y.M. Greater intake of fruit and vegetables is associated with greater bone mineral density and lower osteoporosis risk in middle-aged and elderly adults. PLoS ONE 2017, 12, e0168906. [Google Scholar] [CrossRef]
- Jamal, R.; LaCombe, J.; Patel, R.; Blackwell, M.; Thomas, J.R.; Sloan, K.; Wallace, J.M.; Roper, R.J. Increased dosage and treatment time of Epigallocatechin-3-gallate (EGCG) negatively affects skeletal parameters in normal mice and Down syndrome mouse models. PLoS ONE 2022, 17, e0264254. [Google Scholar] [CrossRef] [PubMed]
- Martiniakova, M.; Babikova, M.; Mondockova, V.; Blahova, J.; Kovacova, V.; Omelka, R. The Role of Macronutrients, Micronutrients and Flavonoid Polyphenols in the Prevention and Treatment of Osteoporosis. Nutrients 2022, 14, 523. [Google Scholar] [CrossRef]
- Nash, L.A.; Ward, W.E. Tea and bone health: Findings from human studies, potential mechanisms, and identification of knowledge gaps. Crit. Rev. Food Sci. Nutr. 2017, 57, 1603–1617. [Google Scholar] [CrossRef]
- Duan, P.; Zhang, J.; Chen, J.; Liu, Z.; Guo, P.; Li, X.; Li, L.; Zhang, Q. Oolong tea drinking boosts calcaneus bone mineral density in postmenopausal women: A population-based study in southern China. Arch. Osteoporos. 2020, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Shi, H.F.; Wu, S.C. Tea consumption didn’t modify the risk of fracture: A dose-response meta-analysis of observational studies. Diagn. Pathol. 2014, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Iorio, A.; Abate, M.; Bandinelli, S.; Barassi, G.; Cherubini, A.; Andres-Lacueva, C.; Zamora-Ros, R.; Paganelli, R.; Volpato, S.; Ferrucci, L.; et al. Total urinary polyphenols and longitudinal changes of bone properties. The InCHIANTI study. Osteoporos. Int. 2020, 32, 353–362. [Google Scholar] [CrossRef]
- Ferrucci, L.; Bandinelli, S.; Benvenuti, E.; Di Iorio, A.; Macchi, C.; Harris, T.B.; Guralnik, J.M. Subsystems Contributing to the Decline in Ability to Walk: Bridging the Gap Between Epidemiology and Geriatric Practice in the InCHIANTI Study. J. Am. Geriatr. Soc. 2000, 48, 1618–1625. [Google Scholar] [CrossRef]
- Pisani, P. Relative validity and reproducibility of a food frequency dietary questionnaire for use in the Italian EPIC centres. Int. J. Epidemiol. 1997, 26, 152–160. [Google Scholar] [CrossRef]
- Bartali, B.; Turrini, A.; Salvini, S.; Lauretani, F.; Russo, C.R.; Corsi, A.M.; Bandinelli, S.; D’Amicis, A.; Palli, D.; Guralnik, J.M.; et al. Dietary intake estimated using different methods in two Italian older populations. Arch. Gerontol. Geriatr. 2003, 38, 51–60. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Achaintre, D.; Rothwell, J.A.; Rinaldi, S.; Assi, N.; Ferrari, P.; Leitzmann, M.; Boutron-Ruault, M.C.; Fagherazzi, G.; Auffret, A.; et al. Urinary excretions of 34 dietary polyphenols and their associations with lifestyle factors in the EPIC cohort study. Sci. Rep. 2016, 6, 26905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamora-Ros, R.; Rabassa, M.; Cherubini, A.; Urpi-Sarda, M.; Llorach, R.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C. Comparison of 24-hour volume and creatinine-corrected total urinary polyphenol as a biomarker of total dietary polyphenols in the Invecchiare InCHIANTI study. Anal. Chim. Acta 2011, 704, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semba, R.D.; Ferrucci, L.; Bartali, B.; Urpí-Sarda, M.; Zamora-Ros, R.; Sun, K.; Cherubini, A.; Bandinelli, S.; Andres-Lacueva, C. Resveratrol Levels and All-Cause Mortality in Older Community-Dwelling Adults. JAMA Intern. Med. 2014, 174, 1077–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capozza, R.F.; Feldman, S.; Mortarino, P.; Reina, P.S.; Schiessl, H.; Rittweger, J.; Ferretti, J.L.; Cointry, G.R. Structural analysis of the human tibia by tomographic (pQCT) serial scans. J. Anat. 2010, 216, 470–481. [Google Scholar] [CrossRef]
- Garasto, S.; Fusco, S.; Corica, F.; Rosignuolo, M.; Marino, A.; Montesanto, A.; De Rango, F.; Maggio, M.; Mari, V.; Corsonello, A.; et al. Estimating Glomerular Filtration Rate in Older People. Biomed Res. Int. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Sacco, S.M.; Horcajada, M.N.; Offord, E. Phytonutrients for bone health during ageing. Br. J. Clin. Pharmacol. 2013, 75, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Byberg, L.; Bellavia, A.; Larsson, S.C.; Orsini, N.; Wolk, A.; Michaëlsson, K. Mediterranean Diet and Hip Fracture in Swedish Men and Women. J. Bone Miner. Res. 2016, 31, 2098–2105. [Google Scholar] [CrossRef] [Green Version]
- Hooshmand, S.; Kern, M.; Metti, D.; Shamloufard, P.; Chai, S.C.; Johnson, S.A.; Payton, M.E.; Arjmandi, B.H. The effect of two doses of dried plum on bone density and bone biomarkers in osteopenic postmenopausal women: A randomized, controlled trial. Osteoporos. Int. 2016, 27, 2271–2279. [Google Scholar] [CrossRef]
- Schuit, S.; Van Der Klift, M.; Weel, A.; de Laet, C.; Burger, H.; Seeman, E.; Hofman, A.; Uitterlinden, A.; Van Leeuwen, J.; Pols, H. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 2004, 34, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Ornstrup, M.J.; Brüel, A.; Thomsen, J.S.; Harsløf, T.; Langdahl, B.L.; Pedersen, S.B. Long-Term High-Dose Resveratrol Supplementation Reduces Bone Mass and Fracture Strength in Rats. Calcif. Tissue Int. 2017, 102, 337–347. [Google Scholar] [CrossRef]
- Arjmandi, B.H.; Johnson, S.A.; Pourafshar, S.; Navaei, N.; George, K.S.; Hooshmand, S.; Chai, S.C.; Akhavan, N.S. Bone-protective effects of dried plum in postmenopausal women: Efficacy and possible mechanisms. Nutrients 2017, 9, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bo, S.; Gambino, R.; Ponzo, V.; Cioffi, I.; Goitre, I.; Evangelista, A.; Ciccone, G.; Cassader, M.; Procopio, M. Effects of resveratrol on bone health in type 2 diabetic patients. A double-blind randomized-controlled trial. Nutr. Diabetes 2018, 106, 1292–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, S.; Hasan, M.M.; Khan, H.; Mahmood, Z.A.; Patel, S. The mechanistic insight of polyphenols in calcium oxalate urolithiasis mitigation. Biomed. Pharmacother. 2018, 106, 1292–1299. [Google Scholar] [CrossRef]
- Kurajoh, M.; Inaba, M.; Nagata, Y.; Yamada, S.; Imanishi, Y.; Emoto, M. Association of cystatin C- and creatinine-based eGFR with osteoporotic fracture in Japanese postmenopausal women with osteoporosis: Sarcopenia as risk for fracture. J. Bone Miner. Metab. 2018, 37, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Asis, M.; Hemmati, N.; Moradi, S.; Nagulapalli Venkata, K.C.; Mohammadi, E.; Farzaei, M.H.; Bishayee, A. Effects of resveratrol supplementation on bone biomarkers: A systematic review and meta-analysis. Ann. N. Y. Acad. Sci. 2019, 1457, 92–103. [Google Scholar] [CrossRef]
- Cladis, D.P.; Debelo, H.; Lachcik, P.J.; Ferruzzi, M.G.; Weaver, C.M. Increasing Doses of Blueberry Polyphenols Alters Colonic Metabolism and Calcium Absorption in Ovariectomized Rats. Mol. Nutr. Food Res. 2020, 64, e2000031. [Google Scholar] [CrossRef]
- Bhattoa, H.P.; Cavalier, E.; Eastell, R.; Heijboer, A.C.; Jørgensen, N.R.; Makris, K.; Ulmer, C.Z.; Kanis, J.A.; Cooper, C.; Silverman, S.L.; et al. Analytical considerations and plans to standardize or harmonize assays for the reference bone turnover markers PINP and β-CTX in blood. Clin. Chim. Acta. 2021, 515, 16–20. [Google Scholar] [CrossRef]
Hip Fracture | p-Value | ||
---|---|---|---|
No | Yes | ||
781 | 36 | ||
Age (years) | 75.38 ± 7.64 | 76.75 ± 7.35 | 0.20 |
Sex female (n, %) | 426 (54.6) | 27 (75.0) | 0.01 |
Alcohol consumption | 0.92 | ||
Teetotal | 123 (15.6) | 6 (16.7) | |
Former | 175 (22.4) | 7 (19.4) | |
Current | 483 (61.8) | 23 (63.9) | |
Cigarette smoking | 0.61 | ||
Never | 462 (59.2) | 22 (61.1) | |
Former | 210 (26.9) | 11 (30.6) | |
Current | 109 (13.9) | 3 (8.3) | |
Summary Performance Score (0–12) | 9.77 ± 3.28 | 8.70 ± 3.39 | 0.20 |
Body Mass Index (kg/m2) | 27.49 ± 4.07 | 26.74 ± 4.77 | 0.22 |
Muscle strength (kg) | 28.74 ± 12.04 | 25.17 ± 9.48 | 0.71 |
Normalized gallic acid urinary eq/day 1 | 5.28 ± 0.74 | 5.43 ± 0.70 | 0.05 |
Normalized Tot. polyphenols consumed (mg/day) 2 | 443.84 ± 165.88 | 467.17 ± 166.55 | 0.01 |
Creatinine clearance, 24-hour (mL/min) | 76.00 ± 25.71 | 69.99 ± 27.69 | 0.73 |
Hip Fracture | p-Value | ||
---|---|---|---|
No | Yes | ||
781 | 36 | ||
Fat area 90% tibia (mm2) | 2631.46 ± 1521.81 | 2451.89 ± 1381.59 | 0.007 |
Muscle area 66% tibia (mm2) | 6233.66 ± 1255.49 | 5865.70 ± 1417.17 | 0.79 |
Muscle density 66% tibia (mg/cm3) | 70.59 ± 3.66 | 69.08 ± 5.88 | 0.05 |
Cortical bone area 38% tibia (mm2) | 295.73 ± 75.31 | 275.33 ± 78.27 | 0.79 |
Volumetric BMD 38% tibia (mg/cm3) | 474.88 ± 45.49 | 479.21 ± 41.78 | 0.40 |
Volumetric Cortical BMD 38% tibia (mg/cm3) | 1097.97 ± 78.68 | 1080.51 ± 81.67 | 0.52 |
Total bone area 38% tibia (mm2) | 380.09 ± 71.51 | 361.26 ± 76.18 | 0.94 |
Medullar area 38% tibia (mm2) | 86.06 ± 32.13 | 85.93 ± 29.03 | 0.61 |
Cortical bone thickness 38% tibia (mm) | 4.62 ± 1.24 | 4.34 ± 1.70 | 0.67 |
Bone/muscle ratio 66% tibia | 0.10 ± 0.03 | 0.11 ± 0.04 | 0.57 |
Total vBMD 4% tibia (mm2) | 1079.87 ± 382.20 | 1041.26 ± 425.54 | 0.37 |
Cortical vBMD 4% tibia (mg/cm3) | 256.93 ± 52.96 | 228.33 ± 38.39 | 0.01 |
Bone circumference BDG 4% tibia (mm) | 135.59 ± 37.51 | 139.59 ± 38.87 | 0.21 |
Model 1 | Model 2 | |||
---|---|---|---|---|
OR (95%CI) | OR (95%CI) | |||
Normalized Gallic acid eq/day 1 | 2.06 (1.12–3.76) | 0.01 | ||
Total polyphenols consumed daily (mg/day) 1 | 1.71 (0.49–5.96) | n.s. | ||
Sex | ||||
Female | 5.04 (1.53–16.6) | 0.008 | 4.92 (1.43–16.89) | 0.02 |
Male | reference group | reference group | ||
Age (years) | 0.99 (0.94–1.06) | n.s. | 0.99 (0.93–1.06) | n.s. |
Fat area 90% tibia (mm2) | ||||
Upper median | 0.32 (0.13–0.77) | 0.01 | 0.36 (0.15–0.85) | 0.02 |
Lower median | reference group | reference group | ||
Volumetric bone density BDG 4% tibia (mg/cm3) | ||||
Upper median | 0.05 (0.01–0.46) | 0.009 | 0.06 (0.01–0.54) | 0.01 |
Lower median | reference group | reference group | ||
Muscle density 66% tibia (mg/cm3) | ||||
Upper median | 0.01 (0.01–0.64) | 0.03 | 0.01 (0.01–0.76) | 0.04 |
Lower median | reference group | reference group | ||
Creatinine Clearance 24-hour 1 | 0.99 (0.98–1.02) | n.s. | 1.01 (0.98–1.02) | n.s. |
Estimate (95%CI) | p-Value | |
---|---|---|
Naringenin (mg/day) | −2.18 (−5.7:1.4) | 0.23 |
Kaempferol (mg/day) | 0.28 (−0.1:0.60) | 0.09 |
Luteolin (mg/day) | 0.02 (−0.3:0.3) | 0.91 |
Quercetin (mg/day) | −0.10 (−0.2:0.1) | 0.09 |
Epigallocatechin 3-gallate (mg/day) | −0.28 (−2.6:2.1) | 0.81 |
Total resveratrol (mg/day) | −0.08 (−0.1:−0.0) | 0.005 |
β ± SE | p-Value | |
---|---|---|
Intercept | 592.49 ± 80.53 | <0.001 |
Time | −18.24 ± 21.13 | 0.39 |
UTP normalized gallic acid | 24.53 ± 8.47 | 0.004 |
Time for UTP normalized gallic acid | −1.16 ± 3.92 | 0.77 |
No hip fracture | −17.22 ± 21.82 | 0.44 |
Age (years) | −2.27 ± 0.73 | 0.002 |
Sex (male) | 57.09 ± 9.35 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrino, R.; Paganelli, R.; Bandinelli, S.; Cherubini, A.; Andrés-Lacueva, C.; Di Iorio, A.; Sparvieri, E.; Zamora-Ros, R.; Ferrucci, L. Urinary and Daily Assumption of Polyphenols and Hip-Fracture Risk: Results from the InCHIANTI Study. Nutrients 2022, 14, 4754. https://doi.org/10.3390/nu14224754
Pellegrino R, Paganelli R, Bandinelli S, Cherubini A, Andrés-Lacueva C, Di Iorio A, Sparvieri E, Zamora-Ros R, Ferrucci L. Urinary and Daily Assumption of Polyphenols and Hip-Fracture Risk: Results from the InCHIANTI Study. Nutrients. 2022; 14(22):4754. https://doi.org/10.3390/nu14224754
Chicago/Turabian StylePellegrino, Raffaello, Roberto Paganelli, Stefania Bandinelli, Antonio Cherubini, Cristina Andrés-Lacueva, Angelo Di Iorio, Eleonora Sparvieri, Raul Zamora-Ros, and Luigi Ferrucci. 2022. "Urinary and Daily Assumption of Polyphenols and Hip-Fracture Risk: Results from the InCHIANTI Study" Nutrients 14, no. 22: 4754. https://doi.org/10.3390/nu14224754